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ON CONVERGENCE AND DIVERGENCE OF FOURIER
EXPANSIONS ASSOCIATED TO

JACOBI MEASURE WITH MASS POINTS

Bujar Xh. Fejzullahu

Abstract

We prove the failure of a.e. convergence of the Fourier expansion in terms
of the orthonormal polynomials with respect to the measure (1 − x)α(1 +
x)βdx + Mδ−1 + Nδ1, where δt is the delta function at a point t and M >
0, N > 0. Lebesgue norms of Koornwinder’s Jacobi-type polynomials are
applied to obtain a new proof of necessary conditions for mean convergence.

1 Introduction

Let ωα,β(x) = (1 − x)α(1 + x)β , (α, β > −1), be the Jacobi weight on the interval
[−1, 1]. In [6] T. H. Koornwinder introduced the polynomials {P (α,β,M,N)

n (x)}∞n=0

which are orthogonal on the interval [−1, 1] with respect to the measure

dµ(x) =
Γ(α + β + 2)

2α+β+1Γ(α + 1)Γ(β + 1)
ωα,β(x)dx + Mδ−1 + Nδ1,

where α > −1, β > −1, and M, N ≥ 0. They are called Koornwinder’s Jacobi-type
polynomials. We denote the orthonormal Koornwinder’s Jacobi-type polynomial
by p

(α,β,M,N)
n , which differs from P

(α,β,M,N)
n by normalization constant (see [14, p.

81]). For M = N = 0, denoted by p
(α,β)
n , we have the classical Jacobi orthonormal

polynomials (see [13, Chapter IV]). It is known that, unlike the Jacobi orthonormal
polynomials, the polynomials p

(α,β,M,N)
n for M > 0, N > 0 decay at the rate of

n−α−3/2 and n−β−3/2 at the end points 1 and −1.
We shall say that f(x) ∈ Lp(dµ) if f(x) is measurable on the [−1, 1] and

‖f‖Lp(dµ)< ∞, where

‖f‖Lp(dµ)=





(∫ 1

−1
|f(x)|pdµ(x)

) 1
p

if 1 ≤ p < ∞,

esssup
−1<x<1

|f(x)| if p = ∞.
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For f ∈ L1(dµ), the Fourier expansions in Koornwinder’s Jacobi-type polyno-
mials is ∞∑

k=0

f̂(k)p(α,β,M,N)
k (x) (1.1)

where the Fourier coefficients are

f̂(k) =
∫ 1

−1

f(x)p(α,β,M,N)
k (x)dµ(x)

=
Γ(α + β + 2)

2α+β+1Γ(α + 1)Γ(β + 1)

∫ 1

−1

f(x)p(α,β,M,N)
k (x)ωα,β(x)dx

+ Mf(−1)p(α,β,M)
k (−1) + Nf(1)p(α,β,M,N)

k (1). (1.2)

The Cesàro means of order ρ of the expansion (1.1) are defined by (see [15, p.
76-77], [9])

σρ
nf(x) =

n∑

k=0

Aρ
n−k

Aρ
n

f̂(k)p(α,β,M,N)
k (x),

where Aρ
k =

(
k+ρ

k

)
.

In 1972 Pollard [11] raised the following question: Is there an f ∈ L4/3(dx) whose
Fourier-Legendre expansion diverges almost everywhere? This problem was solved
by Meaney [8]. Furthermore, he proved that this is a special case of divergence
result for series of Jacobi polynomials.

This paper is a continuation of [1]. We will prove that, for α > −1/2 and
p0 = (4α+4)/(2α+3), there are functions f ∈ Lp0(dµ) whose Fourier expansions in
terms of the {p(α,β,M,N)

n }∞n=0 are divergent almost everywhere on [−1, 1]. Moreover
we show that, for 1 < p < p0 and 0 < ρ < 2/p − 3/2, there are functions f ∈
Lp(dµ) with almost everywhere divergent Cesàro means of order ρ. We also find the
necessary conditions for the convergence in Lp(dµ) norm of Fourier expansion (1.1).

In order to obtain it, previously, we need some estimates for Koornwinder’s
Jacobi-type orthonormal polynomials. The representation of the p

(α,β,M,N)
n in terms

of p
(α,β)
n , a strong asymptotic on (−1, 1), a Mehler-Heine type formula, Lebesgue

norms of p
(α,β,M,N)
n are derived.

2 Estimates for Koornwinder’s Jacobi-type poly-
nomials

The goal of this section is to obtain estimates and asymptotic properties on [−1, 1]
for the orthonormal polynomials p

(α,β,M,N)
n . Throughout this paper positive con-

stants are denoted by c, c1, ... and they may vary at every occurrence. The notation
un
∼= vn means that the sequence un/vn converges to 1 and notation un ∼ vn means

c1un ≤ vn ≤ c2un for sufficiently large n.
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Proposition 2.1. The representation of the p
(α,β,M,N)
n in terms of p

(α,β,M,0)
n is

p(α,β,M,N)
n (x) = Anp(α,β,M,0)

n (x) + Bn(x− 1)p(α+2,β,4M,0)
n−1 (x), (2.1)

where
An

∼= cn−2α−2, Bn
∼= 1. (2.2)

Proof. Let {P 1
n}∞n=0 be the orthonormal polynomials with respect to the measure

(see proof of the Proposition 6 in [4])

(x− 1)2[ωα,β(x)dx + Mδ−1] = ωα+2,β(x)dx + 4Mδ−1.

Therefore P 1
n = p

(α+2,β,4M,0)
n . From [4, Proposition 4] it follows

p(α,β,M,N)
n (x) = Anp(α,β,M,0)

n (x) + Bn(x− 1)p(α+2,β,4M,0)
n−1 (x),

where
lim

n→∞
AnLn−1(1, 1) =

1
λ(1) + N

lim
n→∞

Bn =
N

λ(1) + N

λ(1) = lim
n→∞

1
Ln(1, 1)

.

Since (see [1, (3)] and [13, (4.5.8)])

Ln(1, 1) =
n∑

i=0

p
(α,β,M,0)
i (1)p(α,β,M,0)

i (1) ∼= cn2α+2

we get (2.2).

Combining the above proposition with [1, (7)] we obtain:

Corollary 2.1. The representation of the p
(α,β,M,N)
n in terms of p

(α,β)
n is

p(α,β,M,N)
n (x) = anp(α,β)

n (x) + bn(x + 1)p(α,β+2)
n−1 (x)

+ cn(x− 1)p(α+2,β)
n−1 (x) + dn(x2 − 1)p(α+2,β+2)

n−2 (x)

where

an
∼= cn−2α−2β−4, bn

∼= cn−2α−2, cn
∼= cn−2β−2, dn

∼= 1.

The following proposition establishes a strong asymptotic on (−1, 1) for p
(α,β,M,N)
n .

Proposition 2.2. For θ ∈ [ε, π − ε] and ε > 0

p(α,β,M,N)
n (x) = lα,β,M,N

n (1− x)−α/2−1/4(1 + x)−β/2−1/4

× cos(kθ + γ) + O(n−1),

where x = cos θ, k = n+(α+β+1)/2, γ = −(α+1/2)π/2 and lim
n→∞

lα,β,M,N
n =

√
2/π
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Proof. From (2.1) and [1, Lemma 1]

p(α,β,M,N)
n (x) = [Ansα,β

n + Bnsα+2,β
n−1 ](1− x)−α/2−1/4(1 + x)−β/2−1/4

× cos(kθ + γ) + [An + Bn(x− 1)]O(n−1),

lim
n→∞

sα,β
n =

√
2/π. Now taking into account (2.2), the result follows.

Next we give a Mehler-Heine type formula of the polynomials p
(α,β,M,N)
n .

Proposition 2.3. Uniformly on compact subsets of C

lim
n→∞

n−α−1/2p(α,β,M,N)
n

(
cos

z

n

)
= −2

α−β
2 z−αJα+2(z),

where Jα is the Bessel function of order α.

Proof. The Mehler-Heine type formula for Jacobi orthonormal polynomials
p
(α,β)
n

(
cos z

n+j

)
, j ∈ N ∪ 0, is (see [13, Theorem 8.1.1])

lim
n→∞

n−α−1/2p(α,β)
n

(
cos

z

n + j

)
= 2−

α+β
2 (z/2)−αJα(z),

uniformly on compact subsets of C. Although the above formula in [13, Theorem
8.1.1] is for j = 0, it can be shown that this formula is also true for any fixed j ∈ N.

By Corollary 2.1 we have

n−α−1/2p(α,β,M,N)
n

(
cos

z

n

)
= ann−α−1/2p(α,β)

n

(
cos

z

n

)

+ bn

(
cos

z

n
+ 1

)
n−α−1/2p

(α,β+2)
n−1

(
cos

z

n

)

− 2cn sin2 z

2n
n−α−1/2p

(α+2,β)
n−1

(
cos

z

n

)

− dn sin2 z

n
n−α−1/2p

(α+2,β+2)
n−2

(
cos

z

n

)
.

Now, using the estimates for the coefficients an, bn, cn and dn, the result follows.

The proofs of main results are based on following proposition.

Proposition 2.4. Let α ≥ −1/2 and M, N > 0. For 1 ≤ q < ∞

∫ 1

0

(1− x)α|p(α,β,M,N)
n (x)|qdx ∼





c if 2α > qα− 2 + q/2,

log n if 2α = qα− 2 + q/2,

nqα+q/2−2α−2 if 2α < qα− 2 + q/2.

Proof. The upper estimates has been proved in [1, Theorem 1]. In order to prove
the lower estimate, we follow the same line as in [13, Theorem 7.34] (see also [1,
Theorem 2]), by using the Proposition 2.3 and [12, Lemma 2.1].
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By using this proposition, [6, (2.5)] and [1, (3),(4)], we obtain:

Corollary 2.2. Let α ≥ β ≥ −1/2 and α > −1/2. For q0 = 4α+4
2α+1

||p(α,β,M,N)
n (x)||Lq(dµ) ∼





c if 1 ≤ q < q0,

(log n)
1
q if q = q0,

nα+1/2−2(α+1)/q if q0 < q < ∞.

3 Divergence almost everywhere

Suppose that the expansion (1.1) converges on a subset E of positive measure in
[−1, 1]. Then

cn(f)p(α,β,M,N)
n (x) → 0, x ∈ E. (3.1)

From Egorov’s theorem it follows that there is a subset E1 ⊂ E of positive measure
E such that (3.1) holds uniformly for x ∈ E1. Therefore, from Proposition 2.2, we
have

n−δcn(f)
(
cos(kθ + γ) + O(n−1)

) → 0

uniformly for x = cos θ ∈ E1. By a variant of the Cantor-Lebesgue Theorem, cf.
[9, Subsection 1.5], this implies

cn(f) → 0. (3.2)

Now we are in position to prove our first main result

Theorem 3.1. Let α > −1/2 and β > −1. There is a function f in Lp0(dµ),
supported in [0, 1], such that its Fourier expansion (1.1) diverges for almost every
x ∈ [−1, 1].

Proof. For every function f ∈ L1(dµ) the Fourier coefficients (1.2) can be written
as

cn(f) = c′n(f) + Mf(−1)p(α,β,M,N)
n (−1) + Nf(1)p(α,β,M,N)

n (1), (3.3)

where

c′n(f) =
Γ(α + β + 2)

2α+β+1Γ(α + 1)Γ(β + 1)

∫ 1

−1

f(x)p(α,β,M,N)
n (x)ωα,β(x)dx.

The uniform boundedness principle and Proposition 2.4 yields the existence of
functions f ∈ Lp0(dµ), supported on [0, 1], such that the linear functional c′n(f)
satisfies

c′n(f)

(log n)
1

2q0

→∞, as n →∞.

Hence, from (3.3) and [1, (3),(4)], we obtain

cn(f)

(log n)
1

2q0

→∞, as n →∞,

which contradict (3.2).
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Now we show that, for some values of δ, there are functions with a.e. divergent
Cesàro means.

Theorem 3.2. Let given numbers α, β, p, and δ be such that α > −1/2; β > −1;

1 < p <
4(α + 1)
2α + 3

;

0 ≤ δ <
2α + 2

p
− 2α + 3

2
.

There is an f ∈ Lp(dµ), supported in [0, 1], whose Cesàro means σδ
Nf(x) is divergent

almost everywhere on [−1, 1].

Proof. From Egorov’s theorem and [9, Lemma 1.1] (see also [15, Theorem 3.1.22])
it follows that if the series (1.1) is Cesàro summable of order δ on a set E of positive
measure in [−1, 1] then there is a subset E1 ⊂ E of positive measure where

|n−δcn(f)p(α,β,M,N)
n (x)| ≤ c

uniformly for x ∈ E1. Hence, from Proposition 2.2, we have

|n−δcn(f)
(
cos(kθ + γ) + O(n−1)

) | ≤ c

uniformly for cos θ ∈ E1. Using again the Cantor-Lebesgue Theorem we obtain

|cn(f)
nδ

| ≤ c, ∀n ≥ 1. (3.4)

Suppose that

δ <
2α + 2

p
− 2α + 3

2
.

For q conjugate of p

δ < α +
1
2
− 2α + 2

q
.

From the argument given in the [9, Subsection 1.4] and Proposition 2.4, for the
linear functional c′n(f), it follows that there is an f ∈ Lp(dµ), supported on [0, 1],
such that

c′n(f)
nδ

→∞, as n →∞.

So, from (3.3) and [1, (3),(4)], it follows that

cn(f)
nδ

→∞, as n →∞.

Combining the above results with (3.4) it follows that, for this f, the σδ
Nf(x) di-

verges almost everywhere.

Remark 3.1. Using formulae in [2], which relates the Riesz and Cesàro means of
order δ ≥ 0, we conclude that the Theorem 3.2 also holds for the Riesz means.
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4 Necessary conditions for the norm convergence

Let Snf be the n-th partial sum of the expansion (1.1)

Snf(x) =
n∑

k=0

f̂(k)p(α,β,M,N)
k (x)

If α ≥ β ≥ −1/2 and α > −1/2, then (see [3], [5], and [7] in a more general
framework)

||Snf ||Lp(dµ) ≤ C||f ||Lp(dµ) ∀n ≥ 0, ∀f ∈ Lp(dµ)

if and only if p belongs to the open interval (p0, q0).
Now we will give a new proof of the following theorem.

Theorem 4.1. Let α ≥ β ≥ −1/2 and α > −1/2. If there exists a constant c > 0
such that

‖Snf‖Lp(dµ)≤ c‖f‖Lp(dµ) (4.1)

for every f ∈ Sp and n ≥ 0, then p ∈ (p0, q0)

Proof. For the proof, we apply the same argument as in [10] (see also [12]). Assume
that (4.1) holds true. Then

‖f̂(n)p(α,β,M,N)
n (x)‖Lp(dµ)≤ 2c‖f‖Lp(dµ).

Therefore
‖p(α,β,M,N)

n (x)‖Lp(dµ)‖p(α,β,M,N)
n (x)‖Lq(dµ)< ∞,

where p is the conjugate of q. By Corollary 2.2, it follows that the last inequality
holds if and only if p ∈ (p0, q0).

The proof of Theorem 4.1 is complete.

Remark 4.1. Using the symmetry properties [6, (2.5)], we get the same results as
above with α replaced by β.
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[3] J. J. Guadalupe, M. Pérez, F. J. Ruiz and J. L. Varona, Convergence in the
mean of the Fourier series with respect to polynomials associated with the mea-
sure (1− x)α(1 + x)β + Mδ−1 + Nδ1, Orthogonal polynomials and their appli-
cations (Spanish), (1989), 91-99.



68 Zhao Li and Jie Sun
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[7] A. Máté, P. Nevai, and V. Totik, Necessary conditions for weighted mean con-
vergence of Fourier series in orthogonal polynomials, J. Approx. Theory 46
(1986), 306-310.

[8] Ch. Meaney, Divergent Jacobi polynomial series, Proc. Amer. Math. Soc. 87
(1983), no. 3, 459-462.
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