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MIXED AND COMPONENTWISE CONDITION NUMBERS
FOR WEIGHTED MOORE-PENROSE INVERSE

AND WEIGHTED LEAST SQUARES PROBLEMS

Zhao Li∗ and Jie Sun

Abstract

Condition numbers play an important role in numerical analysis. Classical
condition numbers are normwise: they measure both input perturbations and
output errors with norms. To take into account the relative scaling of data
components or a possible sparseness, componentwise condition numbers have
been increasingly considered. In this paper, we give explicit expressions for the
mixed and componentwise condition numbers for the weighted Moore-Penrose
inverse of a matrix A, as well as for the solution and residue of a weighted

linear least squares problem ‖W 1
2 (Ax−b)‖2 = minv∈Rn ‖W 1

2 (Av−b)‖2, where
the matrix A with full column rank.

1 Introduction

1.1 General consideration.

A general theory of condition numbers are first given by Rice in [16], the relative
normwise condition number of a0 is given by

cond(a0) := lim
ε→0

sup
‖∆a‖≤ε

(‖φ(a0 + ∆a)− φ(a0)‖
‖φ(a0)‖ /

‖∆a‖
‖a0‖

)
=
‖φ′(a0)‖‖a0‖
‖φ(a0)‖ ,

where φ′(a0) is Fréchet derivative of φ at a0. A drawback of condition numbers
of this type is that they ignore the structure of both input and output data with
respect to scaling and/or sparsity. When the data is badly scaled or contains many
zeros, measuring a perturbation in terms of its norm, we are left in the dark con-
cerning the relative size of the perturbation on its small (or zero) entries.

To tackle this drawback, another approach in perturbation theory, known as
componentwise analysis, has been increasingly considered. To be precise, two kinds
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of condition numbers were studied: first, those measuring the errors in the output
with norms and the input perturbation componentwisely, and second, those measur-
ing both the error in the output and the perturbation in the input componentwisely.
The resulting condition numbers are called mixed and componentwise, respectively,
by Gohberg and Koltracht [7]. We will use this terminology throughout this paper.

In this paper we exhibit explicit expressions for mixed and componentwise con-
dition numbers for both weighted Moore-Penrose inverse and weighted linear least
squares problems. We also exhibit upper bounds for these condition numbers which
are easier to compute for large matrices.

1.2 A brief description of some previous work.

Probably the first mixed perturbation analysis was done by Skeel [18]. He per-
formed a mixed perturbation analysis for nonsingular linear systems of equations
and a mixed error analysis for Gaussian elimination. Skeel’s condition number is
of mixed type. It is defined using componentwise perturbation on the input data
and infinity norm in the solution. In [17], Rohn introduced a new relative condition
number measuring both perturbation in the input data and error in the output
componentwisely.

They were Gohberg and Koltracht [7] who named Skeel’s condition numbers.
They also gave explicit expressions for both mixed and componentwise condition
numbers of linear equations.

Perturbation theory for rectangular matrices and linear least squares problems
existed for quite a while for normwise case(cf. [19, 22]) and has been further studied
in [6, 9, 15]. For the mixed and componentwise settings for linear least squares
problems, the existing results consisted of bounds for both condition numbers(or
first order perturbations bounds) and unrestricted perturbation bounds. There
were no explicit expressions for mixed and componentwise condition numbers until
Cucker, Diao and Wei’s work [4].

1.3 Main definition and results.

For any points a, b ∈ Rn, Let

a

b
= (c1, . . . , cn) =





ai/bi, if bi 6= 0,

0, if ai = bi = 0,

∞ otherwise.

Then the following form of “distance” function can be defined by

d(a, b) =
∥∥∥∥

a− b

b

∥∥∥∥
∞

= max
i=1,...,n

{ |ai − bi|
|bi|

}
,
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which measures the componentwise perturbation when data a varies into b.
Note that if d(a, b) < ∞,

d(a, b) = min
i=1,...,n

{ν ≥ 0 | |ai − bi| ≤ ν|bi|}.

In the rest of this paper we will only consider pairs (a, b) for which d(a, b) < ∞.
We can extend the function d to matrices naturally by introducing a function vec.
For a matrix A ∈ Rm×n, vec(A) ∈ Rmn is defined by vec(A) = [aT

1 , . . . , aT
n ]T , where

A = [a1, . . . , an] with ai ∈ Rm, i = 1, · · · , n. Then,we define

d(A,B) = d(vec(A), vec(B)).

Note that vec is a homeomorphism between Rm×n and Rmn. In addition, it trans-
forms in the sense that, for all A ∈ Rm×n,

‖vec(A)‖2 = ‖A‖F ‖vec(A)‖∞ = ‖A‖max, (1)

where ‖ · ‖F is the Frobenius norm given by ‖A‖F = trace(AT A), AT denotes trans-
pose matrix of A, and ‖ · ‖max is the max norm given by ‖A‖max = max

i,j
|Aij |.

For ε > 0 we denote B0(a, ε) = {x | d(x, a) ≤ ε}. For a function F : Rp → Rq

we denote by Dom(f) its domain of definition.

Definition 1. Let F : Rp → Rq be a continuous mapping defined on an open set
Dom(F ) ⊂ Rp such that 0 6∈ Dom(F ) such that F (a) 6= 0.

(i) The mixed condition number of F at a is defined by

m(F, a) = lim
ε→0

sup
x∈B0(a,ε)

x 6=a

‖F (x)− F (a)‖∞
‖F (a)‖∞

1
d(x, a)

(ii) Suppose F (a) = (f1(a), . . . , fq(a))is such that fj(a) 6= 0 for j = 1, . . . , q. Then
the componentwise condition number of F at a is

c(F, a) = lim
ε→0

sup
x∈B0(a,ε)

x6=a

d(F (x), F (a)
d(x, a)

.

In this paper we consider these condition numbers for the weighted Moore Pen-
rose inverse of A ∈ Rm×n with respect to a symmetric positive definite matrix
W ∈ Rm×m. We recall that this the unique n ×m matrix A†W satisfying the four
matrix equation [2, 21]

AA†W A = A, A†W AA†W = A†W , (WAA†W )T = WAA†W , (A†W A)T = A†W A.

Identifying Rm×n with Rmn via vec and using (1), Definition 1 yields, respec-
tively,

m(A†W , A) := lim
ε→0

sup
‖∆A/A‖max≤ε

∥∥∥(A + ∆A)†W −A†W
∥∥∥

max∥∥∥A†W
∥∥∥

max

1
‖∆A/A‖max
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and

c(A†W , A) := lim
ε→0

sup
‖∆A/A‖max≤ε

1
‖∆A/A‖max

∥∥∥∥∥
(A + ∆A)†W −A†W

A†W

∥∥∥∥∥
max

.

Here B
A is an entrywise division defined by B

A := vec−1(vec(B)− vec(A)). Note also
that in the definition of c(A†W , A) we are assuming that A†W has no zero components.

Theorem 1 gives explicit expressions for these condition numbers. Corollary 1
then gives easier-to-compute upper bounds.

In a similar way, one defines, given a full column rank matrix A a vector b
and a symmetric positive definite matrix W , the condition numbers mwls(A, b) and
cwls(A, b) for the solution x of the weighted least squares problem

‖W 1
2 (Ax− b)‖2 = min

v∈Rn
‖W 1

2 (Av − b)‖2.

W
1
2 is the symmetric positive definite solution to the equation Z2 = W. The con-

dition numbers mres(A, b) and cres(A, b) for the residue r = W (b − Ax) are also
considered. The main results in Section 4, Theorem 2 and 4, give explicit expressions
for them. Easier-to-compute upper bounds are also shown in this section. Theorem
3 also gives sharp bounds for unrestricted(i. e., not necessarily small) perturbations.

2 Preliminaries

2.1 Kronecker products.

If A ∈ Rm×n and B ∈ Rp×q, then the Kronecker product A⊗B ∈ Rmp×nq is defined
by

A⊗B =




a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

. . .
...

am1B am2B · · · amnB




The following results can be found in [8],

|A⊗B| = |A| ⊗ |B|, (2)

vec(AXB) = (BT ⊗A)vec(X), (3)

where |A| = (|Aij |), Aij is the (i, j)th entry of A.

It is also proven in [8] that there exists a matrix Π ∈ Rmn×mn such that, for all
A ∈ Rm×n,

Π(vec(A)) = vec(AT ). (4)



Mixed and componentwise condition numbers for weighted Moore-Penrose... 47

The matrix Π is called the vec-permutation matrix and can be represented explicitly
by

Π =
n∑

i=1

m∑

j=1

Eij(m× n)⊗ Eji(n×m).

Here Eij(m× n) = e
(m)
i (e(n)

j )T ∈ Rm×n denotes the (i, j)th elementary matrix and

e
(m)
i is the vector [0, . . . , 0, 1, 0, . . . , 0]T ∈ Rm, the 1 in the ith component(see [8]).

For matrix Π, it is proven in [15] that for any vector y ∈ Rp and matrix Y ∈ Rp×q,

(yT ⊗ Y )Π = Y ⊗ yT . (5)

2.2 Condition number and differentiability.

The following lemma gives expressions for the mixed and componentwise condition
numbers for differentiable functions. In its statement, and in all that follows, if
a ∈ Rp, we denote by Dg the p× p diagonal matrix with a1, . . . , ap in the diagonal.
Recall, for a matrix A ∈ Rm×n, that its operator norm with respect norm to ‖·‖∞
satisfies

‖A‖∞ = max
i≤m

n∑

j=1

|Aij |.

Lemma 1 ([7]). Let F : Rp → Rq be as Definition 1 and a ∈ Dom(F ) be such that
F is Fréchet differentiable at a. Then,

(a) If F (a) 6= 0, then m(F, a) = ‖DF (a)Dg(a)‖∞
‖F (a)‖∞ .

(b) If (F (a))i 6= 0 for i = 1, . . . , q, then c(F, a) =
∥∥Dg(F (a))−1DF (a)Dg(a)

∥∥
∞ .

Lemma 2. With the notation above, we have

(a) If F (a) 6= 0, then m(F, a) = ‖|DF (a)||a|‖∞
‖F (a)‖∞ .

(b) If (F (a))i 6= 0 for i = 1, . . . , q, then c(F, a) =
∥∥∥ |DF (a)||a|

|F (a)|

∥∥∥
∞

.

Proof. It readily follows from the fact that for any matrix A ∈ Rp×q and diagonal
matrix Dg(d) ∈ Rq×q we have

‖ADg(d)‖∞ = ‖|ADg(d)|‖∞ = ‖|A||Dg(d)|‖∞ = ‖|A||Dg(d)|eq|‖∞ = ‖|A||d|‖∞ .

Here eq = (1, 1, . . . , 1)T ∈ Rq.

Remark 1. • Lemma 2 reduces the computation of condition numbers, mostly,
to finding explicit expressions for |DF (a)| or, more precisely, matrix expres-
sions for the derivative DF (a). This will therefore be a major concern in the
rest of this paper.

• To simplify notation, in the rest of this paper we assume that every time we
deal with componentwise condition numbers, the computed objection has no
zero components.
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3 Weighted Moore-Penrose inverse

Let
V = {g ∈ Rmn | g = vec(G), with G ∈ Rm×n, rank(G) = n}

then the set {G ∈ Rm×n | rank(G) = n} is open in Rm×n since vec is a home-
omorphism between Rm×n and Rmn and its complement is the union of the sets
det(Gs) = 0, where Gs runs over all n× n. submatrices of G.

Now we define the mapping φ : V → Rmn by φ(vec(G)) = vec(G†W ). By
definition we have

m(A†W , A) = m(φ, vec(A)), and c(A†W , A) = c(φ, vec(A)).

Our goal is to get an explicit expression for the derivative Dφ. Lemma 4 below
exhibits such an expression. To prove Lemma 4, we need the following well-known
result in Lemma 3.

Lemma 3. Let A ∈ Rm×n and suppose {Ak} is a sequence of m × n matrices
satisfying lim

k→∞
Ak = A necessary and sufficient condition for lim

k→∞
(Ak)†W = A†W is

rank(Ak) = rank(A)

for sufficiently large k.

Proof. In the hypotheses of the lemma, lim
k→∞

(Ak)† = A† equals

rank(Ak) = rank(A)([2, 20, 21].) Note that A†W = (W
1
2 A)†W

1
2 , the conclusion fol-

lows.

Lemma 4. The mapping φ is continuous and Fréchet differentiable at a for all
a ∈ V. Moreover, it has the matrix expression Dφ(a) = M(A) where

M(A) = [−(A†W )T ⊗A†W + W (Im −AA†W )⊗ (AT WA)−1Π].

Here Im denotes the m×m identity matrix.

Proof. The continuity of φ on V follows immediately from Lemma 3. The following
equation is well known (see [16,Page 150, eqn. (3.35)]):

(A + ∆A)† −A† = −A†∆AA† + (AT A)−1(∆A)T (Im −AA†) +O(‖∆A‖2).

Omitting the second-order terms, combining it with the equation

A†W = (W
1
2 A)†W

1
2 ,

we get

(A + ∆A)†W −A†W = −A†W ∆AA†W + (AT WA)−1∆AT W (Im −AA†W ). (6)
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Then using the vec function, and denoting a = vec(∆A), we have

φ(a + δa)− φ(a)

≈ vec(−A†W ∆AA†W + (AT WA)−1∆AT W (Im −AA†W ))

= −((A†W )T ⊗A†W )vec(∆A) + (W (Im −AA†W )⊗ (AT WA)−1)vec(∆AT )

= [−((A†W )T ⊗A†W ) + (W (Im −AA†W )⊗ (AT WA)−1)Π]δa,

where the second line follows from (3) and Π is the vec-permutation matrix defined
by (4).
So the Fréchet derivative of φ at a is given by Dφ(a) = M(A).

The main result in this section is the following theorem. It provides explicit
expressions for the condition number we defined for the weighted Moore-Penrose
inverse .

Theorem 1. Let A ∈ Rn×n be such that rank(A) = n and W be symmetric positive
definite. Then

(a) m(A†W , A) = ‖M(A)vec(|A|)‖∞
‖vecA†W‖∞

,

(b) c(A†W , A) =
∥∥∥ |M(A)|vec(|A|)

vec(A†W )

∥∥∥
∞

.

Proof. By Lemma 2 and 4,

m(A†W , A) = m(φ; a) =
‖|Dφ(a)||a|‖∞
‖φ(a)‖∞

=
‖|M(A)|vec(|A|)‖∞∥∥∥vec(A†W )

∥∥∥
∞

and

c(A†W , A) = c(φ; a) =
∥∥∥∥
|M(A)||a|
|φ(a)|

∥∥∥∥
∞

=

∥∥∥∥∥
|M(A)|vec(|A|)

vec(|A†W |)

∥∥∥∥∥
∞

.

Theorem 1 gives explicit expressions for the condition number m(A†W , A) and c(A†W , A).
While these expressions are sharp they may not be easy to compute by their depen-
dance on the (large) matrix Π and the need to compute Kronecker products. The
next corollary gives easier to compute upper bounds for these condition numbers.

Lemma 5. For any matrices M, N, P,Q, R and S with dimensions making the
following well defined

[M ⊗N + (P ⊗Q)Π]vec(R),

[M ⊗N + (P ⊗Q)Π]vec(R)
S

,

NRMT and QRT PT ,
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we have

‖|[M ⊗N + (P ⊗Q)Π]|vec(|R|)‖∞ ≤ ∥∥vec(|N ||R||M |T + |Q||R|T |P |T )
∥∥
∞

and
∥∥∥∥
|[M ⊗N + (P ⊗Q)Π]|vec(|R|)

|S|

∥∥∥∥
∞
≤

∥∥∥∥
vec(|N ||R||M |T + |Q||R|T |P |T )

|S|

∥∥∥∥
∞

.

Proof. From equation (2) and equation (3), it is easy to get that

|[M ⊗N + (P ⊗Q)Π]|vec(|R|) ≤ [|M | ⊗ |N |+ (|P | ⊗ |Q|)Π]vec(|R|)
= (|M | ⊗ |N |)vec(|R|) + (|P | ⊗ |Q|)vec(|R|T ).

Taking norms (and dividing by |S| before doing so for the second inequality in the
statement) proves the lemma.

Corollary 1. In the hypothesis of Theorem 1 we have

(a) m(A†W , A) ≤ ‖|A†W ||A||A†W |+|(AT WA)−1||AT ||W (I−AA†W )|‖
max

‖A†W‖max

,

(b) c(A†W , A) ≤
∥∥∥ |A

†
W ||A||A†W |+|(AT WA)−1||AT ||W (I−AA†W )|

A†W

∥∥∥
max

.

Proof. Using Theorem 1 and Lemma 5 with M = −A†W
T
, N = A†W , P = W (Im −

AA†W ), Q = (AT WA)−1, R = A and S = vec(A†W ), we obtain

m(A†W , A) ≤

∥∥∥vec(|A†W ||A||A†W |+ |(AT WA)−1||AT ||W (I −AA†W )|)
∥∥∥
∞∥∥∥vec(A†W )

∥∥∥
∞

=

∥∥∥|A†W ||A||A†W |+ |(AT WA)−1||AT ||W (I −AA†W )|
∥∥∥

max∥∥∥A†W
∥∥∥

max

and

c(A†W , A) ≤
∥∥∥∥∥

vec(|A†W ||A||A†W |+ |(AT WA)−1||AT ||W (I −AA†W )|)
vec(A†W )

∥∥∥∥∥
∞

=

∥∥∥∥∥
|A†W ||A||A†W |+ |(AT WA)−1||AT ||W (I −AA†W )|

A†W

∥∥∥∥∥
max

.
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4 Weighted least squares problems

We consider weighted least squares problems [10, 11, 14]

‖W 1
2 (Ax− b)‖2 = min

v∈Rn
‖W 1

2 (Av − b)‖2. (7)

where A ∈ Rm×n, rank(A) = n, and b ∈ Rm. As we already know that there exists
a unique minimizer x for (7). This minimizer be as below,

x = A†W b = (W
1
2 A)

†
W

1
2 b.

Let ∆b ∈ Rm, and ∆A ∈ Rm×n such that rank(A+∆A) = n, Consider the problem

min
ω∈Rn

‖W 1
2 ((A + ∆A)ω − (b + ∆b))‖2. (8)

Then there is a unique minimizer y and letting ∆x := y − x, we have

∆x = (A + ∆A)†W (b + ∆b)− x (9)

The mixed and componentwise condition numbers for WLS are defined as follows:

mwls(A, b) := lim
ε→0

sup
|∆A|≤ε|A|
|∆b|≤ε|b|

‖∆x‖∞
ε ‖x‖∞

,

cwls(A, b) := lim
ε→0

sup
|∆A|≤ε|A|
|∆b|≤ε|b|

1
ε

∥∥∥∥
∆x

x

∥∥∥∥
∞

.

Just an in the previous section, to comfortably make use of Lemma 1, we define the
mappingψ : V × Rm → Rn by

ψ(g, f) := (vec−1g)†W f.

Note that mwls = m(ψ; a, b) and cwls = c(ψ; a, b).

Lemma 6. The set V × Rm is open and ψ is a continuous mapping on V × Rm.
In addition, for all (a, b) ∈ V ×Rm, ψ is Fréchet differentiable at (a, b) and has the
matrix expression Dψ(a, b) = [H(A, b), A†W ], where

H(A, b) = −(xT ⊗A†W ) + (AT WA)−1 ⊗ rT ,

r = W (b−Ax).

Proof. The first statement is trivial. We next proceed with the claimed equality.
To do so, note that

∆x ≈ −A†W ∆Ax + (AT WA)−1(∆A)T r + A†W ∆b

= [−(xT ⊗A†W ) + (rT ⊗ (AT WA)−1)Π, A†W ]
[
δa
δb

]

= [−(xT ⊗A†W ) + (AT WA)−1 ⊗ r,A†W ]
[
δa
δb

]
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where the first line is from substituting equation (6) into equation (9), the second
line follows from (3) and (4) and the fact that vec applied to a vector yields the
vector itself, and the last line follows from (5).
We can rewrite

ψ(a + ∆a, b + ∆b)− ψ(a, b) ≈ [−(xT ⊗A†W ) + (AT WA)−1 ⊗ r,A†W ]
[
δa
δb

]

Then the Fréchet derivative of ψ at (A, b) is

Dψ(a, b) = [−(xT ⊗A†W ) + (AT WA)−1 ⊗ r,A†W ].

We can now give expressions for the mixed and componentwise condition num-
ber of WLS. Recall, for the first we assume x 6= 0 and for the second xi 6= 0 for
i = 1, . . . , n.

Theorem 2. Let A ∈ Rm×n, rank(A) = n, and b ∈ Rm. We have

mwls(A, b) =

∥∥∥|H(A, b)|vec(|A|) + |A†W ||b|
∥∥∥
∞

‖x‖∞
,

cwls(A, b) =

∥∥∥∥∥
|H(A, b)|vec(|A|) + |A†W ||b|

x

∥∥∥∥∥
∞

.

Furthermore, if r = 0 (i.e.,for consistent case), we have

mwls(A, b) =

∥∥∥|A†W ||A||x|+ |A†W ||b|
∥∥∥
∞

‖x‖∞
,

cwls(A, b) =

∥∥∥∥∥
|A†W ||A||x|+ |A†W ||b|

x

∥∥∥∥∥
∞

.

Proof. By Lemmas 2 and 6

mwls(A, b) =

∥∥∥∥|D(a, b)|
[|a|
|b|

]∥∥∥∥
∞

‖x‖∞
=

∥∥∥∥[|H(A, b)|, |A†W |]
[|a|
|b|

]∥∥∥∥
∞

‖x‖∞

=

∥∥∥|H(A, b)|vec(|A|) + |A†W ||b|
∥∥∥
∞

‖x‖∞
and

cwls(A, b) =

∥∥∥∥∥∥∥∥

|Dψ(a, b)|
[|a|
|b|

]

x

∥∥∥∥∥∥∥∥
∞

=

∥∥∥∥∥
|H(A, b)|vec(|A|) + |A†W ||b|

x

∥∥∥∥∥
∞

.
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For consistent case replace r by 0 in H(A, b) to obtain

mwls(A, b) =

∥∥∥|A†W ||A||x|+ |A†W ||b|
∥∥∥
∞

‖x‖∞
and

cwls(A, b) =

∥∥∥∥∥
|A†W ||A||x|+ |A†W ||b|

x

∥∥∥∥∥
∞

.

Corollary 2. We have the following bounds:

mwls(A, b) ≤ mupper
wls :=

∥∥∥|A†W ||A||x|+ |(AT WA)−1||AT ||r|+ |A†W ||b|
∥∥∥
∞

‖x‖∞

cwls(A, b) ≤ cupper
wls :=

∥∥∥∥∥
|A†W ||A||x|+ |(AT WA)−1||AT ||r|+ |A†W ||b|

|x|

∥∥∥∥∥
∞

Proof. From Theorem 2, equality (5), and Lemma 5, we have

mwls(A, b) =

∥∥∥|[−(xT ⊗A†W ) + (rT ⊗ (AT WA)−1Π]|vec(|A|) + |A†W ||b|
∥∥∥
∞

‖x‖∞

≤

∥∥∥|A†W ||A||x|+ |(AT WA)−1||AT ||r|+ |A†W ||b|
∥∥∥
∞

‖x‖∞
and

cwls =

∥∥∥∥∥
|[(xT ⊗A†W )− (rT ⊗ (AT WA)−1)Π]|vec(|A|) + |A†W ||b|

x

∥∥∥∥∥
∞

≤
∥∥∥∥∥
|A†W ||A||x|+ |(AT WA)−1||AT ||r|+ |A†W ||b|

x

∥∥∥∥∥
∞

.

Condition numbers bound the worst-case sensitivity of an input data only to
small perturbations. If ε is the size of the perturbation, a term O(ε2) is neglected
and therefore, the bound only holds for ε small enough. One says that condition
numbers are first order bounds for these sensitivities. The following result exhibits
such unrestricted perturbation bounds for WLS.

Theorem 3. Let A, ∆A ∈ Rm×n satisfy rank(A) = rank(A + ∆A) = n. Let
∆b ∈ Rm and x, y the solutions of (7) and (8) respectively. If for some E ∈ Rm×n
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and f ∈ Rm we have |∆A| ≤ εE and |∆b| ≤ εf, then

‖y − x‖∞
‖x‖∞

≤ ε

∥∥∥|[(xT ⊗A†W )− (AT WA)−1 ⊗ rT ]|vec(E) + |A†W ||f |
∥∥∥
∞

‖x‖∞
‖s− r‖∞
‖r‖∞

≤ ε

∥∥∥|[xT ⊗ P + A†W
T ⊗ rT ]|vec(E) + |P |f

∥∥∥
∞

‖r‖∞

where s = W (b + ∆b − (A + ∆A)y) and P = W (Im − AA†W ). Both inequality are
sharp.

To prove Theorem 3 we need some preparation.

Lemma 7. Let A, ∆A, b, ∆ b, x, y, E, and f be as in the hypothesis of Theorem
3. Then

y − x = [−(xT ⊗A†W ) + (AT WA)−1 ⊗ rT , A†W ]
[
δa
∆b

]
,

s− r = [−(xT ⊗ P )−A†W
T ⊗ rT , P ]

[
δa
∆b

]
,

(10)

where s = W (b + ∆b− (A + ∆A)y), P = W (Im −AA†W ).

Proof. By using equation (6) we can get that

y − x = −A†W ∆Ax + (AT WA)−1∆AT r + A†W ∆b,

s− r = −P∆Ax−A†W
T
∆AT r + P∆b.

Then

y − x = vec(−A†W ∆Ax + (AT WA)−1∆AT r) + A†W ∆b

= [−(xT ⊗A†W ) + (AT WA)−1 ⊗ rT , A†W ]
[
δa
∆b

]

and similarly for the second equation.
For the proof of the following lemma, we use an idea from [7].

Lemma 8. Let A ∈ Rm×n, D = Dg(d) ∈ Rn×n, and v ∈ Rn satisfying |vi| ≤ ε|di|
for i = 1, . . . , n. Then ∥∥∥AD

v

d

∥∥∥
∞
≤ ε ‖AD‖∞ ,

and v can be chosen to make the upper bound attainable.
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Proof. The first inequality is easy to prove. For the second statement, let i ≤ m
such that

‖AD‖∞ =
n∑

k=1

|Aikdk|.

Define v by vk = εsgn(Aikdk)dk, where sgn is the sign function,i.e.,x = 1 if x ≥ 0
and sgn(x) = −1 otherwise. Then

v

d
= ε




sgn(Ai1d1)
...

sgn(Aindn)


 and

∥∥∥v

d

∥∥∥
∞

= ε

and the ith row of AD v
d is given by

(AD
v

d
)i = ε[Ai1d1sgn(Ai1d1) + · · ·+ Aindnsgn(Aindn)] = ε[|Ai1d1|+ . . . + |Aindn|].

Therefore ∥∥∥AD
v

d

∥∥∥
∞
≤ ε ‖AD‖∞ .

Proof of Theorem 3. By Lemma 7, writing e = vec(E),

y − x = [−(xT ⊗A†W ) + (AT WA)−1 ⊗ rT , A†W ]
[
δa
∆b

]

= [−(xT ⊗A†W ) + (AT WA)−1 ⊗ rT , A†W ]
[
Dg(e) 0

0 Dg(f)

] [ δa
e

∆b
f

]
.

Taking norms and using Lemma 8, we obtain

‖y − x‖∞ ≤ ε

∥∥∥∥[−(xT ⊗A†W ) + (AT WA)−1 ⊗ rT , A†W ]
[
Dg(e) 0

0 Dg(f)

]∥∥∥∥
∞

≤ ε
∥∥∥|[(xT ⊗A†W )− (AT WA)−1 ⊗ rT ]|vec(E) + |A†W ||f |

∥∥∥
∞

the second line as in Lemma 2. This proves first inequality of (10). Sharpness
follows from Lemma 8.

The second inequality can be proved similarly.

In what follows we assume that b /∈ R(A), where R denotes the range of A.
That is , the residual vector r 6= 0. For componentwise results, we also assume that
ri 6= 0 for i = 1, . . . , m. Define the mixed and componentwise condition numbers
for r as

mres(A, b) := lim
ε→0

sup
|∆A|≤ε|A|
|∆b|≤ε|b|

‖∆r‖∞
ε ‖r‖∞

,

cres(A, b) := lim
ε→0

sup
|∆A|≤ε|A|
|∆b|≤ε|b|

1
ε

∥∥∥∥
∆r

r

∥∥∥∥
∞

.
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Define the function Φ : V × Rm → Rm by

Φ(g, f) := W (Im − (vec−1g)(vec−1g)†W )f.

Then mres(A, b) = m(Φ; a, b) and cres(A, b) = c(Φ; a, b).

Lemma 9. The function Φ is continuous. Moreover, for all (a, b) ∈ V × Rm, it is
Fréchet differentiable at (a, b) and has the matrix expression DΦ(a, b) = [Q(A, b), P ]
where

Q(A, b) = −(xT ⊗ P ) + A†W
T ⊗ r and P = W (Im −AA†W ).

Proof. Let (δa, ∆b) are a perturbation of (a, b) and ∆A = vec−1(δa). It is easy to
see that, omitting second (and higher)-order terms, the perturbed residual vector
r + ∆r satisfies

r + ∆r ≈ r + P∆b− P∆Ax−A†W
T
∆AT r,

using (3),

∆r ≈ [−(xT ⊗ P ) + A†W
T ⊗ rT , P ]

[
δa
δb

]
.

So
DΦ(a, b) = [−(xT ⊗ P ) + A†W

T ⊗ rT , P ].

Theorem 4. With the notation above, the mixed and componentwise condition
numbers for r satisfy

mres(A, b) =
‖|Q(A, b)|vec(|A|) + |P ||b|‖∞

‖r‖∞
cres(A, b) =

∥∥∥∥
|Q(A, b)|vec(|A|) + |P ||b|

r

∥∥∥∥
∞

.

Proof. It follows from Lemmas 2 and 9 that

mres(A, b) = m(Φ; a, b) =

∥∥∥∥|DΦ(a, b)
[|a|
|b|

]
|
∥∥∥∥
∞

‖Φ(a, b)‖∞
=
‖|Q(A, b)|vec(|A|) + |P ||b|‖∞

‖r‖∞
and

cres(A, b) = c(Φ; a, b) =

∥∥∥∥∥∥∥∥

|DΦ(a, b)
[|a|
|b|

]
|

Φ(a, b)

∥∥∥∥∥∥∥∥
∞

=
∥∥∥∥
|Q(A, b)|vec(|A|) + |P ||b|

r

∥∥∥∥
∞

.
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The next corollary gives easier to compute upper bounds for the residual vector
mixed and componentwise condition numbers.

Corollary 3. Let A ∈ Rm×n satisfy rank(A) = n,

mres(A, b) =
‖|Q(A, b)|vec(|A|) + |P ||b|‖∞

‖r‖∞
cres(A, b) =

∥∥∥∥
|Q(A, b)|vec(|A|) + |P ||b|

r

∥∥∥∥
∞

.

Proof. Using Theorem 4, equality (5) and Lemma 5, we obtain

mres(A, b) =
‖|Q(A, b)|vec(|A|) + |P ||b|‖∞

‖r‖∞

≤

∥∥∥|P ||A||x|+ |A†W
T ||AT ||r|+ |P ||b|

∥∥∥
∞

‖r‖∞
and

cres(A, b) =
∥∥∥∥
|Q(A, b)|vec(|A|) + |P ||b|

r

∥∥∥∥
∞

≤
∥∥∥∥∥
|P ||A||x|+ |A†W

T ||AT ||r|+ |P ||b|
|r|

∥∥∥∥∥
∞

.
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