ON CONVERGENCE AND DIVERGENCE OF FOURIER EXPANSIONS ASSOCIATED TO JACOBI MEASURE WITH MASS POINTS

Bujar Xh. Fejzullahu

Abstract

We prove the failure of a.e. convergence of the Fourier expansion in terms of the orthonormal polynomials with respect to the measure $(1-x)^{\alpha}(1+$ $x)^{\beta} d x+M \delta_{-1}+N \delta_{1}$, where δ_{t} is the delta function at a point t and $M>$ $0, N>0$. Lebesgue norms of Koornwinder's Jacobi-type polynomials are applied to obtain a new proof of necessary conditions for mean convergence.

1 Introduction

Let $\omega_{\alpha, \beta}(x)=(1-x)^{\alpha}(1+x)^{\beta},(\alpha, \beta>-1)$, be the Jacobi weight on the interval $[-1,1]$. In [6] T. H. Koornwinder introduced the polynomials $\left\{P_{n}^{(\alpha, \beta, M, N)}(x)\right\}_{n=0}^{\infty}$ which are orthogonal on the interval $[-1,1]$ with respect to the measure

$$
d \mu(x)=\frac{\Gamma(\alpha+\beta+2)}{2^{\alpha+\beta+1} \Gamma(\alpha+1) \Gamma(\beta+1)} \omega_{\alpha, \beta}(x) d x+M \delta_{-1}+N \delta_{1},
$$

where $\alpha>-1, \beta>-1$, and $M, N \geq 0$. They are called Koornwinder's Jacobi-type polynomials. We denote the orthonormal Koornwinder's Jacobi-type polynomial by $p_{n}^{(\alpha, \beta, M, N)}$, which differs from $P_{n}^{(\alpha, \beta, M, N)}$ by normalization constant (see [14, p. 81]). For $M=N=0$, denoted by $p_{n}^{(\alpha, \beta)}$, we have the classical Jacobi orthonormal polynomials (see [13, Chapter IV]). It is known that, unlike the Jacobi orthonormal polynomials, the polynomials $p_{n}^{(\alpha, \beta, M, N)}$ for $M>0, N>0$ decay at the rate of $n^{-\alpha-3 / 2}$ and $n^{-\beta-3 / 2}$ at the end points 1 and -1 .

We shall say that $f(x) \in L^{p}(d \mu)$ if $f(x)$ is measurable on the $[-1,1]$ and $\|f\|_{L^{p}(d \mu)}<\infty$, where

$$
\|f\|_{L^{p}(d \mu)}= \begin{cases}\left(\int_{-1}^{1}|f(x)|^{p} d \mu(x)\right)^{\frac{1}{p}} & \text { if } 1 \leq p<\infty, \\ \text { esssup }|f(x)| & \text { if } p=\infty .\end{cases}
$$

[^0]For $f \in L^{1}(d \mu)$, the Fourier expansions in Koornwinder's Jacobi-type polynomials is

$$
\begin{equation*}
\sum_{k=0}^{\infty} \hat{f}(k) p_{k}^{(\alpha, \beta, M, N)}(x) \tag{1.1}
\end{equation*}
$$

where the Fourier coefficients are

$$
\begin{align*}
& \hat{f}(k)=\int_{-1}^{1} f(x) p_{k}^{(\alpha, \beta, M, N)}(x) d \mu(x) \\
& =\frac{\Gamma(\alpha+\beta+2)}{2^{\alpha+\beta+1} \Gamma(\alpha+1) \Gamma(\beta+1)} \int_{-1}^{1} f(x) p_{k}^{(\alpha, \beta, M, N)}(x) \omega_{\alpha, \beta}(x) d x \\
& \quad+M f(-1) p_{k}^{(\alpha, \beta, M)}(-1)+N f(1) p_{k}^{(\alpha, \beta, M, N)}(1) . \tag{1.2}
\end{align*}
$$

The Cesàro means of order ρ of the expansion (1.1) are defined by (see [15, p. 76-77], [9])

$$
\sigma_{n}^{\rho} f(x)=\sum_{k=0}^{n} \frac{A_{n-k}^{\rho}}{A_{n}^{\rho}} \hat{f}(k) p_{k}^{(\alpha, \beta, M, N)}(x)
$$

where $A_{k}^{\rho}=\binom{k+\rho}{k}$.
In 1972 Pollard [11] raised the following question: Is there an $f \in L^{4 / 3}(d x)$ whose Fourier-Legendre expansion diverges almost everywhere? This problem was solved by Meaney [8]. Furthermore, he proved that this is a special case of divergence result for series of Jacobi polynomials.

This paper is a continuation of [1]. We will prove that, for $\alpha>-1 / 2$ and $p_{0}=(4 \alpha+4) /(2 \alpha+3)$, there are functions $f \in L^{p_{0}}(d \mu)$ whose Fourier expansions in terms of the $\left\{p_{n}^{(\alpha, \beta, M, N)}\right\}_{n=0}^{\infty}$ are divergent almost everywhere on $[-1,1]$. Moreover we show that, for $1<p<p_{0}$ and $0<\rho<2 / p-3 / 2$, there are functions $f \in$ $L^{p}(d \mu)$ with almost everywhere divergent Cesàro means of order ρ. We also find the necessary conditions for the convergence in $L^{p}(d \mu)$ norm of Fourier expansion (1.1).

In order to obtain it, previously, we need some estimates for Koornwinder's Jacobi-type orthonormal polynomials. The representation of the $p_{n}^{(\alpha, \beta, M, N)}$ in terms of $p_{n}^{(\alpha, \beta)}$, a strong asymptotic on $(-1,1)$, a Mehler-Heine type formula, Lebesgue norms of $p_{n}^{(\alpha, \beta, M, N)}$ are derived.

2 Estimates for Koornwinder's Jacobi-type polynomials

The goal of this section is to obtain estimates and asymptotic properties on $[-1,1]$ for the orthonormal polynomials $p_{n}^{(\alpha, \beta, M, N)}$. Throughout this paper positive constants are denoted by c, c_{1}, \ldots and they may vary at every occurrence. The notation $u_{n} \cong v_{n}$ means that the sequence u_{n} / v_{n} converges to 1 and notation $u_{n} \sim v_{n}$ means $c_{1} u_{n} \leq v_{n} \leq c_{2} u_{n}$ for sufficiently large n.

On convergence and divergence of Fourier expansions associated to Jacobi...

Proposition 2.1. The representation of the $p_{n}^{(\alpha, \beta, M, N)}$ in terms of $p_{n}^{(\alpha, \beta, M, 0)}$ is

$$
\begin{equation*}
p_{n}^{(\alpha, \beta, M, N)}(x)=A_{n} p_{n}^{(\alpha, \beta, M, 0)}(x)+B_{n}(x-1) p_{n-1}^{(\alpha+2, \beta, 4 M, 0)}(x) \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{n} \cong c n^{-2 \alpha-2}, \quad B_{n} \cong 1 \tag{2.2}
\end{equation*}
$$

Proof. Let $\left\{P_{n}^{1}\right\}_{n=0}^{\infty}$ be the orthonormal polynomials with respect to the measure (see proof of the Proposition 6 in [4])

$$
(x-1)^{2}\left[\omega_{\alpha, \beta}(x) d x+M \delta_{-1}\right]=\omega_{\alpha+2, \beta}(x) d x+4 M \delta_{-1} .
$$

Therefore $P_{n}^{1}=p_{n}^{(\alpha+2, \beta, 4 M, 0)}$. From [4, Proposition 4] it follows

$$
p_{n}^{(\alpha, \beta, M, N)}(x)=A_{n} p_{n}^{(\alpha, \beta, M, 0)}(x)+B_{n}(x-1) p_{n-1}^{(\alpha+2, \beta, 4 M, 0)}(x),
$$

where

$$
\begin{gathered}
\lim _{n \rightarrow \infty} A_{n} L_{n-1}(1,1)=\frac{1}{\lambda(1)+N} \\
\lim _{n \rightarrow \infty} B_{n}=\frac{N}{\lambda(1)+N} \\
\lambda(1)=\lim _{n \rightarrow \infty} \frac{1}{L_{n}(1,1)} .
\end{gathered}
$$

Since (see $[1,(3)]$ and $[13,(4.5 .8)])$

$$
L_{n}(1,1)=\sum_{i=0}^{n} p_{i}^{(\alpha, \beta, M, 0)}(1) p_{i}^{(\alpha, \beta, M, 0)}(1) \cong c n^{2 \alpha+2}
$$

we get (2.2).
Combining the above proposition with $[1,(7)]$ we obtain:
Corollary 2.1. The representation of the $p_{n}^{(\alpha, \beta, M, N)}$ in terms of $p_{n}^{(\alpha, \beta)}$ is

$$
\begin{aligned}
p_{n}^{(\alpha, \beta, M, N)}(x)=a_{n} p_{n}^{(\alpha, \beta)}(x)+ & b_{n}(x+1) p_{n-1}^{(\alpha, \beta+2)}(x) \\
& +c_{n}(x-1) p_{n-1}^{(\alpha+2, \beta)}(x)+d_{n}\left(x^{2}-1\right) p_{n-2}^{(\alpha+2, \beta+2)}(x)
\end{aligned}
$$

where

$$
a_{n} \cong c n^{-2 \alpha-2 \beta-4}, \quad b_{n} \cong c n^{-2 \alpha-2}, \quad c_{n} \cong c n^{-2 \beta-2}, \quad d_{n} \cong 1
$$

The following proposition establishes a strong asymptotic on $(-1,1)$ for $p_{n}^{(\alpha, \beta, M, N)}$.
Proposition 2.2. For $\theta \in[\epsilon, \pi-\epsilon]$ and $\epsilon>0$

$$
\begin{aligned}
p_{n}^{(\alpha, \beta, M, N)}(x)=l_{n}^{\alpha, \beta, M, N}(1-x)^{-\alpha / 2-1 / 4}(1+x)^{-\beta / 2-1 / 4} & \\
& \times \cos (k \theta+\gamma)+O\left(n^{-1}\right)
\end{aligned}
$$

where $x=\cos \theta, k=n+(\alpha+\beta+1) / 2, \gamma=-(\alpha+1 / 2) \pi / 2$ and $\lim _{n \rightarrow \infty} l_{n}^{\alpha, \beta, M, N}=\sqrt{2 / \pi}$

Proof. From (2.1) and [1, Lemma 1]

$$
\begin{aligned}
p_{n}^{(\alpha, \beta, M, N)}(x)=\left[A_{n} s_{n}^{\alpha, \beta}+B_{n} s_{n-1}^{\alpha+2, \beta}\right] & (1-x)^{-\alpha / 2-1 / 4}(1+x)^{-\beta / 2-1 / 4} \\
& \times \cos (k \theta+\gamma)+\left[A_{n}+B_{n}(x-1)\right] O\left(n^{-1}\right)
\end{aligned}
$$

$\lim _{n \rightarrow \infty} s_{n}^{\alpha, \beta}=\sqrt{2 / \pi}$. Now taking into account (2.2), the result follows.
Next we give a Mehler-Heine type formula of the polynomials $p_{n}^{(\alpha, \beta, M, N)}$.
Proposition 2.3. Uniformly on compact subsets of \boldsymbol{C}

$$
\lim _{n \rightarrow \infty} n^{-\alpha-1 / 2} p_{n}^{(\alpha, \beta, M, N)}\left(\cos \frac{z}{n}\right)=-2^{\frac{\alpha-\beta}{2}} z^{-\alpha} J_{\alpha+2}(z)
$$

where J_{α} is the Bessel function of order α.
Proof. The Mehler-Heine type formula for Jacobi orthonormal polynomials $p_{n}^{(\alpha, \beta)}\left(\cos \frac{z}{n+j}\right), j \in \mathbf{N} \cup 0$, is (see [13, Theorem 8.1.1])

$$
\lim _{n \rightarrow \infty} n^{-\alpha-1 / 2} p_{n}^{(\alpha, \beta)}\left(\cos \frac{z}{n+j}\right)=2^{-\frac{\alpha+\beta}{2}}(z / 2)^{-\alpha} J_{\alpha}(z)
$$

uniformly on compact subsets of \mathbf{C}. Although the above formula in [13, Theorem 8.1.1] is for $j=0$, it can be shown that this formula is also true for any fixed $j \in \mathbf{N}$.

By Corollary 2.1 we have

$$
\begin{aligned}
& n^{-\alpha-1 / 2} p_{n}^{(\alpha, \beta, M, N)}\left(\cos \frac{z}{n}\right)=a_{n} n^{-\alpha-1 / 2} p_{n}^{(\alpha, \beta)}\left(\cos \frac{z}{n}\right) \\
& +b_{n}\left(\cos \frac{z}{n}+1\right) n^{-\alpha-1 / 2} p_{n-1}^{(\alpha, \beta+2)}\left(\cos \frac{z}{n}\right) \\
& -2 c_{n} \sin ^{2} \frac{z}{2 n} n^{-\alpha-1 / 2} p_{n-1}^{(\alpha+2, \beta)}\left(\cos \frac{z}{n}\right) \\
& \\
& \quad-d_{n} \sin ^{2} \frac{z}{n} n^{-\alpha-1 / 2} p_{n-2}^{(\alpha+2, \beta+2)}\left(\cos \frac{z}{n}\right) .
\end{aligned}
$$

Now, using the estimates for the coefficients a_{n}, b_{n}, c_{n} and d_{n}, the result follows.
The proofs of main results are based on following proposition.
Proposition 2.4. Let $\alpha \geq-1 / 2$ and $M, N>0$. For $1 \leq q<\infty$

$$
\int_{0}^{1}(1-x)^{\alpha}\left|p_{n}^{(\alpha, \beta, M, N)}(x)\right|^{q} d x \sim \begin{cases}c & \text { if } 2 \alpha>q \alpha-2+q / 2 \\ \log n & \text { if } 2 \alpha=q \alpha-2+q / 2 \\ n^{q \alpha+q / 2-2 \alpha-2} & \text { if } 2 \alpha<q \alpha-2+q / 2\end{cases}
$$

Proof. The upper estimates has been proved in [1, Theorem 1]. In order to prove the lower estimate, we follow the same line as in [13, Theorem 7.34] (see also [1, Theorem 2]), by using the Proposition 2.3 and [12, Lemma 2.1].

By using this proposition, $[6,(2.5)]$ and $[1,(3),(4)]$, we obtain:
Corollary 2.2. Let $\alpha \geq \beta \geq-1 / 2$ and $\alpha>-1 / 2$. For $q_{0}=\frac{4 \alpha+4}{2 \alpha+1}$

$$
\left\|p_{n}^{(\alpha, \beta, M, N)}(x)\right\|_{L^{q}(d \mu)} \sim \begin{cases}c & \text { if } 1 \leq q<q_{0} \\ (\log n)^{\frac{1}{q}} & \text { if } q=q_{0} \\ n^{\alpha+1 / 2-2(\alpha+1) / q} & \text { if } q_{0}<q<\infty\end{cases}
$$

3 Divergence almost everywhere

Suppose that the expansion (1.1) converges on a subset E of positive measure in $[-1,1]$. Then

$$
\begin{equation*}
c_{n}(f) p_{n}^{(\alpha, \beta, M, N)}(x) \rightarrow 0, \quad x \in E . \tag{3.1}
\end{equation*}
$$

From Egorov's theorem it follows that there is a subset $E_{1} \subset E$ of positive measure E such that (3.1) holds uniformly for $x \in E_{1}$. Therefore, from Proposition 2.2, we have

$$
n^{-\delta} c_{n}(f)\left(\cos (k \theta+\gamma)+O\left(n^{-1}\right)\right) \rightarrow 0
$$

uniformly for $x=\cos \theta \in E_{1}$. By a variant of the Cantor-Lebesgue Theorem, cf. [9, Subsection 1.5], this implies

$$
\begin{equation*}
c_{n}(f) \rightarrow 0 \tag{3.2}
\end{equation*}
$$

Now we are in position to prove our first main result
Theorem 3.1. Let $\alpha>-1 / 2$ and $\beta>-1$. There is a function f in $L^{p_{0}}(d \mu)$, supported in $[0,1]$, such that its Fourier expansion (1.1) diverges for almost every $x \in[-1,1]$.

Proof. For every function $f \in L^{1}(d \mu)$ the Fourier coefficients (1.2) can be written as

$$
\begin{equation*}
c_{n}(f)=c_{n}^{\prime}(f)+M f(-1) p_{n}^{(\alpha, \beta, M, N)}(-1)+N f(1) p_{n}^{(\alpha, \beta, M, N)}(1), \tag{3.3}
\end{equation*}
$$

where

$$
c_{n}^{\prime}(f)=\frac{\Gamma(\alpha+\beta+2)}{2^{\alpha+\beta+1} \Gamma(\alpha+1) \Gamma(\beta+1)} \int_{-1}^{1} f(x) p_{n}^{(\alpha, \beta, M, N)}(x) \omega_{\alpha, \beta}(x) d x
$$

The uniform boundedness principle and Proposition 2.4 yields the existence of functions $f \in L^{p_{0}}(d \mu)$, supported on $[0,1]$, such that the linear functional $c_{n}^{\prime}(f)$ satisfies

$$
\frac{c_{n}^{\prime}(f)}{(\log n)^{\frac{1}{2 q_{0}}}} \rightarrow \infty, \quad \text { as } n \rightarrow \infty
$$

Hence, from (3.3) and $[1,(3),(4)]$, we obtain

$$
\frac{c_{n}(f)}{(\log n)^{\frac{1}{2 q_{0}}}} \rightarrow \infty, \quad \text { as } n \rightarrow \infty
$$

which contradict (3.2).

Now we show that, for some values of δ, there are functions with a.e. divergent Cesàro means.

Theorem 3.2. Let given numbers α, β, p, and δ be such that $\alpha>-1 / 2 ; \beta>-1$;

$$
\begin{gathered}
1<p<\frac{4(\alpha+1)}{2 \alpha+3} \\
0 \leq \delta<\frac{2 \alpha+2}{p}-\frac{2 \alpha+3}{2}
\end{gathered}
$$

There is an $f \in L^{p}(d \mu)$, supported in $[0,1]$, whose Cesàro means $\sigma_{N}^{\delta} f(x)$ is divergent almost everywhere on $[-1,1]$.
Proof. From Egorov's theorem and [9, Lemma 1.1] (see also [15, Theorem 3.1.22]) it follows that if the series (1.1) is Cesàro summable of order δ on a set E of positive measure in $[-1,1]$ then there is a subset $E_{1} \subset E$ of positive measure where

$$
\left|n^{-\delta} c_{n}(f) p_{n}^{(\alpha, \beta, M, N)}(x)\right| \leq c
$$

uniformly for $x \in E_{1}$. Hence, from Proposition 2.2, we have

$$
\left|n^{-\delta} c_{n}(f)\left(\cos (k \theta+\gamma)+O\left(n^{-1}\right)\right)\right| \leq c
$$

uniformly for $\cos \theta \in E_{1}$. Using again the Cantor-Lebesgue Theorem we obtain

$$
\begin{equation*}
\left|\frac{c_{n}(f)}{n^{\delta}}\right| \leq c, \quad \forall n \geq 1 \tag{3.4}
\end{equation*}
$$

Suppose that

$$
\delta<\frac{2 \alpha+2}{p}-\frac{2 \alpha+3}{2}
$$

For q conjugate of p

$$
\delta<\alpha+\frac{1}{2}-\frac{2 \alpha+2}{q}
$$

From the argument given in the $[9$, Subsection 1.4] and Proposition 2.4, for the linear functional $c_{n}^{\prime}(f)$, it follows that there is an $f \in L^{p}(d \mu)$, supported on $[0,1]$, such that

$$
\frac{c_{n}^{\prime}(f)}{n^{\delta}} \rightarrow \infty, \quad \text { as } n \rightarrow \infty
$$

So, from (3.3) and $[1,(3),(4)]$, it follows that

$$
\frac{c_{n}(f)}{n^{\delta}} \rightarrow \infty, \quad \text { as } n \rightarrow \infty
$$

Combining the above results with (3.4) it follows that, for this f, the $\sigma_{N}^{\delta} f(x)$ diverges almost everywhere.

Remark 3.1. Using formulae in [2], which relates the Riesz and Cesàro means of order $\delta \geq 0$, we conclude that the Theorem 3.2 also holds for the Riesz means.

4 Necessary conditions for the norm convergence

Let $S_{n} f$ be the n-th partial sum of the expansion (1.1)

$$
S_{n} f(x)=\sum_{k=0}^{n} \hat{f}(k) p_{k}^{(\alpha, \beta, M, N)}(x)
$$

If $\alpha \geq \beta \geq-1 / 2$ and $\alpha>-1 / 2$, then (see [3], [5], and [7] in a more general framework)

$$
\left\|S_{n} f\right\|_{L^{p}(d \mu)} \leq C\|f\|_{L^{p}(d \mu)} \quad \forall n \geq 0, \forall f \in L^{p}(d \mu)
$$

if and only if p belongs to the open interval $\left(p_{0}, q_{0}\right)$.
Now we will give a new proof of the following theorem.
Theorem 4.1. Let $\alpha \geq \beta \geq-1 / 2$ and $\alpha>-1 / 2$. If there exists a constant $c>0$ such that

$$
\begin{equation*}
\left\|S_{n} f\right\|_{L^{p}(d \mu)} \leq c\|f\|_{L^{p}(d \mu)} \tag{4.1}
\end{equation*}
$$

for every $f \in S_{p}$ and $n \geq 0$, then $p \in\left(p_{0}, q_{0}\right)$
Proof. For the proof, we apply the same argument as in [10] (see also [12]). Assume that (4.1) holds true. Then

$$
\left\|\hat{f}(n) p_{n}^{(\alpha, \beta, M, N)}(x)\right\|_{L^{p}(d \mu)} \leq 2 c\|f\|_{L^{p}(d \mu)}
$$

Therefore

$$
\left\|p_{n}^{(\alpha, \beta, M, N)}(x)\right\|_{L^{p}(d \mu)}\left\|p_{n}^{(\alpha, \beta, M, N)}(x)\right\|_{L^{q}(d \mu)}<\infty
$$

where p is the conjugate of q. By Corollary 2.2 , it follows that the last inequality holds if and only if $p \in\left(p_{0}, q_{0}\right)$.

The proof of Theorem 4.1 is complete.
Remark 4.1. Using the symmetry properties [6, (2.5)], we get the same results as above with α replaced by β.

References

[1] B. Xh. Fejzullahu, Divergent Cesàro means of Fourier expansions with respect to polynomials associated with the measure $(1-x)^{\alpha}(1+x)^{\beta}+M \Delta_{-1}$, Filomat 21:2 (2007), 153-160; http://www.pmf.ni.ac.yu/filomat
[2] J. J. Gergen, Summability of double Fourier series, Duke Math. J. 3 (1937), 133-148.
[3] J. J. Guadalupe, M. Pérez, F. J. Ruiz and J. L. Varona, Convergence in the mean of the Fourier series with respect to polynomials associated with the measure $(1-x)^{\alpha}(1+x)^{\beta}+M \delta_{-1}+N \delta_{1}$, Orthogonal polynomials and their applications (Spanish), (1989), 91-99.
[4] J. J. Guadalupe, M. Pérez, F. J. Ruiz and J. L. Varona, Asymptotic behaviour of orthogonal polynomials relative to measures with mass points, Mathematika 40 (1993), 331-344.
[5] J. J. Guadalupe, M. Pérez, F. J. Ruiz and J. L. Varona, Weighted norm inequalities for polynomial expansions associated to some measures with mass points, Constr. Approx. 12 (1996), 341-360.
[6] T. H. Koornwinder, Orthogonal polynomials with weight function $(1-x)^{\alpha}(1+$ $x)^{\beta}+M \delta(x+1)+N \delta(x-1)$, Canad. Math. Bull. 27 (1984), 205-214.
[7] A. Máté, P. Nevai, and V. Totik, Necessary conditions for weighted mean convergence of Fourier series in orthogonal polynomials, J. Approx. Theory 46 (1986), 306-310.
[8] Ch. Meaney, Divergent Jacobi polynomial series, Proc. Amer. Math. Soc. 87 (1983), no. 3, 459-462.
[9] Ch. Meaney, Divergent Cesàro and Riesz means of Jacobi and Laguerre expansions, Proc. Amer. Math. Soc. 131 (2003), no. 10, 3123-3128.
[10] J. Newman and W. Rudin, Mean convergence of orthogonal series, Proc. Amer. Math. Soc. 3 (1952), 219-222.
[11] H. Pollard, The convergence almost everywhere of Legendre series, Proc. Amer. Math. Soc. 35 (1972), 442-444.
[12] K. Stempak, On convergence and divergence of Fourier-Bessel series, Electron. Trans. Numer. Anal. 14 (2002), 223-235.
[13] G. Szegö, Orthogonal polynomials, 4th Edition, Amer. Math. Soc. Colloq. Pub. 23, Amer. Math. Soc., Providence, RI (1975).
[14] J. L. Varona, Convergencia en L^{p} con pesos de la serie de Fourier respecto de algunos sistemas ortogonales, Ph. D. Thesis, Sem. Mat. García de Galdeano, sec. 2, no. 22. Zaragoza, (1989); http://www.unirioja.es/cu/jvarona/papers.html.
[15] A. Zygmund, Trigonometric series: Vols. I, II, Cambridge University Press, London, (1968).

Address:
Str. Ramiz Sadiku, 17523 Presevo, Serbia
E-mail: bujarfe@yahoo.com

[^0]: 2000 Mathematics Subject Classifications. 42C05, 42C10.
 Key words and Phrases. Koornwinder's Jacobi-type polynomials, Fourier expansions, Cesàro mean, norm convergence.

 Received: October 26, 2007
 Communicated by Dragan S. Djordjević

