Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.yu/filomat

Filomat 23:1 (2009), 85–89

BI-LIPSCHICITY OF QUASICONFORMAL HARMONIC MAPPINGS IN THE PLANE

Vesna Manojlović

Abstract

We show that quasiconformal harmonic mappings on the proper domains in \mathbb{R}^2 are bi-Lipschitz with respect to the quasihyperbolic metric.

1 Introduction

Continuity properties of quasiconformal mappings $f: D \longrightarrow D'$, where D and D' are domains in plane, with respect to various natural metrics have been studied extensively in [AKM], [KM], [KP] and [P].

Since the inverse of a K-quasiconformal mapping is also K-quasiconformal mapping, such results apply at the same time to f and f^{-1} .

In this paper we deal with harmonic quasiconformal mappings $f: D \longrightarrow D'$, note that f^{-1} is not, in general, harmonic.

Our main result is that harmonic K-quasiconformal mapping $f: D \longrightarrow D'$ in plane is bi-Lipschitz with respect to quasihyperbolic metric.

We note that in [M] this result is proved in *n*-dimensional setting, but only in the case where D and D' are the upper half space in \mathbb{R}^n .

In the case n = 2, in [M] this result is proved for $D = D' = \mathbb{D} = \{z : |z| < 1\}$, with explicit bounds in terms of K.

2 Result

Theorem 1. Suppose D and D' are proper domains in \mathbb{R}^2 . If $f : D \longrightarrow D'$ is K-qc and harmonic, then it is bi-Lipschitz with respect to quasihyperbolic metrics on D and D'.

Key words and Phrases. Quasiconformal maps, quasihyperbolic metric, harmonic maps. Received: September 15, 2008

Communicated by Ivan Jovanović

²⁰⁰⁰ Mathematics Subject Classifications. 30C62.

We recall definition from [AG, Definition 1.5]

$$\alpha_f(z) = \exp\left(\frac{1}{n}(\log J_f)_{B_z}\right),$$

where

$$(\log J_f)_{B_z} = \frac{1}{m(B_z)} \int_{B_z} \log J_f \, dm, \quad B_z = B(z, d(z, \partial D)).$$

In the case n = 2 we have

$$\frac{1}{\alpha_f(z)} = \exp\left(\frac{1}{2}\frac{1}{m(B_z)}\int_{B_z}\log\frac{1}{J_f(w)}\,dm(w)\right).\tag{1}$$

We are going to use the following result:

Theorem 2. [AG, Theorem 1.8] Suppose that D and D' are domains in \mathbb{R}^n if $f: D \longrightarrow D'$ is K-qc, then

$$\frac{1}{c}\frac{d(f(z),\partial D')}{d(z,\partial D)} \leq \alpha_f(z) \leq c \, \frac{d(f(z),\partial D')}{d(z,\partial D)}$$

for $z \in D$, where c is a constant wich depends only on K and n.

3 Proof of Theorem 1

Our proof is based on the theorem of Astala and Gehring.

Proof. Since f is harmonic we have a local representation

$$f(z) = g(z) + \overline{h(z)},$$

where g and h are analytic functions. Then Jacobian $J_f(z) = |g'(z)|^2 - |h'(z)|^2 > 0$ (note that $g'(z) \neq 0$).

Further,

$$J_f(z) = |g'(z)|^2 \left(1 - \frac{|h'(z)|^2}{|g'(z)|^2}\right) = |g'(z)|^2 \left(1 - |\omega(z)|^2\right),$$

where $\omega(z) = \frac{h'(z)}{g'(z)}$ is analytic and $|\omega| < 1$. Now we have

$$\log \frac{1}{J_f(z)} = -2\log |g'(z)| - \log(1 - |\omega(z)|^2).$$

The first term is harmonic function (it is well known that logarithm of moduli of analytic function is harmonic everywhere except where that analytic function vanishes, but $g'(z) \neq 0$ everywhere).

86

The second term can be expanded in series

$$\sum_{k=1}^{\infty} \frac{|\omega(z)|^{2k}}{k},$$

and each term is subharmonic (note that ω is analytic).

So, $-\log(1-|\omega(z)|^2)$ is a continuous function represented as a locally uniform sum of subharmonic functions. Thus it is also subharmonic.

Hence

$$\log \frac{1}{J_f(z)}$$
 is a subharmonic function. (2)

Note that representation $f(z) = g(z) + \overline{h(z)}$ is local, but that suffices for our conclusion (2).

iFrom (2) we have

$$\frac{1}{m(B_z)} \int_{B_z} \log \frac{1}{J_f(w)} \, dm(w) \geq \log \frac{1}{J_f(z)}$$

Combining this with (1) we have

$$\frac{1}{\alpha_f(z)} \ge \exp\left(\frac{1}{2}\log\frac{1}{J_f(z)}\right) = \frac{1}{\sqrt{J_f(z)}}$$

and therefore

$$\sqrt{J_f(z)} \ge \alpha_f(z).$$

Applying the first inequality from Theorem 2 we have

$$\sqrt{J_f(z)} \ge \frac{1}{c} \frac{d(f(z), \partial D')}{d(z, \partial D)}.$$
(3)

Note that

$$J_f(z) = |g'(z)|^2 - |h'(z)|^2 \le |g'(z)|^2$$

and by K-quasiconformality of f, $|h'| \leq k|g'|$, $0 \leq k < 1$, where $K = \frac{1+k}{1-k}$. This gives $J_f \geq (1-k^2)|g'|^2$. Hence,

$$\sqrt{J_f} \asymp |g'| \asymp |g'| + |h'| = L(f, z),$$

where

$$L(f, z) = \max_{|h|=1} |f'(z)h|.$$

Finally (3) and the above asymptotic relation give

$$L(f,z) \geq \frac{1}{c} \frac{d(f(z),\partial D')}{d(z,\partial D)}, \quad c = c(k).$$

Vesna Manojlović

For the reverse inequality we again use $J_f(z) \ge (1-k^2)|g'(z)|^2$, i.e.

$$\sqrt{J_f(z)} \ge \sqrt{1 - k^2} |g'(z)| \tag{4}$$

Further, we know that for n = 2

$$\alpha_f(z) = \exp\left(\frac{1}{m(B_z)} \int_{B_z} \log \sqrt{J_f(x)} \, dm(w)\right).$$

Using (4)

$$\frac{1}{m(B_z)} \int_{B_z} \log \sqrt{J_f(x)} \, dm(w) \geq \frac{1}{m(B_z)} \int_{B_z} \log \sqrt{1 - k^2} + \log |g'(w)| \, dm(w)$$
$$= \log \sqrt{1 - k^2} + \frac{1}{m(B_z)} \int_{B_z} \log |g'(w)| \, dm(w)$$
$$= \log \sqrt{1 - k^2} + \log |g'(z)|.$$

Since $\log |g'|$ is harmonic, we have

$$\begin{aligned} \alpha_f(z) &= \exp\left(\frac{1}{m(B_z)} \int_{B_z} \log \sqrt{J_f(x)} \, dm(w)\right) \\ &\geq \exp(\log \sqrt{1 - k^2} + \log |g'(z)|) \\ &= \sqrt{1 - k^2} |g'(z)| \\ &\geq \frac{1}{2} \sqrt{1 - k^2} (|g'(z)| + |h'(z)|) \\ &= \frac{\sqrt{1 - k^2}}{2} L(f, z). \end{aligned}$$

Again using the second inequality in [AG, Theorem 1.8]

$$L(f,z) \leq c\sqrt{J_f(z)} \leq c \alpha_f(z) \leq c \frac{d(f(z), \partial D')}{d(z, \partial D)}, \quad c = c(k).$$

Therefore, we proved

$$L(f,z) \asymp \frac{d(f(z),\partial D')}{d(z,\partial D)},$$

however, quasiconformality gives

$$L(f,z) \asymp l(f,z),$$

where

$$l(f, z) = \min_{|h|=1} |f'(z)h|.$$

Therefore, we have

$$l(f,z) \asymp \frac{d(f(z),\partial D')}{d(z,\partial D)}$$

This pointwise result, combined with integration along curves, easily gives

$$k_{D'}(f(z_1), f(z_2)) \asymp k_D(z_1, z_2).$$

Problem 1. Is Theorem 1 true in dimensions $n \ge 3$?

I wish to thank Prof. Miroslav Pavlović for the idea of using subharmonicity in this context.

References

- [ABR] S. AXLER, P. BOURDON, AND W. RAMEY: *Harmonic function theory*, Graduate Texts in Mathematics, vol. 137, Springer-Verlag, New York, 1992.
- [AG] K. ASTALA AND F. W. GEHRING: Quasiconformal analogues of theorems of Koebe and Hardy-Littlewood, Michigan Math. J. 32 (1985), 99-107.
- [AKM] M. ARSENOVIĆ, V. KOJIĆ AND M. MATELJEVIĆ: On Lipschitz continuity of harmonic quasiregular maps on the unit ball in Rⁿ., Ann. Acad. Sci. Fenn. Math. 33 (2008), no. 1, 315–318.
- [KM] M. KNEŽEVIĆ AND M. MATELJEVIĆ: On the quasi-isometries of harmonic quasiconformal mappings, J. Math. Anal. Appl. 334 (2007), 404-413.
- [KP] D. KALAJ, M. PAVLOVIĆ: Boundary correspondence under quasiconformal harmonic diffeomorphisms of a half-plane, Ann. Acad. Sci. Fenn. Math. 30 (2005), pp. 159–165.
- [M] M. MATELJEVIĆ: Distorsion of harmonic functions and harmonic quasiconformal quasi-isometry, Rev. Roumaine Math. Pures Appl. 51:5-6, 2006, 711-722.
- [P] M. PAVLOVIĆ: Boundary correspondence under harmonic quasiconformal homeomorphisms of the unit disk, Ann. Acad. Sci. Fenn. Math. 27 (2002), pp. 365-372.

Address:

University of Belgrade, Faculty of Organizational Sciences, Jove Ilića 154, Belgrade, Serbia

E-mail: vesnak@fon.bg.ac.yu