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VECTOR INEQUALITIES FOR POWERS OF
SOME OPERATORS IN HILBERT SPACES

S. S. Dragomir

Abstract

Vector inequalities for powers of some operators in Hilbert spaces with ap-
plications for operator norm, numerical radius, commutators and self-commutators
are given.

1 Introduction

Let (H; 〈·, ·〉) be a complex Hilbert space. The numerical range of an operator T is
the subset of the complex numbers C given by [13, p. 1]:

W (T ) = {〈Tx, x〉 , x ∈ H, ‖x‖ = 1} .

The numerical radius w (T ) of an operator T on H is given by [13, p. 8]:

w (T ) = sup {|λ| , λ ∈ W (T )} = sup {|〈Tx, x〉| , ‖x‖ = 1} . (1.1)

It is well known that w (·) is a norm on the Banach algebra B (H) of all bounded
linear operators T : H → H. This norm is equivalent to the operator norm. In fact,
the following more precise result holds [13, p. 9]:

w (T ) ≤ ‖T‖ ≤ 2w (T ) , (1.2)

for any T ∈ B (H)
For more results on numerical radii, see [14], Chapter 11.
For other results and historical comments on the above see [13, p. 39–41]. For

recent inequalities involving the numerical radius, see [2]-[10], [15], [19]-[21] and
[22].

The Schwarz inequality for positive operators asserts that if T is a positive
operator in B (H) , then

|〈Tx, y〉|2 ≤ 〈Tx, x〉 〈Ty, y〉 for all x, y ∈ H. (1.3)
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For an arbitrary operator T in B (H) the following ”mixed Schwarz” inequality has
been established by Kato in [18] (see also [12] and [14, p. 265]):

|〈Tx, y〉|2 ≤ 〈(T ∗T )α
x, x〉

〈
(TT ∗)1−α

y, y
〉

for all x, y ∈ H (1.4)

and for α ∈ [0, 1] .
An important consequence of Kato’s inequality (1.4) is the famous Heinz in-

equality (see [1], [16], [17], [18]) which says that if T, A and B are operators in
B (H) such that A and B are positive and ‖Tx‖ ≤ ‖Ax‖ and ‖T ∗y‖ ≤ ‖By‖ for all
x, y in H then

|〈Tx, y〉| ≤ ‖Aαx‖∥∥B1−αy
∥∥

for all x, y ∈ H and for α ∈ [0, 1] .
In this paper we establish some vector inequalities for powers of various operators

in Hilbert spaces. Applications for norm and numerical radius inequalities are
provided. Particular cases for commutators and self-commutators are also given.

2 Vector Inequalities for Two Operators

The first results concerning powers of two operators is incorporated in:

Theorem 1. For any A,B ∈ B (H) and r ≥ 1 we have the vector inequality:

|〈Ax,By〉|r ≤ 1
2

[〈(A∗A)r
x, x〉+ 〈(B∗B)r

y, y〉] , (2.1)

where x, y ∈ H, ‖x‖ = ‖y‖ = 1.
In particular, we have the norm inequality

‖B∗A‖r ≤ 1
2

(‖(A∗A)r‖+ ‖(B∗B)r‖) (2.2)

and the numerical radius inequality

wr (B∗A) ≤ 1
2
‖(A∗A)r + (B∗B)r‖ , (2.3)

respectively.
The constant 1

2 is best possible in all inequalities (2.1), (2.2) and (2.3).

Proof. By the Schwarz inequality in the Hilbert space (H; 〈., .〉) we have:

|〈B∗Ax, y〉| = |〈Ax,By〉| ≤ ‖Ax‖ · ‖By‖ (2.4)

= 〈A∗Ax, x〉1/2 · 〈B∗By, y〉1/2
, x, y ∈ H.

Utilising the arithmetic mean - geometric mean inequality and then the convexity
of the function f (t) = tr, r ≥ 1, we have successively,

〈A∗Ax, x〉1/2 · 〈B∗By, y〉1/2 ≤ 〈A∗Ax, x〉+ 〈B∗By, y〉
2

(2.5)

≤
( 〈A∗Ax, x〉r + 〈B∗By, y〉r

2

) 1
r
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for any x, y ∈ H.
It is known that if P is a positive operator then for any r ≥ 1 and z ∈ H with

‖z‖ = 1 we have the inequality (see for instance [20])

〈Pz, z〉r ≤ 〈P rz, z〉 . (2.6)

Applying this property to the positive operators A∗A and B∗B, we deduce that

( 〈A∗Ax, x〉r + 〈B∗By, y〉r
2

) 1
r

≤
( 〈(A∗A)r

x, x〉+ 〈(B∗B)r
y, y〉

2

) 1
r

(2.7)

for any x, y ∈ H, ‖x‖ = ‖y‖ = 1.
Now, on making use of the inequalities (2.4), (2.5) and (2.7), we get the inequal-

ity:

|〈(B∗A) x, y〉|r ≤ 1
2

[〈(A∗A)r
x, x〉+ 〈(B∗B)r

y, y〉] (2.8)

for any x, y ∈ H, ‖x‖ = ‖y‖ = 1, which proves (2.1).
Taking the supremum over x, y ∈ H, ‖x‖ = ‖y‖ = 1 in (2.8) and since the

operators (A∗A)r and (B∗B)r are self-adjoint, we deduce the desired inequality
(2.2).

Now, if we take y = x in (2.1), then we get

|〈(B∗A)x, x〉|r ≤ 1
2

[〈[(A∗A)r + (B∗B)r] x, x〉] (2.9)

for any x ∈ H, ‖x‖ = 1. Taking the supremum over x ∈ H, ‖x‖ = 1 in (2.9) we get
(2.3).

The sharpness of the constant follows by taking r = 1 and B = A in all inequal-
ities (2.1), (2.2) and (2.3). The details are omitted.

Corollary 1. For any A ∈ B (H) and r ≥ 1 we have the vector inequalities:

|〈Ax, y〉|r ≤ 1
2

[〈(A∗A)r
x, x〉+ 1] , (2.10)

and ∣∣〈A2x, y
〉∣∣r ≤ 1

2
[〈(A∗A)r

x, x〉+ 〈(AA∗)r
y, y〉] , (2.11)

where x, y ∈ H, ‖x‖ = ‖y‖ = 1.
In particular, we have the norm inequalities

‖A‖r ≤ 1
2

(‖(A∗A)r‖+ 1) (2.12)

and ∥∥A2
∥∥r ≤ 1

2
(‖(A∗A)r‖+ ‖(AA∗)r‖) , (2.13)

respectively.
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We also have the numerical radius inequalities

wr (A) ≤ 1
2
‖(A∗A)r + I‖ (2.14)

and
wr

(
A2

) ≤ 1
2
‖(A∗A)r + (AA∗)r‖ , (2.15)

respectively.

A different approach is considered in the following result:

Theorem 2. For any A, B ∈ B (H), any α ∈ (0, 1) and r ≥ 1, we have the vector
inequality:

|〈Ax,By〉|2r ≤ α
〈
(A∗A)

r
α x, x

〉
+ (1− α)

〈
(B∗B)

r
1−α y, y

〉
(2.16)

for any x, y ∈ H with ‖x‖ = ‖y‖ = 1.
In particular, we have the norm inequality

‖B∗A‖2r ≤ α
∥∥∥(A∗A)

r
α

∥∥∥ + (1− α)
∥∥∥(B∗B)

r
1−α

∥∥∥ (2.17)

and the numerical radius inequality

w2r (B∗A) ≤
∥∥∥α (A∗A)

r
α + (1− α) (B∗B)

r
1−α

∥∥∥ , (2.18)

respectively.

Proof. By Schwarz’s inequality, we have:

|〈(B∗A)x, y〉|2 ≤ 〈(A∗A) x, x〉 · 〈(B∗B) y, y〉 (2.19)

=
〈[

(A∗A)
1
α

]α

x, x
〉
·
〈[

(B∗B)
1

1−α

]1−α

y, y

〉
,

for any x, y ∈ H.
It is well known that (see for instance [20]) if P is a positive operator and

q ∈ (0, 1] then for any u ∈ H, ‖u‖ = 1, we have

〈P qu, u〉 ≤ 〈Pu, u〉q . (2.20)

Applying this property to the positive operators (A∗A)
1
α and (B∗B)

1
1−α (α ∈ (0, 1)) ,

we have

〈[
(A∗A)

1
α

]α

x, x
〉
·
〈[

(B∗B)
1

1−α

]1−α

y, y

〉

≤
〈
(A∗A)

1
α x, x

〉α

·
〈
(B∗B)

1
1−α y, y

〉1−α

, (2.21)
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for any x, y ∈ H, ‖x‖ = ‖y‖ = 1.
Now, utilising the weighted arithmetic mean - geometric mean inequality, i.e.,

aαb1−α ≤ αa + (1− α) b, α ∈ (0, 1) , a, b ≥ 0, we get

〈
(A∗A)

1
α x, x

〉α

·
〈
(B∗B)

1
1−α y, y

〉1−α

≤ α
〈
(A∗A)

1
α x, x

〉
+ (1− α)

〈
(B∗B)

1
1−α y, y

〉
(2.22)

for any x, y ∈ H, ‖x‖ = ‖y‖ = 1.
Moreover, by the elementary inequality following from the convexity of the func-

tion f (t) = tr, r ≥ 1, namely

αa + (1− α) b ≤ (αar + (1− α) br)
1
r , α ∈ (0, 1) , a, b ≥ 0,

we deduce that

α
〈
(A∗A)

1
α x, x

〉
+ (1− α)

〈
(B∗B)

1
1−α y, y

〉
(2.23)

≤
[
α

〈
(A∗A)

1
α x, x

〉r

+ (1− α)
〈
(B∗B)

1
1−α y, y

〉r] 1
r

≤
[
α

〈
(A∗A)

r
α x, x

〉
+ (1− α)

〈
(B∗B)

r
1−α y, y

〉] 1
r

,

for any x, y ∈ H, ‖x‖ = ‖y‖ = 1, where, for the last inequality we used the inequality
(2.6) for the positive operators (A∗A)

1
α and (B∗B)

1
1−α .

Now, on making use of the inequalities (2.19), (2.21), (2.22) and (2.23), we get

|〈(B∗A)x, y〉|2r ≤ α
〈
(A∗A)

r
α x, x

〉
+ (1− α)

〈
(B∗B)

r
1−α y, y

〉
(2.24)

for any x, y ∈ H, ‖x‖ = ‖y‖ = 1, and the inequality (2.16) is proved.
Taking the supremum over x, y ∈ H, ‖x‖ = ‖y‖ = 1 in (2.24) produces the

desired inequality (2.17).
The numerical radius inequality follows from (2.24) written for y = x. The

details are omitted.

The following particular instances are of interest:

Corollary 2. For any A ∈ B (H) and α ∈ (0, 1) , r ≥ 1, we have the vector
inequalities

|〈Ax, y〉|2r ≤ α
〈
(A∗A)

r
α x, x

〉
+ 1− α, (2.25)

∣∣〈A2x, y
〉∣∣2r ≤ α

〈
(A∗A)

r
α x, x

〉
+ (1− α)

〈
(AA∗)

r
1−α y, y

〉
(2.26)

and
|〈Ax,Ay〉|2r ≤ α

〈
(A∗A)

r
α x, x

〉
+ (1− α)

〈
(A∗A)

r
1−α y, y

〉
, (2.27)

respectively, where x, y ∈ H, ‖x‖ = ‖y‖ = 1.
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We have the norm inequalities

‖A‖2r ≤ α
∥∥∥(A∗A)

r
α

∥∥∥ + 1− α (2.28)

and ∥∥A2
∥∥2r ≤ α

∥∥∥(A∗A)
r
α

∥∥∥ + (1− α)
∥∥∥(AA∗)

r
1−α

∥∥∥ , (2.29)

respectively.
We have the numerical radius inequalities

w2r (A) ≤
∥∥∥α (A∗A)

r
α + (1− α) I

∥∥∥ (2.30)

and
w2r

(
A2

) ≤
∥∥∥α (A∗A)

r
α + (1− α) (AA∗)

r
1−α

∥∥∥ , (2.31)

respectively.
Moreover, we have the norm inequality

‖A‖4r ≤
∥∥∥α (A∗A)

r
α + (1− α) (A∗A)

r
1−α

∥∥∥ . (2.32)

3 Vector Inequalities for the Sum of Two Products

The following result concerning four operators may be stated:

Theorem 3. For any A,B, C, D ∈ B (H) and r, s ≥ 1 we have:

∣∣∣∣
〈[

B∗A + D∗C
2

]
x, y

〉∣∣∣∣
2

≤
〈[

(A∗A)r + (C∗C)r

2

]
x, x

〉 1
r

·
〈[

(B∗B)s + (D∗D)s

2

]
y, y

〉 1
s

(3.1)

for any x, y ∈ H with ‖x‖ = ‖y‖ = 1.
Moreover, we have the norm inequality

∥∥∥∥
B∗A + D∗C

2

∥∥∥∥
2

≤
∥∥∥∥

(A∗A)r + (C∗C)r

2

∥∥∥∥
1
r

·
∥∥∥∥

(B∗B)s + (D∗D)s

2

∥∥∥∥
1
s

. (3.2)

Proof. By the Schwarz inequality in the Hilbert space (H; 〈., .〉) we have:

|〈(B∗A + D∗C) x, y〉|2 (3.3)

= |〈B∗Ax, y〉+ 〈D∗Cx, y〉|2

≤ [|〈B∗Ax, y〉|+ |〈D∗Cx, y〉|]2

≤
[
〈A∗Ax, x〉 1

2 · 〈B∗By, y〉 1
2 + 〈C∗Cx, x〉 1

2 · 〈D∗Dy, y〉 1
2

]2

,
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for any x, y ∈ H.
Now, on utilising the elementary inequality:

(ab + cd)2 ≤ (
a2 + c2

) (
b2 + d2

)
, a, b, c, d ∈ R,

we then conclude that:

〈A∗Ax, x〉 1
2 · 〈B∗By, y〉 1

2 + 〈C∗Cx, x〉 1
2 · 〈D∗Dy, y〉 1

2

≤ (〈A∗Ax, x〉+ 〈C∗Cx, x〉) · (〈B∗By, y〉+ 〈D∗Dy, y〉) , (3.4)

for any x, y ∈ H.
Now, on making use of a similar argument to the one in the proof of Theorem

1, we have for r, s ≥ 1 that

(〈A∗Ax, x〉+ 〈C∗Cx, x〉) · (〈B∗By, y〉+ 〈D∗Dy, y〉)

≤ 4 ·
〈[

(A∗A)r + (C∗C)r

2

]
x, x

〉 1
r

·
〈[

(B∗B)s + (D∗D)s

2

]
y, y

〉 1
s

(3.5)

for any x, y ∈ H with ‖x‖ = ‖y‖ = 1.
Consequently, by (3.3) – (3.5) we have:

∣∣∣∣
〈[

B∗A + D∗C
2

]
x, y

〉∣∣∣∣
2

≤
〈[

(A∗A)r + (C∗C)r

2

]
x, x

〉 1
r

·
〈[

(B∗B)s + (D∗D)s

2

]
y, y

〉 1
s

(3.6)

for any x, y ∈ H with ‖x‖ = ‖y‖ = 1, which provides the desired result (3.1).
Taking the supremum over x, y ∈ H with ‖x‖ = ‖y‖ = 1 in (3.6) we deduce the

desired inequality (3.2).

Remark 1. If we make y = x in (3.6) and take the supremum over ‖x‖ = 1, then
we get the inequality

w2

(
B∗A + D∗C

2

)
≤

∥∥∥∥
(A∗A)r + (C∗C)r

2

∥∥∥∥
1
r

·
∥∥∥∥

(B∗B)s + (D∗D)s

2

∥∥∥∥
1
s

,

which is not as good as (3.2) since we always have

w2

(
B∗A + D∗C

2

)
≤

∥∥∥∥
B∗A + D∗C

2

∥∥∥∥
2

.

Remark 2. If s = r, then the inequality (3.1) becomes :

∣∣∣∣
〈[

B∗A + D∗C
2

]
x, y

〉∣∣∣∣
2r

≤
〈[

(A∗A)r + (C∗C)r

2

]
x, x

〉
·
〈[

(B∗B)r + (D∗D)r

2

]
y, y

〉
(3.7)
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for any x, y ∈ H with ‖x‖ = ‖y‖ = 1 while (3.2) is equivalent with

∥∥∥∥
B∗A + D∗C

2

∥∥∥∥
2r

≤
∥∥∥∥

(A∗A)r + (C∗C)r

2

∥∥∥∥ ·
∥∥∥∥

(B∗B)r + (D∗D)r

2

∥∥∥∥ . (3.8)

Corollary 3. For any A,C ∈ B (H) we have:

∣∣∣∣
〈(

A + C

2

)
x, y

〉∣∣∣∣
2r

≤
〈[

(A∗A)r + (C∗C)r

2

]
x, x

〉
(3.9)

for any x, y ∈ H with ‖x‖ = ‖y‖ = 1. In particular, we have the norm inequality

∥∥∥∥
A + C

2

∥∥∥∥
2r

≤
∥∥∥∥

(A∗A)r + (C∗C)r

2

∥∥∥∥ , (3.10)

where r ≥ 1.

The result is obvious by choosing B = D = I in Theorem 3.

Corollary 4. For any A,C ∈ B (H) we have:

∣∣∣∣
〈(

A2 + C2

2

)
x, y

〉∣∣∣∣
2

≤
〈[

(A∗A)r + (C∗C)r

2

]
x, x

〉 1
r

·
〈[

(AA∗)s + (CC∗)s

2

]
y, y

〉 1
s

(3.11)

for any x, y ∈ H with ‖x‖ = ‖y‖ = 1. Also, we have the norm inequality

∥∥∥∥
A2 + C2

2

∥∥∥∥
2

≤
∥∥∥∥

(A∗A)r + (C∗C)r

2

∥∥∥∥
1
r

·
∥∥∥∥

(AA∗)s + (CC∗)s

2

∥∥∥∥
1
s

(3.12)

for all r, s ≥ 1.
If s = r, then we have, in particular,

∣∣∣∣
〈(

A2 + C2

2

)
x, y

〉∣∣∣∣
2r

≤
〈[

(A∗A)r + (C∗C)r

2

]
x, x

〉
·
〈[

(AA∗)r + (CC∗)r

2

]
y, y

〉
(3.13)

for any x, y ∈ H with ‖x‖ = ‖y‖ = 1 and the norm inequality

∥∥∥∥
A2 + C2

2

∥∥∥∥
2r

≤
∥∥∥∥

(A∗A)r + (C∗C)r

2

∥∥∥∥ ·
∥∥∥∥

(AA∗)r + (CC∗)r

2

∥∥∥∥ (3.14)

for r ≥ 1.
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The result is obvious by choosing B = A∗ and D = C∗ in Theorem 3.
Another particular result of interest is the following one:

Corollary 5. For any A,B ∈ B (H) we have:

∣∣∣∣
〈[

B∗A + A∗B
2

]
x, y

〉∣∣∣∣
2

≤
〈[

(A∗A)r + (B∗B)r

2

]
x, x

〉 1
r

·
〈[

(A∗A)s + (B∗B)s

2

]
y, y

〉 1
s

(3.15)

for any x, y ∈ H with ‖x‖ = ‖y‖ = 1.
Moreover, we have the norm inequality

∥∥∥∥
B∗A + A∗B

2

∥∥∥∥
2

≤
∥∥∥∥

(A∗A)r + (B∗B)r

2

∥∥∥∥
1
r

·
∥∥∥∥

(A∗A)s + (B∗B)s

2

∥∥∥∥
1
s

(3.16)

for any r, s ≥ 1.
In particular we have

∣∣∣∣
〈[

B∗A + A∗B
2

]
x, y

〉∣∣∣∣
2r

≤
〈[

(A∗A)r + (B∗B)r

2

]
x, x

〉〈[
(A∗A)r + (B∗B)r

2

]
y, y

〉
(3.17)

for any x, y ∈ H with ‖x‖ = ‖y‖ = 1 and
∥∥∥∥

B∗A + A∗B
2

∥∥∥∥
r

≤
∥∥∥∥

(A∗A)r + (B∗B)r

2

∥∥∥∥ (3.18)

where r ≥ 1.

The proof is obvious by choosing D = A and C = B in Theorem 3.
Another particular case that might be of interest is the following one.

Corollary 6. For any A,D ∈ B (H) we have:

∣∣∣∣
〈(

A + D

2

)
x, y

〉∣∣∣∣
2

≤
〈[

(A∗A)r + I

2

]
x, x

〉 1
r

·
〈[

(DD∗)s + I

2

]
y, y

〉 1
s

(3.19)

for any x, y ∈ H with ‖x‖ = ‖y‖ = 1 and the norm inequality

∥∥∥∥
A + D

2

∥∥∥∥
2

≤
∥∥∥∥

(A∗A)r + I

2

∥∥∥∥
1
r

·
∥∥∥∥

(DD∗)s + I

2

∥∥∥∥
1
s

, (3.20)

where r, s ≥ 1.
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In particular we have

|〈Ax, y〉|2 ≤
〈[

(A∗A)r + I

2

]
x, x

〉 1
r

·
〈[

(AA∗)s + I

2

]
y, y

〉 1
s

(3.21)

for any x, y ∈ H with ‖x‖ = ‖y‖ = 1 and the norm inequality

‖A‖2 ≤
∥∥∥∥

(A∗A)r + I

2

∥∥∥∥
1
r

·
∥∥∥∥

(AA∗)s + I

2

∥∥∥∥
1
s

. (3.22)

Moreover, for any r ≥ 1 we have

|〈Ax, y〉|2r ≤
〈[

(A∗A)r + I

2

]
x, x

〉
·
〈[

(AA∗)r + I

2

]
y, y

〉
(3.23)

for any x, y ∈ H with ‖x‖ = ‖y‖ = 1 and

‖A‖2r ≤
∥∥∥∥

(A∗A)r + I

2

∥∥∥∥ ·
∥∥∥∥

(AA∗)r + I

2

∥∥∥∥ . (3.24)

The proof of (3.19) is obvious by the Theorem 3 on choosing B = I, C = I and
writing the inequality for D∗ instead of D. The details are omitted.

Remark 3. If T ∈ B (H) and T = A + iC, i.e., A and C are its Cartesian
decomposition, then we get from (3.9)

|〈Tx, y〉|2r ≤ 22r−1 〈[(A∗A)r + (C∗C)r] x, x〉 (3.25)

for any x, y ∈ H with ‖x‖ = ‖y‖ = 1. In particular, we have the norm inequality

‖T‖2r ≤ 22r−1 ‖(A∗A)r + (C∗C)r‖ , (3.26)

where r ≥ 1.
Now, if we use the inequality (3.19) for T,A and B, then we get:

|〈Tx, y〉|2 ≤ 22− 1
r− 1

s 〈[(A∗A)r + I] x, x〉 1
r · 〈[(CC∗)s + I] y, y〉 1

s (3.27)

for any x, y ∈ H with ‖x‖ = ‖y‖ = 1 and the norm inequality

‖T‖2 ≤ 22− 1
r− 1

s ‖(A∗A)r + I‖ 1
r · ‖(CC∗)s + I‖ 1

s , (3.28)

where r, s ≥ 1. In particular, we have

|〈Tx, y〉|2r ≤ 22r−2 〈[(A∗A)r + I]x, x〉 · 〈[(CC∗)r + I] y, y〉 (3.29)

for any x, y ∈ H with ‖x‖ = ‖y‖ = 1 and the norm inequality

‖T‖2r ≤ 22r−2 ‖(A∗A)r + I‖ · ‖(CC∗)r + I‖ , (3.30)

for any r ≥ 1.
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In terms of the Euclidean radius of two operators we (·, ·) , where, as in [2],

we (T, U) := sup
‖x‖=1

(
|〈Tx, x〉|2 + |〈Ux, x〉|2

) 1
2

,

we have the following result as well.

Theorem 4. For any A,B,C, D ∈ B (H) and p, q > 1 with 1
p + 1

q = 1, we have the
vector inequality:

|〈Ax,By〉|2 + |〈Cx, Dy〉|2

≤ 〈[(A∗A)p + (C∗C)p]x, x〉1/p · 〈[(B∗B)q + (D∗D)q] y, y〉1/q (3.31)

for each x, y ∈ H with ‖x‖ = ‖y‖ = 1.
In particular, we have the inequality for the Euclidean radius:

w2
e (B∗A,D∗C) ≤ ‖(A∗A)p + (C∗C)p‖1/p · ‖(B∗B)q + (D∗D)q‖1/q

. (3.32)

Proof. On utilising the elementary inequality

ac + bd ≤ (ap + bp)1/p · (cq + dq)1/q
, a, b, c, d ≥ 0 and p, q > 1 with

1
p

+
1
q

= 1,

then for any x, y ∈ H, ‖x‖ = ‖y‖ = 1 we have the inequalities:

|〈B∗Ax, y〉|2 + |〈D∗Cx, y〉|2
≤ 〈A∗Ax, x〉 · 〈B∗By, y〉+ 〈C∗Cx, x〉 · 〈D∗Dy, y〉
≤ (〈A∗Ax, x〉p + 〈C∗Cx, x〉p)1/p · (〈B∗By, y〉q + 〈D∗Dy, y〉q)1/q

≤ (〈(A∗A)p
x, x〉+ 〈(C∗C)p

x, x〉)1/p · (〈(B∗B)q
y, y〉+ 〈(D∗D)q

y, y〉)1/q

= 〈[(A∗A)p + (C∗C)p] x, x〉1/p · 〈[(B∗B)q + (D∗D)q] y, y〉1/q
.

For the second inequality, let us make the choice y = x to get

|〈B∗Ax, x〉|2 + |〈D∗Cx, x〉|2

≤ 〈[(A∗A)p + (C∗C)p] x, x〉1/p · 〈[(B∗B)q + (D∗D)q] x, x〉1/q
,

for any x ∈ H, ‖x‖ = 1. Taking the supremum over x ∈ H, ‖x‖ = 1 and noticing
that the operators (A∗A)p + (C∗C)p and (B∗B)q + (D∗D)q are self-adjoint, we
deduce the desired inequality (3.32).

The following particular case is of interest.

Corollary 7. For any A,C ∈ B (H) and p, q > 1 with 1
p + 1

q = 1, we have:

|〈Ax, y〉|2 + |〈Cx, y〉|2 ≤ 21/q 〈[(A∗A)p + (C∗C)p] x, x〉1/p (3.33)

for each x, y ∈ H, with ‖x‖ = ‖y‖ = 1. In particular,

w2
e (A,C) ≤ 21/q ‖(A∗A)p + (C∗C)p‖1/p

.
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The proof follows from (3.31) and (3.32) for B = D = I.

Corollary 8. For any A,D ∈ B (H) and p, q > 1 with 1
p + 1

q = 1, we have:

|〈Ax, y〉|2 + |〈Dx, y〉|2 ≤ 〈[(A∗A)p + I] x, x〉1/p · 〈[(DD∗)q + I] y, y〉1/q (3.34)

for each x, y ∈ H, with ‖x‖ = ‖y‖ = 1. In particular,

w2
e (A,D) ≤ ‖(A∗A)p + I‖1/p · ‖(DD∗)q + I‖1/q

.

4 Inequalities for the Commutator

The commutator of two bounded linear operators T and U is the operator TU−UT.
For the usual norm ‖·‖ and for any two operators T and U, by using the triangle
inequality and the submultiplicity of the norm, we can state the following inequality:

‖TU − UT‖ ≤ 2 ‖T‖ ‖U‖ . (4.1)

In [11], the following result has been obtained as well

‖TU − UT‖ ≤ 2min {‖T‖ , ‖U‖}min {‖T − U‖ , ‖T + U‖} . (4.2)

By utilising Theorem 3 we can state the following result for the numerical radius of
the commutator:

Proposition 1. For any T,U ∈ B (H) and r, s ≥ 1 we have the vector inequality

|〈(TU − UT )x, y〉|2

≤ 22− 1
r− 1

s 〈[(U∗U)r + (T ∗T )r] x, x〉 1
r · 〈[(UU∗)s + (TT ∗)s] y, y〉 1

s , (4.3)

for any x, y ∈ H with ‖x‖ = ‖y‖ = 1. Moreover, we have the norm inequality

‖TU − UT‖2 ≤ 22− 1
r− 1

s ‖(U∗U)r + (T ∗T )r‖ 1
r · ‖(UU∗)s + (TT ∗)s‖ 1

s . (4.4)

In particular, we have

|〈(TU − UT )x, y〉|2r

≤ 22r−2 〈[(U∗U)r + (T ∗T )r] x, x〉 · 〈[(UU∗)r + (TT ∗)r] y, y〉 (4.5)

for any x, y ∈ H with ‖x‖ = ‖y‖ = 1 and the norm inequality

‖TU − UT‖2r ≤ 22r−2 ‖(U∗U)r + (T ∗T )r‖ · ‖(UU∗)r + (TT ∗)r‖ , (4.6)

for any r ≥ 1.

Proof. Follows by Theorem 3 on choosing B = T ∗, A = U, D = −U∗ and C = T.
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Now, for U = T ∗ we can state the following corollary.

Corollary 9. For any T ∈ B (H) we have the vector inequality for the self com-
mutator:

|〈(TT ∗ − T ∗T )x, y〉|2

≤ 22− 1
r− 1

s 〈[(TT ∗)r + (T ∗T )r] x, x〉 1
r · 〈[(TT ∗)s + (T ∗T )s] y, y〉 1

s (4.7)

for any x, y ∈ H with ‖x‖ = ‖y‖ = 1. Moreover, we have the norm inequality

‖TT ∗ − T ∗T‖2 ≤ 22− 1
r− 1

s ‖(TT ∗)r + (T ∗T )r‖ 1
r · ‖(TT ∗)s + (T ∗T )s‖ 1

s . (4.8)

In particular we have

|〈(TT ∗ − T ∗T )x, y〉|2r

≤ 22r−2 〈[(TT ∗)r + (T ∗T )r]x, x〉 · 〈[(TT ∗)r + (T ∗T )r] y, y〉 (4.9)

for any x, y ∈ H with ‖x‖ = ‖y‖ = 1 and the norm inequality

‖TT ∗ − T ∗T‖r ≤ 2r−1 ‖(TT ∗)r + (T ∗T )r‖ , (4.10)

for any r ≥ 1.
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