VECTOR INEQUALITIES FOR POWERS OF SOME OPERATORS IN HILBERT SPACES

S. S. Dragomir

Abstract

Vector inequalities for powers of some operators in Hilbert spaces with applications for operator norm, numerical radius, commutators and self-commutators are given.

1 Introduction

Let $(H ;\langle\cdot, \cdot\rangle)$ be a complex Hilbert space. The numerical range of an operator T is the subset of the complex numbers \mathbb{C} given by $[13$, p. 1$]$:

$$
W(T)=\{\langle T x, x\rangle, x \in H,\|x\|=1\} .
$$

The numerical radius $w(T)$ of an operator T on H is given by [13, p. 8]:

$$
\begin{equation*}
w(T)=\sup \{|\lambda|, \lambda \in W(T)\}=\sup \{|\langle T x, x\rangle|,\|x\|=1\} \tag{1.1}
\end{equation*}
$$

It is well known that $w(\cdot)$ is a norm on the Banach algebra $B(H)$ of all bounded linear operators $T: H \rightarrow H$. This norm is equivalent to the operator norm. In fact, the following more precise result holds [13, p. 9]:

$$
\begin{equation*}
w(T) \leq\|T\| \leq 2 w(T) \tag{1.2}
\end{equation*}
$$

for any $T \in B(H)$
For more results on numerical radii, see [14], Chapter 11.
For other results and historical comments on the above see [13, p. 39-41]. For recent inequalities involving the numerical radius, see [2]-[10], [15], [19]-[21] and [22].

The Schwarz inequality for positive operators asserts that if T is a positive operator in $B(H)$, then

$$
\begin{equation*}
|\langle T x, y\rangle|^{2} \leq\langle T x, x\rangle\langle T y, y\rangle \text { for all } x, y \in H . \tag{1.3}
\end{equation*}
$$

[^0]For an arbitrary operator T in $B(H)$ the following "mixed Schwarz" inequality has been established by Kato in [18] (see also [12] and [14, p. 265]):

$$
\begin{equation*}
|\langle T x, y\rangle|^{2} \leq\left\langle\left(T^{*} T\right)^{\alpha} x, x\right\rangle\left\langle\left(T T^{*}\right)^{1-\alpha} y, y\right\rangle \text { for all } x, y \in H \tag{1.4}
\end{equation*}
$$

and for $\alpha \in[0,1]$.
An important consequence of Kato's inequality (1.4) is the famous Heinz inequality (see [1], [16], [17], [18]) which says that if T, A and B are operators in $B(H)$ such that A and B are positive and $\|T x\| \leq\|A x\|$ and $\left\|T^{*} y\right\| \leq\|B y\|$ for all x, y in H then

$$
|\langle T x, y\rangle| \leq\left\|A^{\alpha} x\right\|\left\|B^{1-\alpha} y\right\|
$$

for all $x, y \in H$ and for $\alpha \in[0,1]$.
In this paper we establish some vector inequalities for powers of various operators in Hilbert spaces. Applications for norm and numerical radius inequalities are provided. Particular cases for commutators and self-commutators are also given.

2 Vector Inequalities for Two Operators

The first results concerning powers of two operators is incorporated in:
Theorem 1. For any $A, B \in B(H)$ and $r \geq 1$ we have the vector inequality:

$$
\begin{equation*}
|\langle A x, B y\rangle|^{r} \leq \frac{1}{2}\left[\left\langle\left(A^{*} A\right)^{r} x, x\right\rangle+\left\langle\left(B^{*} B\right)^{r} y, y\right\rangle\right] \tag{2.1}
\end{equation*}
$$

where $x, y \in H,\|x\|=\|y\|=1$.
In particular, we have the norm inequality

$$
\begin{equation*}
\left\|B^{*} A\right\|^{r} \leq \frac{1}{2}\left(\left\|\left(A^{*} A\right)^{r}\right\|+\left\|\left(B^{*} B\right)^{r}\right\|\right) \tag{2.2}
\end{equation*}
$$

and the numerical radius inequality

$$
\begin{equation*}
w^{r}\left(B^{*} A\right) \leq \frac{1}{2}\left\|\left(A^{*} A\right)^{r}+\left(B^{*} B\right)^{r}\right\| \tag{2.3}
\end{equation*}
$$

respectively.
The constant $\frac{1}{2}$ is best possible in all inequalities (2.1), (2.2) and (2.3).
Proof. By the Schwarz inequality in the Hilbert space $(H ;\langle.,\rangle$.$) we have:$

$$
\begin{align*}
\left|\left\langle B^{*} A x, y\right\rangle\right| & =|\langle A x, B y\rangle| \leq\|A x\| \cdot\|B y\| \tag{2.4}\\
& =\left\langle A^{*} A x, x\right\rangle^{1 / 2} \cdot\left\langle B^{*} B y, y\right\rangle^{1 / 2}, \quad x, y \in H
\end{align*}
$$

Utilising the arithmetic mean - geometric mean inequality and then the convexity of the function $f(t)=t^{r}, r \geq 1$, we have successively,

$$
\begin{align*}
\left\langle A^{*} A x, x\right\rangle^{1 / 2} \cdot\left\langle B^{*} B y, y\right\rangle^{1 / 2} & \leq \frac{\left\langle A^{*} A x, x\right\rangle+\left\langle B^{*} B y, y\right\rangle}{2} \tag{2.5}\\
& \leq\left(\frac{\left\langle A^{*} A x, x\right\rangle^{r}+\left\langle B^{*} B y, y\right\rangle^{r}}{2}\right)^{\frac{1}{r}}
\end{align*}
$$

for any $x, y \in H$.
It is known that if P is a positive operator then for any $r \geq 1$ and $z \in H$ with $\|z\|=1$ we have the inequality (see for instance [20])

$$
\begin{equation*}
\langle P z, z\rangle^{r} \leq\left\langle P^{r} z, z\right\rangle \tag{2.6}
\end{equation*}
$$

Applying this property to the positive operators $A^{*} A$ and $B^{*} B$, we deduce that

$$
\begin{equation*}
\left(\frac{\left\langle A^{*} A x, x\right\rangle^{r}+\left\langle B^{*} B y, y\right\rangle^{r}}{2}\right)^{\frac{1}{r}} \leq\left(\frac{\left\langle\left(A^{*} A\right)^{r} x, x\right\rangle+\left\langle\left(B^{*} B\right)^{r} y, y\right\rangle}{2}\right)^{\frac{1}{r}} \tag{2.7}
\end{equation*}
$$

for any $x, y \in H,\|x\|=\|y\|=1$.
Now, on making use of the inequalities (2.4), (2.5) and (2.7), we get the inequality:

$$
\begin{equation*}
\left|\left\langle\left(B^{*} A\right) x, y\right\rangle\right|^{r} \leq \frac{1}{2}\left[\left\langle\left(A^{*} A\right)^{r} x, x\right\rangle+\left\langle\left(B^{*} B\right)^{r} y, y\right\rangle\right] \tag{2.8}
\end{equation*}
$$

for any $x, y \in H,\|x\|=\|y\|=1$, which proves (2.1).
Taking the supremum over $x, y \in H,\|x\|=\|y\|=1$ in (2.8) and since the operators $\left(A^{*} A\right)^{r}$ and $\left(B^{*} B\right)^{r}$ are self-adjoint, we deduce the desired inequality (2.2).

Now, if we take $y=x$ in (2.1), then we get

$$
\begin{equation*}
\left|\left\langle\left(B^{*} A\right) x, x\right\rangle\right|^{r} \leq \frac{1}{2}\left[\left\langle\left[\left(A^{*} A\right)^{r}+\left(B^{*} B\right)^{r}\right] x, x\right\rangle\right] \tag{2.9}
\end{equation*}
$$

for any $x \in H,\|x\|=1$. Taking the supremum over $x \in H,\|x\|=1$ in (2.9) we get (2.3).

The sharpness of the constant follows by taking $r=1$ and $B=A$ in all inequalities (2.1), (2.2) and (2.3). The details are omitted.

Corollary 1. For any $A \in B(H)$ and $r \geq 1$ we have the vector inequalities:

$$
\begin{equation*}
|\langle A x, y\rangle|^{r} \leq \frac{1}{2}\left[\left\langle\left(A^{*} A\right)^{r} x, x\right\rangle+1\right] \tag{2.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\left\langle A^{2} x, y\right\rangle\right|^{r} \leq \frac{1}{2}\left[\left\langle\left(A^{*} A\right)^{r} x, x\right\rangle+\left\langle\left(A A^{*}\right)^{r} y, y\right\rangle\right] \tag{2.11}
\end{equation*}
$$

where $x, y \in H,\|x\|=\|y\|=1$.
In particular, we have the norm inequalities

$$
\begin{equation*}
\|A\|^{r} \leq \frac{1}{2}\left(\left\|\left(A^{*} A\right)^{r}\right\|+1\right) \tag{2.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|A^{2}\right\|^{r} \leq \frac{1}{2}\left(\left\|\left(A^{*} A\right)^{r}\right\|+\left\|\left(A A^{*}\right)^{r}\right\|\right) \tag{2.13}
\end{equation*}
$$

respectively.

We also have the numerical radius inequalities

$$
\begin{equation*}
w^{r}(A) \leq \frac{1}{2}\left\|\left(A^{*} A\right)^{r}+I\right\| \tag{2.14}
\end{equation*}
$$

and

$$
\begin{equation*}
w^{r}\left(A^{2}\right) \leq \frac{1}{2}\left\|\left(A^{*} A\right)^{r}+\left(A A^{*}\right)^{r}\right\| \tag{2.15}
\end{equation*}
$$

respectively.
A different approach is considered in the following result:
Theorem 2. For any $A, B \in B(H)$, any $\alpha \in(0,1)$ and $r \geq 1$, we have the vector inequality:

$$
\begin{equation*}
|\langle A x, B y\rangle|^{2 r} \leq \alpha\left\langle\left(A^{*} A\right)^{\frac{r}{\alpha}} x, x\right\rangle+(1-\alpha)\left\langle\left(B^{*} B\right)^{\frac{r}{1-\alpha}} y, y\right\rangle \tag{2.16}
\end{equation*}
$$

for any $x, y \in H$ with $\|x\|=\|y\|=1$.
In particular, we have the norm inequality

$$
\begin{equation*}
\left\|B^{*} A\right\|^{2 r} \leq \alpha\left\|\left(A^{*} A\right)^{\frac{r}{\alpha}}\right\|+(1-\alpha)\left\|\left(B^{*} B\right)^{\frac{r}{1-\alpha}}\right\| \tag{2.17}
\end{equation*}
$$

and the numerical radius inequality

$$
\begin{equation*}
w^{2 r}\left(B^{*} A\right) \leq\left\|\alpha\left(A^{*} A\right)^{\frac{r}{\alpha}}+(1-\alpha)\left(B^{*} B\right)^{\frac{r}{1-\alpha}}\right\| \tag{2.18}
\end{equation*}
$$

respectively.
Proof. By Schwarz's inequality, we have:

$$
\begin{align*}
\left|\left\langle\left(B^{*} A\right) x, y\right\rangle\right|^{2} & \leq\left\langle\left(A^{*} A\right) x, x\right\rangle \cdot\left\langle\left(B^{*} B\right) y, y\right\rangle \tag{2.19}\\
& =\left\langle\left[\left(A^{*} A\right)^{\frac{1}{\alpha}}\right]^{\alpha} x, x\right\rangle \cdot\left\langle\left[\left(B^{*} B\right)^{\frac{1}{1-\alpha}}\right]^{1-\alpha} y, y\right\rangle
\end{align*}
$$

for any $x, y \in H$.
It is well known that (see for instance [20]) if P is a positive operator and $q \in(0,1]$ then for any $u \in H,\|u\|=1$, we have

$$
\begin{equation*}
\left\langle P^{q} u, u\right\rangle \leq\langle P u, u\rangle^{q} \tag{2.20}
\end{equation*}
$$

Applying this property to the positive operators $\left(A^{*} A\right)^{\frac{1}{\alpha}}$ and $\left(B^{*} B\right)^{\frac{1}{1-\alpha}}(\alpha \in(0,1))$, we have

$$
\begin{align*}
&\left\langle\left[\left(A^{*} A\right)^{\frac{1}{\alpha}}\right]^{\alpha} x, x\right\rangle \cdot\left\langle\left[\left(B^{*} B\right)^{\frac{1}{1-\alpha}}\right]^{1-\alpha} y, y\right\rangle \\
& \leq\left\langle\left(A^{*} A\right)^{\frac{1}{\alpha}} x, x\right\rangle^{\alpha} \cdot\left\langle\left(B^{*} B\right)^{\frac{1}{1-\alpha}} y, y\right\rangle^{1-\alpha} \tag{2.21}
\end{align*}
$$

for any $x, y \in H,\|x\|=\|y\|=1$.
Now, utilising the weighted arithmetic mean - geometric mean inequality, i.e., $a^{\alpha} b^{1-\alpha} \leq \alpha a+(1-\alpha) b, \alpha \in(0,1), a, b \geq 0$, we get

$$
\begin{align*}
& \left\langle\left(A^{*} A\right)^{\frac{1}{\alpha}} x, x\right\rangle^{\alpha} \cdot\left\langle\left(B^{*} B\right)^{\frac{1}{1-\alpha}} y, y\right\rangle^{1-\alpha} \\
& \quad \leq \alpha\left\langle\left(A^{*} A\right)^{\frac{1}{\alpha}} x, x\right\rangle+(1-\alpha)\left\langle\left(B^{*} B\right)^{\frac{1}{1-\alpha}} y, y\right\rangle \tag{2.22}
\end{align*}
$$

for any $x, y \in H,\|x\|=\|y\|=1$.
Moreover, by the elementary inequality following from the convexity of the function $f(t)=t^{r}, r \geq 1$, namely

$$
\alpha a+(1-\alpha) b \leq\left(\alpha a^{r}+(1-\alpha) b^{r}\right)^{\frac{1}{r}}, \quad \alpha \in(0,1), a, b \geq 0
$$

we deduce that

$$
\begin{align*}
& \alpha\left\langle\left(A^{*} A\right)^{\frac{1}{\alpha}} x, x\right\rangle+(1-\alpha)\left\langle\left(B^{*} B\right)^{\frac{1}{1-\alpha}} y, y\right\rangle \tag{2.23}\\
& \leq\left[\alpha\left\langle\left(A^{*} A\right)^{\frac{1}{\alpha}} x, x\right\rangle^{r}+(1-\alpha)\left\langle\left(B^{*} B\right)^{\frac{1}{1-\alpha}} y, y\right\rangle^{r}\right]^{\frac{1}{r}} \\
& \leq\left[\alpha\left\langle\left(A^{*} A\right)^{\frac{r}{\alpha}} x, x\right\rangle+(1-\alpha)\left\langle\left(B^{*} B\right)^{\frac{r}{1-\alpha}} y, y\right\rangle\right]^{\frac{1}{r}}
\end{align*}
$$

for any $x, y \in H,\|x\|=\|y\|=1$, where, for the last inequality we used the inequality (2.6) for the positive operators $\left(A^{*} A\right)^{\frac{1}{\alpha}}$ and $\left(B^{*} B\right)^{\frac{1}{1-\alpha}}$.

Now, on making use of the inequalities (2.19), (2.21), (2.22) and (2.23), we get

$$
\begin{equation*}
\left|\left\langle\left(B^{*} A\right) x, y\right\rangle\right|^{2 r} \leq \alpha\left\langle\left(A^{*} A\right)^{\frac{r}{\alpha}} x, x\right\rangle+(1-\alpha)\left\langle\left(B^{*} B\right)^{\frac{r}{1-\alpha}} y, y\right\rangle \tag{2.24}
\end{equation*}
$$

for any $x, y \in H,\|x\|=\|y\|=1$, and the inequality (2.16) is proved.
Taking the supremum over $x, y \in H,\|x\|=\|y\|=1$ in (2.24) produces the desired inequality (2.17).

The numerical radius inequality follows from (2.24) written for $y=x$. The details are omitted.

The following particular instances are of interest:
Corollary 2. For any $A \in B(H)$ and $\alpha \in(0,1), r \geq 1$, we have the vector inequalities

$$
\begin{gather*}
|\langle A x, y\rangle|^{2 r} \leq \alpha\left\langle\left(A^{*} A\right)^{\frac{r}{\alpha}} x, x\right\rangle+1-\alpha, \tag{2.25}\\
\left|\left\langle A^{2} x, y\right\rangle\right|^{2 r} \leq \alpha\left\langle\left(A^{*} A\right)^{\frac{r}{\alpha}} x, x\right\rangle+(1-\alpha)\left\langle\left(A A^{*}\right)^{\frac{r}{1-\alpha}} y, y\right\rangle \tag{2.26}
\end{gather*}
$$

and

$$
\begin{equation*}
|\langle A x, A y\rangle|^{2 r} \leq \alpha\left\langle\left(A^{*} A\right)^{\frac{r}{\alpha}} x, x\right\rangle+(1-\alpha)\left\langle\left(A^{*} A\right)^{\frac{r}{1-\alpha}} y, y\right\rangle \tag{2.27}
\end{equation*}
$$

respectively, where $x, y \in H,\|x\|=\|y\|=1$.

We have the norm inequalities

$$
\begin{equation*}
\|A\|^{2 r} \leq \alpha\left\|\left(A^{*} A\right)^{\frac{r}{\alpha}}\right\|+1-\alpha \tag{2.28}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|A^{2}\right\|^{2 r} \leq \alpha\left\|\left(A^{*} A\right)^{\frac{r}{\alpha}}\right\|+(1-\alpha)\left\|\left(A A^{*}\right)^{\frac{r}{1-\alpha}}\right\| \tag{2.29}
\end{equation*}
$$

respectively.
We have the numerical radius inequalities

$$
\begin{equation*}
w^{2 r}(A) \leq\left\|\alpha\left(A^{*} A\right)^{\frac{r}{\alpha}}+(1-\alpha) I\right\| \tag{2.30}
\end{equation*}
$$

and

$$
\begin{equation*}
w^{2 r}\left(A^{2}\right) \leq\left\|\alpha\left(A^{*} A\right)^{\frac{r}{\alpha}}+(1-\alpha)\left(A A^{*}\right)^{\frac{r}{1-\alpha}}\right\| \tag{2.31}
\end{equation*}
$$

respectively.
Moreover, we have the norm inequality

$$
\begin{equation*}
\|A\|^{4 r} \leq\left\|\alpha\left(A^{*} A\right)^{\frac{r}{\alpha}}+(1-\alpha)\left(A^{*} A\right)^{\frac{r}{1-\alpha}}\right\| \tag{2.32}
\end{equation*}
$$

3 Vector Inequalities for the Sum of Two Products

The following result concerning four operators may be stated:
Theorem 3. For any $A, B, C, D \in B(H)$ and $r, s \geq 1$ we have:

$$
\begin{align*}
& \left|\left\langle\left[\frac{B^{*} A+D^{*} C}{2}\right] x, y\right\rangle\right|^{2} \\
& \quad \leq\left\langle\left[\frac{\left(A^{*} A\right)^{r}+\left(C^{*} C\right)^{r}}{2}\right] x, x\right\rangle^{\frac{1}{r}} \cdot\left\langle\left[\frac{\left(B^{*} B\right)^{s}+\left(D^{*} D\right)^{s}}{2}\right] y, y\right\rangle^{\frac{1}{s}} \tag{3.1}
\end{align*}
$$

for any $x, y \in H$ with $\|x\|=\|y\|=1$.
Moreover, we have the norm inequality

$$
\begin{equation*}
\left\|\frac{B^{*} A+D^{*} C}{2}\right\|^{2} \leq\left\|\frac{\left(A^{*} A\right)^{r}+\left(C^{*} C\right)^{r}}{2}\right\|^{\frac{1}{r}} \cdot\left\|\frac{\left(B^{*} B\right)^{s}+\left(D^{*} D\right)^{s}}{2}\right\|^{\frac{1}{s}} \tag{3.2}
\end{equation*}
$$

Proof. By the Schwarz inequality in the Hilbert space ($H ;\langle.,$.$\rangle) we have:$

$$
\begin{align*}
& \left|\left\langle\left(B^{*} A+D^{*} C\right) x, y\right\rangle\right|^{2} \tag{3.3}\\
& =\left|\left\langle B^{*} A x, y\right\rangle+\left\langle D^{*} C x, y\right\rangle\right|^{2} \\
& \leq\left[\left|\left\langle B^{*} A x, y\right\rangle\right|+\left|\left\langle D^{*} C x, y\right\rangle\right|\right]^{2} \\
& \leq\left[\left\langle A^{*} A x, x\right\rangle^{\frac{1}{2}} \cdot\left\langle B^{*} B y, y\right\rangle^{\frac{1}{2}}+\left\langle C^{*} C x, x\right\rangle^{\frac{1}{2}} \cdot\left\langle D^{*} D y, y\right\rangle^{\frac{1}{2}}\right]^{2}
\end{align*}
$$

for any $x, y \in H$.
Now, on utilising the elementary inequality:

$$
(a b+c d)^{2} \leq\left(a^{2}+c^{2}\right)\left(b^{2}+d^{2}\right), \quad a, b, c, d \in \mathbb{R}
$$

we then conclude that:

$$
\begin{align*}
& \left\langle A^{*} A x, x\right\rangle^{\frac{1}{2}} \cdot\left\langle B^{*} B y, y\right\rangle^{\frac{1}{2}}+\left\langle C^{*} C x, x\right\rangle^{\frac{1}{2}} \cdot\left\langle D^{*} D y, y\right\rangle^{\frac{1}{2}} \\
& \leq\left(\left\langle A^{*} A x, x\right\rangle+\left\langle C^{*} C x, x\right\rangle\right) \cdot\left(\left\langle B^{*} B y, y\right\rangle+\left\langle D^{*} D y, y\right\rangle\right), \tag{3.4}
\end{align*}
$$

for any $x, y \in H$.
Now, on making use of a similar argument to the one in the proof of Theorem 1 , we have for $r, s \geq 1$ that

$$
\begin{align*}
& \left(\left\langle A^{*} A x, x\right\rangle+\left\langle C^{*} C x, x\right\rangle\right) \cdot\left(\left\langle B^{*} B y, y\right\rangle+\left\langle D^{*} D y, y\right\rangle\right) \\
& \quad \leq 4 \cdot\left\langle\left[\frac{\left(A^{*} A\right)^{r}+\left(C^{*} C\right)^{r}}{2}\right] x, x\right\rangle^{\frac{1}{r}} \cdot\left\langle\left[\frac{\left(B^{*} B\right)^{s}+\left(D^{*} D\right)^{s}}{2}\right] y, y\right\rangle^{\frac{1}{s}} \tag{3.5}
\end{align*}
$$

for any $x, y \in H$ with $\|x\|=\|y\|=1$.
Consequently, by (3.3) - (3.5) we have:

$$
\begin{align*}
& \left|\left\langle\left[\frac{B^{*} A+D^{*} C}{2}\right] x, y\right\rangle\right|^{2} \\
& \quad \leq\left\langle\left[\frac{\left(A^{*} A\right)^{r}+\left(C^{*} C\right)^{r}}{2}\right] x, x\right\rangle^{\frac{1}{r}} \cdot\left\langle\left[\frac{\left(B^{*} B\right)^{s}+\left(D^{*} D\right)^{s}}{2}\right] y, y\right\rangle^{\frac{1}{s}} \tag{3.6}
\end{align*}
$$

for any $x, y \in H$ with $\|x\|=\|y\|=1$, which provides the desired result (3.1).
Taking the supremum over $x, y \in H$ with $\|x\|=\|y\|=1$ in (3.6) we deduce the desired inequality (3.2).

Remark 1. If we make $y=x$ in (3.6) and take the supremum over $\|x\|=1$, then we get the inequality

$$
w^{2}\left(\frac{B^{*} A+D^{*} C}{2}\right) \leq\left\|\frac{\left(A^{*} A\right)^{r}+\left(C^{*} C\right)^{r}}{2}\right\|^{\frac{1}{r}} \cdot\left\|\frac{\left(B^{*} B\right)^{s}+\left(D^{*} D\right)^{s}}{2}\right\|^{\frac{1}{s}}
$$

which is not as good as (3.2) since we always have

$$
w^{2}\left(\frac{B^{*} A+D^{*} C}{2}\right) \leq\left\|\frac{B^{*} A+D^{*} C}{2}\right\|^{2}
$$

Remark 2. If $s=r$, then the inequality (3.1) becomes :

$$
\begin{align*}
& \left|\left\langle\left[\frac{B^{*} A+D^{*} C}{2}\right] x, y\right\rangle\right|^{2 r} \\
& \qquad \leq\left\langle\left[\frac{\left(A^{*} A\right)^{r}+\left(C^{*} C\right)^{r}}{2}\right] x, x\right\rangle \cdot\left\langle\left[\frac{\left(B^{*} B\right)^{r}+\left(D^{*} D\right)^{r}}{2}\right] y, y\right\rangle \tag{3.7}
\end{align*}
$$

for any $x, y \in H$ with $\|x\|=\|y\|=1$ while (3.2) is equivalent with

$$
\begin{equation*}
\left\|\frac{B^{*} A+D^{*} C}{2}\right\|^{2 r} \leq\left\|\frac{\left(A^{*} A\right)^{r}+\left(C^{*} C\right)^{r}}{2}\right\| \cdot\left\|\frac{\left(B^{*} B\right)^{r}+\left(D^{*} D\right)^{r}}{2}\right\| \tag{3.8}
\end{equation*}
$$

Corollary 3. For any $A, C \in B(H)$ we have:

$$
\begin{equation*}
\left|\left\langle\left(\frac{A+C}{2}\right) x, y\right\rangle\right|^{2 r} \leq\left\langle\left[\frac{\left(A^{*} A\right)^{r}+\left(C^{*} C\right)^{r}}{2}\right] x, x\right\rangle \tag{3.9}
\end{equation*}
$$

for any $x, y \in H$ with $\|x\|=\|y\|=1$. In particular, we have the norm inequality

$$
\begin{equation*}
\left\|\frac{A+C}{2}\right\|^{2 r} \leq\left\|\frac{\left(A^{*} A\right)^{r}+\left(C^{*} C\right)^{r}}{2}\right\| \tag{3.10}
\end{equation*}
$$

where $r \geq 1$.
The result is obvious by choosing $B=D=I$ in Theorem 3 .
Corollary 4. For any $A, C \in B(H)$ we have:

$$
\begin{align*}
& \left|\left\langle\left(\frac{A^{2}+C^{2}}{2}\right) x, y\right\rangle\right|^{2} \\
& \quad \leq\left\langle\left[\frac{\left(A^{*} A\right)^{r}+\left(C^{*} C\right)^{r}}{2}\right] x, x\right\rangle^{\frac{1}{r}} \cdot\left\langle\left[\frac{\left(A A^{*}\right)^{s}+\left(C C^{*}\right)^{s}}{2}\right] y, y\right\rangle^{\frac{1}{s}} \tag{3.11}
\end{align*}
$$

for any $x, y \in H$ with $\|x\|=\|y\|=1$. Also, we have the norm inequality

$$
\begin{equation*}
\left\|\frac{A^{2}+C^{2}}{2}\right\|^{2} \leq\left\|\frac{\left(A^{*} A\right)^{r}+\left(C^{*} C\right)^{r}}{2}\right\|^{\frac{1}{r}} \cdot\left\|\frac{\left(A A^{*}\right)^{s}+\left(C C^{*}\right)^{s}}{2}\right\|^{\frac{1}{s}} \tag{3.12}
\end{equation*}
$$

for all $r, s \geq 1$.
If $s=r$, then we have, in particular,

$$
\begin{align*}
& \left|\left\langle\left(\frac{A^{2}+C^{2}}{2}\right) x, y\right\rangle\right|^{2 r} \\
& \leq\left\langle\left[\frac{\left(A^{*} A\right)^{r}+\left(C^{*} C\right)^{r}}{2}\right] x, x\right\rangle \cdot\left\langle\left[\frac{\left(A A^{*}\right)^{r}+\left(C C^{*}\right)^{r}}{2}\right] y, y\right\rangle \tag{3.13}
\end{align*}
$$

for any $x, y \in H$ with $\|x\|=\|y\|=1$ and the norm inequality

$$
\begin{equation*}
\left\|\frac{A^{2}+C^{2}}{2}\right\|^{2 r} \leq\left\|\frac{\left(A^{*} A\right)^{r}+\left(C^{*} C\right)^{r}}{2}\right\| \cdot\left\|\frac{\left(A A^{*}\right)^{r}+\left(C C^{*}\right)^{r}}{2}\right\| \tag{3.14}
\end{equation*}
$$

for $r \geq 1$.

The result is obvious by choosing $B=A^{*}$ and $D=C^{*}$ in Theorem 3.
Another particular result of interest is the following one:
Corollary 5. For any $A, B \in B(H)$ we have:

$$
\begin{align*}
& \left|\left\langle\left[\frac{B^{*} A+A^{*} B}{2}\right] x, y\right\rangle\right|^{2} \\
& \quad \leq\left\langle\left[\frac{\left(A^{*} A\right)^{r}+\left(B^{*} B\right)^{r}}{2}\right] x, x\right\rangle^{\frac{1}{r}} \cdot\left\langle\left[\frac{\left(A^{*} A\right)^{s}+\left(B^{*} B\right)^{s}}{2}\right] y, y\right\rangle^{\frac{1}{s}} \tag{3.15}
\end{align*}
$$

for any $x, y \in H$ with $\|x\|=\|y\|=1$.
Moreover, we have the norm inequality

$$
\begin{equation*}
\left\|\frac{B^{*} A+A^{*} B}{2}\right\|^{2} \leq\left\|\frac{\left(A^{*} A\right)^{r}+\left(B^{*} B\right)^{r}}{2}\right\|^{\frac{1}{r}} \cdot\left\|\frac{\left(A^{*} A\right)^{s}+\left(B^{*} B\right)^{s}}{2}\right\|^{\frac{1}{s}} \tag{3.16}
\end{equation*}
$$

for any $r, s \geq 1$.
In particular we have

$$
\begin{align*}
& \left|\left\langle\left[\frac{B^{*} A+A^{*} B}{2}\right] x, y\right\rangle\right|^{2 r} \\
& \leq\left\langle\left[\frac{\left(A^{*} A\right)^{r}+\left(B^{*} B\right)^{r}}{2}\right] x, x\right\rangle\left\langle\left[\frac{\left(A^{*} A\right)^{r}+\left(B^{*} B\right)^{r}}{2}\right] y, y\right\rangle \tag{3.17}
\end{align*}
$$

for any $x, y \in H$ with $\|x\|=\|y\|=1$ and

$$
\begin{equation*}
\left\|\frac{B^{*} A+A^{*} B}{2}\right\|^{r} \leq\left\|\frac{\left(A^{*} A\right)^{r}+\left(B^{*} B\right)^{r}}{2}\right\| \tag{3.18}
\end{equation*}
$$

where $r \geq 1$.
The proof is obvious by choosing $D=A$ and $C=B$ in Theorem 3 . Another particular case that might be of interest is the following one.

Corollary 6. For any $A, D \in B(H)$ we have:

$$
\begin{equation*}
\left|\left\langle\left(\frac{A+D}{2}\right) x, y\right\rangle\right|^{2} \leq\left\langle\left[\frac{\left(A^{*} A\right)^{r}+I}{2}\right] x, x\right\rangle^{\frac{1}{r}} \cdot\left\langle\left[\frac{\left(D D^{*}\right)^{s}+I}{2}\right] y, y\right\rangle^{\frac{1}{s}} \tag{3.19}
\end{equation*}
$$

for any $x, y \in H$ with $\|x\|=\|y\|=1$ and the norm inequality

$$
\begin{equation*}
\left\|\frac{A+D}{2}\right\|^{2} \leq\left\|\frac{\left(A^{*} A\right)^{r}+I}{2}\right\|^{\frac{1}{r}} \cdot\left\|\frac{\left(D D^{*}\right)^{s}+I}{2}\right\|^{\frac{1}{s}} \tag{3.20}
\end{equation*}
$$

where $r, s \geq 1$.

In particular we have

$$
\begin{equation*}
|\langle A x, y\rangle|^{2} \leq\left\langle\left[\frac{\left(A^{*} A\right)^{r}+I}{2}\right] x, x\right\rangle^{\frac{1}{r}} \cdot\left\langle\left[\frac{\left(A A^{*}\right)^{s}+I}{2}\right] y, y\right\rangle^{\frac{1}{s}} \tag{3.21}
\end{equation*}
$$

for any $x, y \in H$ with $\|x\|=\|y\|=1$ and the norm inequality

$$
\begin{equation*}
\|A\|^{2} \leq\left\|\frac{\left(A^{*} A\right)^{r}+I}{2}\right\|^{\frac{1}{r}} \cdot\left\|\frac{\left(A A^{*}\right)^{s}+I}{2}\right\|^{\frac{1}{s}} \tag{3.22}
\end{equation*}
$$

Moreover, for any $r \geq 1$ we have

$$
\begin{equation*}
|\langle A x, y\rangle|^{2 r} \leq\left\langle\left[\frac{\left(A^{*} A\right)^{r}+I}{2}\right] x, x\right\rangle \cdot\left\langle\left[\frac{\left(A A^{*}\right)^{r}+I}{2}\right] y, y\right\rangle \tag{3.23}
\end{equation*}
$$

for any $x, y \in H$ with $\|x\|=\|y\|=1$ and

$$
\begin{equation*}
\|A\|^{2 r} \leq\left\|\frac{\left(A^{*} A\right)^{r}+I}{2}\right\| \cdot\left\|\frac{\left(A A^{*}\right)^{r}+I}{2}\right\| \tag{3.24}
\end{equation*}
$$

The proof of (3.19) is obvious by the Theorem 3 on choosing $B=I, C=I$ and writing the inequality for D^{*} instead of D. The details are omitted.

Remark 3. If $T \in B(H)$ and $T=A+i C$, i.e., A and C are its Cartesian decomposition, then we get from (3.9)

$$
\begin{equation*}
|\langle T x, y\rangle|^{2 r} \leq 2^{2 r-1}\left\langle\left[\left(A^{*} A\right)^{r}+\left(C^{*} C\right)^{r}\right] x, x\right\rangle \tag{3.25}
\end{equation*}
$$

for any $x, y \in H$ with $\|x\|=\|y\|=1$. In particular, we have the norm inequality

$$
\begin{equation*}
\|T\|^{2 r} \leq 2^{2 r-1}\left\|\left(A^{*} A\right)^{r}+\left(C^{*} C\right)^{r}\right\| \tag{3.26}
\end{equation*}
$$

where $r \geq 1$.
Now, if we use the inequality (3.19) for T, A and B, then we get:

$$
\begin{equation*}
|\langle T x, y\rangle|^{2} \leq 2^{2-\frac{1}{r}-\frac{1}{s}}\left\langle\left[\left(A^{*} A\right)^{r}+I\right] x, x\right\rangle^{\frac{1}{r}} \cdot\left\langle\left[\left(C C^{*}\right)^{s}+I\right] y, y\right\rangle^{\frac{1}{s}} \tag{3.27}
\end{equation*}
$$

for any $x, y \in H$ with $\|x\|=\|y\|=1$ and the norm inequality

$$
\begin{equation*}
\|T\|^{2} \leq 2^{2-\frac{1}{r}-\frac{1}{s}}\left\|\left(A^{*} A\right)^{r}+I\right\|^{\frac{1}{r}} \cdot\left\|\left(C C^{*}\right)^{s}+I\right\|^{\frac{1}{s}} \tag{3.28}
\end{equation*}
$$

where $r, s \geq 1$. In particular, we have

$$
\begin{equation*}
|\langle T x, y\rangle|^{2 r} \leq 2^{2 r-2}\left\langle\left[\left(A^{*} A\right)^{r}+I\right] x, x\right\rangle \cdot\left\langle\left[\left(C C^{*}\right)^{r}+I\right] y, y\right\rangle \tag{3.29}
\end{equation*}
$$

for any $x, y \in H$ with $\|x\|=\|y\|=1$ and the norm inequality

$$
\begin{equation*}
\|T\|^{2 r} \leq 2^{2 r-2}\left\|\left(A^{*} A\right)^{r}+I\right\| \cdot\left\|\left(C C^{*}\right)^{r}+I\right\| \tag{3.30}
\end{equation*}
$$

for any $r \geq 1$.

In terms of the Euclidean radius of two operators $w_{e}(\cdot, \cdot)$, where, as in [2],

$$
w_{e}(T, U):=\sup _{\|x\|=1}\left(|\langle T x, x\rangle|^{2}+|\langle U x, x\rangle|^{2}\right)^{\frac{1}{2}}
$$

we have the following result as well.
Theorem 4. For any $A, B, C, D \in B(H)$ and $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$, we have the vector inequality:

$$
\begin{align*}
|\langle A x, B y\rangle|^{2} & +|\langle C x, D y\rangle|^{2} \\
& \leq\left\langle\left[\left(A^{*} A\right)^{p}+\left(C^{*} C\right)^{p}\right] x, x\right\rangle^{1 / p} \cdot\left\langle\left[\left(B^{*} B\right)^{q}+\left(D^{*} D\right)^{q}\right] y, y\right\rangle^{1 / q} \tag{3.31}
\end{align*}
$$

for each $x, y \in H$ with $\|x\|=\|y\|=1$.
In particular, we have the inequality for the Euclidean radius:

$$
\begin{equation*}
w_{e}^{2}\left(B^{*} A, D^{*} C\right) \leq\left\|\left(A^{*} A\right)^{p}+\left(C^{*} C\right)^{p}\right\|^{1 / p} \cdot\left\|\left(B^{*} B\right)^{q}+\left(D^{*} D\right)^{q}\right\|^{1 / q} \tag{3.32}
\end{equation*}
$$

Proof. On utilising the elementary inequality

$$
a c+b d \leq\left(a^{p}+b^{p}\right)^{1 / p} \cdot\left(c^{q}+d^{q}\right)^{1 / q}, a, b, c, d \geq 0 \text { and } p, q>1 \text { with } \frac{1}{p}+\frac{1}{q}=1
$$

then for any $x, y \in H,\|x\|=\|y\|=1$ we have the inequalities:

$$
\begin{aligned}
& \left|\left\langle B^{*} A x, y\right\rangle\right|^{2}+\left|\left\langle D^{*} C x, y\right\rangle\right|^{2} \\
& \leq\left\langle A^{*} A x, x\right\rangle \cdot\left\langle B^{*} B y, y\right\rangle+\left\langle C^{*} C x, x\right\rangle \cdot\left\langle D^{*} D y, y\right\rangle \\
& \leq\left(\left\langle A^{*} A x, x\right\rangle^{p}+\left\langle C^{*} C x, x\right\rangle^{p}\right)^{1 / p} \cdot\left(\left\langle B^{*} B y, y\right\rangle^{q}+\left\langle D^{*} D y, y\right\rangle^{q}\right)^{1 / q} \\
& \leq\left(\left\langle\left(A^{*} A\right)^{p} x, x\right\rangle+\left\langle\left(C^{*} C\right)^{p} x, x\right\rangle\right)^{1 / p} \cdot\left(\left\langle\left(B^{*} B\right)^{q} y, y\right\rangle+\left\langle\left(D^{*} D\right)^{q} y, y\right\rangle\right)^{1 / q} \\
& =\left\langle\left[\left(A^{*} A\right)^{p}+\left(C^{*} C\right)^{p}\right] x, x\right\rangle^{1 / p} \cdot\left\langle\left[\left(B^{*} B\right)^{q}+\left(D^{*} D\right)^{q}\right] y, y\right\rangle^{1 / q}
\end{aligned}
$$

For the second inequality, let us make the choice $y=x$ to get

$$
\begin{aligned}
& \left|\left\langle B^{*} A x, x\right\rangle\right|^{2}+\left|\left\langle D^{*} C x, x\right\rangle\right|^{2} \\
\leq & \left\langle\left[\left(A^{*} A\right)^{p}+\left(C^{*} C\right)^{p}\right] x, x\right\rangle^{1 / p} \cdot\left\langle\left[\left(B^{*} B\right)^{q}+\left(D^{*} D\right)^{q}\right] x, x\right\rangle^{1 / q}
\end{aligned}
$$

for any $x \in H,\|x\|=1$. Taking the supremum over $x \in H,\|x\|=1$ and noticing that the operators $\left(A^{*} A\right)^{p}+\left(C^{*} C\right)^{p}$ and $\left(B^{*} B\right)^{q}+\left(D^{*} D\right)^{q}$ are self-adjoint, we deduce the desired inequality (3.32).

The following particular case is of interest.
Corollary 7. For any $A, C \in B(H)$ and $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$, we have:

$$
\begin{equation*}
|\langle A x, y\rangle|^{2}+|\langle C x, y\rangle|^{2} \leq 2^{1 / q}\left\langle\left[\left(A^{*} A\right)^{p}+\left(C^{*} C\right)^{p}\right] x, x\right\rangle^{1 / p} \tag{3.33}
\end{equation*}
$$

for each $x, y \in H$, with $\|x\|=\|y\|=1$. In particular,

$$
w_{e}^{2}(A, C) \leq 2^{1 / q}\left\|\left(A^{*} A\right)^{p}+\left(C^{*} C\right)^{p}\right\|^{1 / p}
$$

The proof follows from (3.31) and (3.32) for $B=D=I$.
Corollary 8. For any $A, D \in B(H)$ and $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$, we have:

$$
\begin{equation*}
|\langle A x, y\rangle|^{2}+|\langle D x, y\rangle|^{2} \leq\left\langle\left[\left(A^{*} A\right)^{p}+I\right] x, x\right\rangle^{1 / p} \cdot\left\langle\left[\left(D D^{*}\right)^{q}+I\right] y, y\right\rangle^{1 / q} \tag{3.34}
\end{equation*}
$$

for each $x, y \in H$, with $\|x\|=\|y\|=1$. In particular,

$$
w_{e}^{2}(A, D) \leq\left\|\left(A^{*} A\right)^{p}+I\right\|^{1 / p} \cdot\left\|\left(D D^{*}\right)^{q}+I\right\|^{1 / q}
$$

4 Inequalities for the Commutator

The commutator of two bounded linear operators T and U is the operator $T U-U T$. For the usual norm $\|\cdot\|$ and for any two operators T and U, by using the triangle inequality and the submultiplicity of the norm, we can state the following inequality:

$$
\begin{equation*}
\|T U-U T\| \leq 2\|T\|\|U\| \tag{4.1}
\end{equation*}
$$

In [11], the following result has been obtained as well

$$
\begin{equation*}
\|T U-U T\| \leq 2 \min \{\|T\|,\|U\|\} \min \{\|T-U\|,\|T+U\|\} \tag{4.2}
\end{equation*}
$$

By utilising Theorem 3 we can state the following result for the numerical radius of the commutator:

Proposition 1. For any $T, U \in B(H)$ and $r, s \geq 1$ we have the vector inequality

$$
\begin{align*}
\mid\langle(T U- & U T) x, y\rangle\left.\right|^{2} \\
& \leq 2^{2-\frac{1}{r}-\frac{1}{s}}\left\langle\left[\left(U^{*} U\right)^{r}+\left(T^{*} T\right)^{r}\right] x, x\right\rangle^{\frac{1}{r}} \cdot\left\langle\left[\left(U U^{*}\right)^{s}+\left(T T^{*}\right)^{s}\right] y, y\right\rangle^{\frac{1}{s}} \tag{4.3}
\end{align*}
$$

for any $x, y \in H$ with $\|x\|=\|y\|=1$. Moreover, we have the norm inequality

$$
\begin{equation*}
\|T U-U T\|^{2} \leq 2^{2-\frac{1}{r}-\frac{1}{s}}\left\|\left(U^{*} U\right)^{r}+\left(T^{*} T\right)^{r}\right\|^{\frac{1}{r}} \cdot\left\|\left(U U^{*}\right)^{s}+\left(T T^{*}\right)^{s}\right\|^{\frac{1}{s}} \tag{4.4}
\end{equation*}
$$

In particular, we have

$$
\begin{align*}
& |\langle(T U-U T) x, y\rangle|^{2 r} \\
& \quad \leq 2^{2 r-2}\left\langle\left[\left(U^{*} U\right)^{r}+\left(T^{*} T\right)^{r}\right] x, x\right\rangle \cdot\left\langle\left[\left(U U^{*}\right)^{r}+\left(T T^{*}\right)^{r}\right] y, y\right\rangle \tag{4.5}
\end{align*}
$$

for any $x, y \in H$ with $\|x\|=\|y\|=1$ and the norm inequality

$$
\begin{equation*}
\|T U-U T\|^{2 r} \leq 2^{2 r-2}\left\|\left(U^{*} U\right)^{r}+\left(T^{*} T\right)^{r}\right\| \cdot\left\|\left(U U^{*}\right)^{r}+\left(T T^{*}\right)^{r}\right\| \tag{4.6}
\end{equation*}
$$

for any $r \geq 1$.
Proof. Follows by Theorem 3 on choosing $B=T^{*}, A=U, D=-U^{*}$ and $C=T$.

Now, for $U=T^{*}$ we can state the following corollary.
Corollary 9. For any $T \in B(H)$ we have the vector inequality for the self commutator:

$$
\begin{align*}
\mid\left\langle\left(T T^{*}-\right.\right. & \left.\left.T^{*} T\right) x, y\right\rangle\left.\right|^{2} \\
& \leq 2^{2-\frac{1}{r}-\frac{1}{s}}\left\langle\left[\left(T T^{*}\right)^{r}+\left(T^{*} T\right)^{r}\right] x, x\right\rangle^{\frac{1}{r}} \cdot\left\langle\left[\left(T T^{*}\right)^{s}+\left(T^{*} T\right)^{s}\right] y, y\right\rangle^{\frac{1}{s}} \tag{4.7}
\end{align*}
$$

for any $x, y \in H$ with $\|x\|=\|y\|=1$. Moreover, we have the norm inequality

$$
\begin{equation*}
\left\|T T^{*}-T^{*} T\right\|^{2} \leq 2^{2-\frac{1}{r}-\frac{1}{s}}\left\|\left(T T^{*}\right)^{r}+\left(T^{*} T\right)^{r}\right\|^{\frac{1}{r}} \cdot\left\|\left(T T^{*}\right)^{s}+\left(T^{*} T\right)^{s}\right\|^{\frac{1}{s}} \tag{4.8}
\end{equation*}
$$

In particular we have

$$
\begin{align*}
\mid\left\langle\left(T T^{*}-T^{*} T\right)\right. & x, y\rangle\left.\right|^{2 r} \\
& \leq 2^{2 r-2}\left\langle\left[\left(T T^{*}\right)^{r}+\left(T^{*} T\right)^{r}\right] x, x\right\rangle \cdot\left\langle\left[\left(T T^{*}\right)^{r}+\left(T^{*} T\right)^{r}\right] y, y\right\rangle \tag{4.9}
\end{align*}
$$

for any $x, y \in H$ with $\|x\|=\|y\|=1$ and the norm inequality

$$
\begin{equation*}
\left\|T T^{*}-T^{*} T\right\|^{r} \leq 2^{r-1}\left\|\left(T T^{*}\right)^{r}+\left(T^{*} T\right)^{r}\right\| \tag{4.10}
\end{equation*}
$$

for any $r \geq 1$.

References

[1] J. Dixmier, Sur une inegalité de E. Heinz, Math. Ann., 126(1953), 75-78.
[2] S.S. Dragomir, Some inequalities for the Euclidean operator radius of two operators in Hilbert spaces. Linear Algebra Appl. 419 (2006), no. 1, 256-264.
[3] S.S. Dragomir, Reverse inequalities for the numerical radius of linear operators in Hilbert spaces. Bull. Austral. Math. Soc. 73 (2006), no. 2, 255-262.
[4] S.S. Dragomir, A survey of some recent inequalities for the norm and numerical radius of operators in Hilbert spaces. Banach J. Math. Anal. 1 (2007), no. 2, 154-175..
[5] S.S. Dragomir, Inequalities for the norm and the numerical radius of linear operators in Hilbert spaces. Demonstratio Math. 40 (2007), no. 2, 411-417.
[6] S.S. Dragomir, Norm and numerical radius inequalities for sums of bounded linear operators in Hilbert spaces. Facta Univ. Ser. Math. Inform. 22 (2007), no. 1, 61-75.
[7] S.S. Dragomir, Inequalities for some functionals associated with bounded linear operators in Hilbert spaces. Publ. Res. Inst. Math. Sci. 43 (2007), No. 4, 10951110.
[8] S.S. Dragomir, The hypo-Euclidean norm of an n-tuple of vectors in inner product spaces and applications. J. Inequal. Pure Appl. Math. 8 (2007), no. 2, Article 52, 22 pp .
[9] S.S. Dragomir, New inequalities of the Kantorovich type for bounded linear operators in Hilbert spaces. Linear Algebra Appl. 428 (2008), no. 11-12, 27502760.
[10] S.S. Dragomir, Inequalities for the numerical radius, the norm and the maximum of the real part of bounded linear operators in Hilbert spaces. Linear Algebra Appl. 428 (2008), no. 11-12, 2980-2994.
[11] S.S. Dragomir, Some inequalities for commutators of bounded linear operators in Hilbert spaces, Preprint, RGMIA Res. Rep. Coll., 11(2008), No. 1, Article 7, [Online http://www.staff.vu.edu.au/rgmia/v11n1.asp].
[12] T. Furuta, A simplified proof of Heinz inequality and scrutiny of its equality, Proc. Amer. Math. Soc., 97(1986), 751-753.
[13] K.E. Gustafson and D.K.M. Rao, Numerical Range, Springer-Verlag, New York, Inc., 1997.
[14] P.R. Halmos, A Hilbert Space Problem Book, Springer-Verlag, New York, Heidelberg, Berlin, Second edition, 1982.
[15] M. El-Haddad, and F. Kittaneh, Numerical radius inequalities for Hilbert space operators. II. Studia Math. 182 (2007), no. 2, 133-140.
[16] E. Heinz, Beiträge zur Störungstheorie der Spektralzerlegung. (German) Math. Ann. 123, (1951). 415-438
[17] E. Heinz, On an inequality for linear operators in Hilbert space, Report on Operator Theory and Group Representation, Publ. No. 387, Nat. Acad. Sci.Nat. Res. Council, Washington DC, 1955, pp. 27-29.
[18] T. Kato, Notes on some inequalities for linear operators, Math. Ann., 125(1952), 208-212.
[19] F. Kittaneh, Notes on some inequalities for Hilbert space operators, Publ. Res. Inst. Math. Sci. 24 (1988), 283-293.
[20] F. Kittaneh, A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix, Studia Math., 158(1) (2003), 11-17.
[21] F. Kittaneh, Numerical radius inequalities for Hilbert space operators, Studia Math., 168(1) (2005), 73-80.
[22] T. Yamazaki, On upper and lower bounds for the numerical radius and an equality condition. Studia Math. 178 (2007), no. 1, 83-89.

Address:

Research Group in Mathematical Inequalities \& Applications, School of Engineering \& Science, Victoria University, P.O. Box 14428, Melbourne City, VIC, Australia. 8001

E-mail: sever.dragomir@vu.edu.au
http://www.staff.vu.edu.au/rgmia/dragomir/

[^0]: 2000 Mathematics Subject Classifications. 47A12 (47A30, 47A63, 47B15.
 Key words and Phrases. Hilbert space, Bounded linear operators, Vector inequalities, Operator norm and numerical radius, Commutator, Self-commutator.

 Received: September 9, 2008
 Communicated by Vladimir Rakočević

