FUGLEDE AND ELEMENTARY OPERATORS ON BANACH SPACE

A. Segres and A. Bachir

Abstract

We generalize the notion of Fuglede-Putnam's property to general $*-$ Banach algebra in the sense of Fuglede operator and study the elementary operator of length ≤ 2 in the context of this property

1 Introduction

Suppose \mathcal{A} is a complex linear algebra, with identity 1: then an involution *: $\mathcal{M} \rightarrow \mathcal{M}$ on a linear subspace $\mathcal{M} \subseteq \mathcal{A}$ is a mapping which is conjugate linear and self inverting: for each $x, y \in \mathcal{M}$ and each $\alpha, \beta \in \mathbb{C}$

$$
\begin{equation*}
(\alpha x+\beta y)^{*}=\bar{\alpha} x^{*}+\bar{\beta} y^{*} ;\left(x^{*}\right)^{*}=x \tag{1.1}
\end{equation*}
$$

We shall describe $x \in \mathcal{A}$ as hermitian, whenever

$$
\begin{equation*}
x \in \mathcal{M} \text { and } x^{*}=x \tag{1.2}
\end{equation*}
$$

It is easily checked that

$$
\begin{equation*}
H+i H=\mathcal{M} ; H \cap i H=\{0\} \tag{1.3}
\end{equation*}
$$

The canonical example, when \mathcal{A} is a Banach algebra, comes from the numerical range: $x \in \mathcal{A}$ is said to be hermitian provided

$$
\begin{equation*}
\mathcal{V}_{\mathcal{A}}(x)=\{\varphi(a): \varphi \in \operatorname{state}(\mathcal{A})\} \subseteq \mathbb{R} \tag{1.4}
\end{equation*}
$$

here $\operatorname{state}(\mathcal{A})$ consists of the linear functionals $\varphi \in \mathcal{A}^{*}$ for which $\|\varphi\|=1=\varphi(1)$. It is well known ([4] Lemma 5.2) that

$$
\begin{equation*}
x \in \mathcal{A} \text { hermitian } \Longleftrightarrow \forall t \in \mathbb{R}:\left\|e^{i t x}\right\|=1 \tag{1.5}
\end{equation*}
$$

[^0]It is also known ([4] Lemma 5.7) that if $H=H_{\mathcal{A}}$ denotes the hermitian elements of \mathcal{A} in the sense of (1.4) then the second part of (1.3) holds: thus if we define the space $\mathcal{M}=H+i H$ as in the first part of (1.3) we can define an involution *: $\mathcal{M} \rightarrow \mathcal{M}$ by setting

$$
\begin{equation*}
(h+i k)^{*}=h-i k(h, k \in H) \tag{1.6}
\end{equation*}
$$

If $*: \mathcal{M} \rightarrow \mathcal{M} \subseteq A$ is an involution we define $a \in \mathcal{A}$ to be normal iff

$$
\begin{equation*}
a \in \mathcal{M} \text { and } a^{*} a=a a^{*} \in \mathcal{A}: \tag{1.7}
\end{equation*}
$$

note that is not necessary that $a^{*} a \in \mathcal{M}$. Equivalently, with respect to (1.6),

$$
\begin{equation*}
a=h+i k \text { with } h, k \in H \text { and } h k=k h . \tag{1.8}
\end{equation*}
$$

Let $\mathcal{A}=B(\mathcal{H})$ be the algebra of all bounded operators acting on a complex separable Hilbert space \mathcal{H} and $A, B \in B(\mathcal{H})$, we say that the pair (A, B) satisfies the Fuglede-Putnam's property if $\operatorname{ker} \delta_{A, B} \subseteq \operatorname{ker} \delta_{A^{*}, B^{*}}$ where $\delta_{A, B}$ denotes the generalized derivation defined on $B(\mathcal{H})$ by $\delta_{A, B}(X)=A X-X B$.

Many mathematicians have extended this property for several classes of operators. For detailed study for this property, the reader is referred to $[2,3,6,9,15]$.

In this note we wish to discuss the "Fuglede-Putnam property" in algebras $\mathcal{A}=B(\mathcal{X})$ for Banach spaces \mathcal{X}, in particular for "elementary operators".

We will use the following further notations, the range of an operator $T \in B(\mathcal{X})$ is denoted by ran T and the commutator $A B-B A$ is denoted by $[A, B]$. The set of complex numbers is denoted by \mathbb{C}.

2 Fuglede Operators

Suppose $*: \mathcal{M} \rightarrow \mathcal{M} \subseteq \mathcal{A}$ is an involution in the sense (1.1) and suppose in particular that $\mathcal{A}=B(\mathcal{X})$ for a Banach space \mathcal{X} : then

Definition 2.1 We define $T \in \mathcal{M} \subseteq B(\mathcal{X})$ to be
Fuglede iff

$$
\begin{equation*}
\operatorname{ker} T \subseteq \operatorname{ker} T^{*} \tag{2.1}
\end{equation*}
$$

reduced iff

$$
\begin{equation*}
\operatorname{ker} T \subseteq \operatorname{ker} T T^{*} \tag{2.2}
\end{equation*}
$$

natural iff

$$
\begin{equation*}
\operatorname{ker} T T^{*}=\operatorname{ker} T^{*} \tag{2.3}
\end{equation*}
$$

These definitions come from [10], following an idea of Shulman and Turowska [13]; in [10, Definition 6] the condition (2.3) was described by saying that T^{*} was "ultra weakly *-orthogonal". We remark that if \mathcal{X} is a Hilbert space then every operator $T \in \mathcal{A}$ satisfies (2.3). An equivalent version of (2.3) is that ker $T \cap \operatorname{ran} T^{*}=$ $\{0\}$. The simplest relationships between the concepts of Definition 2.1 are

Theorem 2.2 If $T \in \mathcal{A}=B(\mathcal{X})$ for a Banach space \mathcal{X} then

$$
\begin{equation*}
T \text { natural and reduced } \Longrightarrow T \text { Fuglede } \Longrightarrow T \text { reduced. } \tag{2.4}
\end{equation*}
$$

Also

$$
\begin{equation*}
T \text { normal } \Longrightarrow T \text { reduced } . \tag{2.5}
\end{equation*}
$$

Proof. If T is natural and reduced then ker $T \subseteq \operatorname{ker} T T^{*}$ giving (2.1). If T is normal then ker $T^{*} \subseteq \operatorname{ker} T T^{*}=\operatorname{ker} T^{*} T$, giving (2.2).

Note that the normality need not in general, imply the Fuglede property.

3 Elementary Operators

If $a \in \mathcal{A}$ we define left and right multiplication operators by setting, for each $x \in \mathcal{A}$,

$$
\begin{equation*}
L_{a}(x)=a x ; \quad R_{a}(x)=x a ; \tag{3.1}
\end{equation*}
$$

more generally if $a \in \mathcal{A}^{n}$ and $b \in \mathcal{A}^{n}$ are n-tuples the elementary operator $L_{a} \circ R_{b}$: $\mathcal{A} \rightarrow \mathcal{A}$ is defined by setting, for each $x \in \mathcal{A}$,

$$
\begin{equation*}
\left(L_{a} \circ R_{b}\right)(x)=\sum_{j=1}^{n} a_{j} x b_{j} \tag{3.2}
\end{equation*}
$$

The same operator $T=L_{a} \circ R_{b}$ can be given by many different pairs of tuples a and b : the minimum possible n is sometimes called the "length" of the operator. There is algebraic isomorphism between the linear space of elementary operators on \mathcal{A} and the tensor product $\mathcal{A} \otimes \mathcal{A}$: thus if there is an involution $*: \mathcal{M} \rightarrow \mathcal{M} \subseteq \mathcal{A}$ it is possible to successfully define an involution on the subspace of those elementary operators $L_{a} \circ R_{b}$ for which $(a, b) \in \mathcal{M}^{n} \times \mathcal{M}^{n}$ by setting

$$
\begin{equation*}
\left(L_{a} \circ R_{b}\right)^{*}=L_{a^{*}} \circ R_{b^{*}}, \tag{3.3}
\end{equation*}
$$

where we write for example $\left(a_{1}, a_{2}, \cdots, a_{n}\right)^{*}=\left(a_{1}^{*}, a_{2}^{*}, \cdots, a_{n}^{*}\right)$ if $a \in \mathcal{A}^{n}$. The most important examples of elementary operators are the "mixed derivation" $L_{a}-R_{b}$ for single elements $a, b \in \mathcal{A}$ and the products $L_{a} R_{b}$; Duggal [6] has looked in particular at the operator $L_{a} R_{b}-I$.

When $\mathcal{A}=B(\mathcal{X})$ for a Banach space \mathcal{X} then an involution $*: \mathcal{M} \rightarrow \mathcal{M} \subseteq B(\mathcal{X})$ gives rise to a dual involution $*: \mathcal{M}^{\dagger} \rightarrow \mathcal{M}^{\dagger}=\left\{x^{\dagger}: x \in \mathcal{M}\right\} \subseteq B\left(\mathcal{X}^{\dagger}\right)$ defined by setting

$$
\begin{equation*}
\left(x^{\dagger}\right)^{*}=\left(x^{*}\right)^{\dagger},(x \in \mathcal{M}) . \tag{3.4}
\end{equation*}
$$

In this section we consider the relationship between the Fuglede property for tuples $a \in \mathcal{A}^{n}, b \in \mathcal{A}^{n}$ and $L_{a} \circ R_{b} \in B(\mathcal{A})$: For example Duggal [7] has obtained the result if $\mathcal{A}=B(\mathcal{H})$ for a Hilbert space \mathcal{H} and if a, b in \mathcal{A} are normal and c, d^{*} are hyponormal, then

$$
\begin{equation*}
a c-c a=b d-d b=0 \Longrightarrow L_{a} R_{b}-L_{c} R_{d} \text { Fuglede. } \tag{3.5}
\end{equation*}
$$

Theorem 3.1 If $\mathcal{M} \subseteq \mathcal{A} \subseteq B(\mathcal{X})$ for a Banach space \mathcal{X} and if $a, b \in \mathcal{A}$ then

$$
\begin{gather*}
a \in \mathcal{M} \text { Fuglede } \Longleftrightarrow L_{a} \in B(\mathcal{A}) \text { Fuglede } ; \tag{3.6}\\
b^{\dagger} \in \mathcal{M}^{\dagger} \text { Fuglede } \Longleftrightarrow R_{b} \in B(\mathcal{A}) \text { Fuglede } ; \tag{3.7}\\
a \in \mathcal{M} \text { Fuglede and } b^{\dagger} \in \mathcal{M}^{\dagger} \text { Fuglede } \Longrightarrow L_{a} R_{b} \in B(\mathcal{A}) \text { Fuglede. } \tag{3.8}
\end{gather*}
$$

Proof. If $x \in \mathcal{A}$ is arbitrary then $a x=0 \Longleftrightarrow \forall \xi \in \mathcal{X}: a x \xi=0$ and if a is Fuglede it follows $a^{*} x \xi=0$ so $a^{*} x=0$: thus L_{a} is also Fuglede. Conversely if $x \in \mathcal{X}$ and $\varphi \in X^{\dagger}$ are arbitrary and if L_{a} is Fuglede, we obtain the following implication

$$
L_{a}(\varphi \otimes x)=0 \Longrightarrow \varphi \otimes a^{*} x=\left(L_{a}\right)^{*}(\varphi \otimes x)
$$

In particular $a x=0$ then (3.6) holds for all $\varphi \in \mathcal{X}^{\dagger}$, giving $a^{*} x=0$ by HahnBanach.

Towards (3.7), if $x b=0$ then

$$
\forall \varphi \in \mathcal{X}^{\dagger}: b^{\dagger}(\varphi x)=\varphi x b
$$

giving if b^{\dagger} is Fuglede

$$
\varphi x b^{*}=\left(b^{*}\right)^{\dagger}(\varphi x)=\left(b^{\dagger}\right)^{*}(\varphi x)=0
$$

and hence by Hahn-Banach's theorem $R_{b}^{*} x=x b^{*}=0$. Conversely if $b^{\dagger} \varphi=0 \in \mathcal{X}^{\dagger}$ then for arbitrary $x \in \mathcal{X}$ we have $(\varphi \otimes x) b=0$ and hence if R_{b} is Fuglede $(\varphi \otimes x) b^{*}=$ 0 . Since $x \in \mathcal{X}$ is arbitrary it follows $\varphi b^{*}=\left(b^{\dagger}\right)^{*} \varphi=0$.

Finally for (3.8) suppose $L_{a}(x b)=\left(L_{a} R_{b}\right) x=0$: if $a \in \mathcal{A}$ and $\left.L_{a} \in B(\mathcal{A})\right)$ are Fuglede, this yields $R_{b}\left(a^{*} x\right)=a^{*}(x b)=0$. Also if b^{\dagger} and R_{b} are Fuglede, we get $\left(L_{a} R_{b}\right)^{*}(x)=R_{b}^{*}\left(a^{*} x\right)=0$.

Proposition 3.2 If $A, B \in \mathcal{M} \subseteq B(\mathcal{X})$ with the involution defined by (1.6) then,
(i) A Fuglede $\Leftrightarrow L_{A}$ Fuglede
(ii) B^{\dagger} Fuglede $\Leftrightarrow R_{B}$ Fuglede
(iii) A, B^{\dagger} are Fuglede $\Rightarrow M_{A, B}$ Fuglede.

Proof. If $\mathcal{A}=B(\mathcal{X})$ where \mathcal{X} is a Banach spacec and $\mathcal{M}=\mathcal{H}+i \mathcal{H}$ is equipped with the involution $*$ in the sense of (1.6) then we can check easily that $(\mathcal{M})^{\dagger}=\mathcal{H}^{\dagger}+i \mathcal{H}^{\dagger}$ and the dual involution \star of $*$ is given by

$$
\begin{equation*}
\forall h, k \in \mathcal{H}:\left(h^{\dagger}+i k^{\dagger}\right)^{\star}=h^{\dagger}-i k^{\dagger} \tag{3.9}
\end{equation*}
$$

The results follow immediately from the Theorem 3.1.
Let \mathcal{A} be a Banach algebra with unit 1 .
Theorem 3.3 ([1, 8, 11]).
For $a, b \in \mathcal{A}$ we have the following statements.
(i) a, b hermitian elements $\Rightarrow L_{a}, R_{b}$ hermitian operators $\Rightarrow \delta_{a, b}$ hermitian
(ii) a, b normal elements $\Rightarrow L_{a}, R_{b}$ normal operators $\Rightarrow \delta_{a, b}$ normal
(iii) if $\mathcal{A}=B(\mathcal{X})$; a normal \Rightarrow a Fuglede.

As a consequence, if $a=h+i k$ is normal and $b \in \mathcal{A}$, then

$$
[a, b]=0 \Leftrightarrow[h, b]=[k, b]=0
$$

Proposition 3.4 If a, b are normal operators in $B(\mathcal{X})$ and x any element in $\mathcal{A}=$ $B(\mathcal{X})$, then

$$
M_{a, b}^{2} x=0 \Rightarrow M_{a, b} x=0
$$

Proof. If a, b are hermitian operators then we can check easily that, for arbitrary $r \in \mathbb{R}$ and all $x \in \mathcal{A},\|x\|=\left\|e^{i r a} x e^{i r b}\right\|$. Let

$$
\begin{aligned}
e^{i r a} & =1+i r a+K_{a}: K_{a}=\sum_{n=2}^{\infty} \frac{(i r a)^{n}}{n!} \\
e^{i r b} & =1+i r b+K_{b}: K_{b}=\sum_{n=2}^{\infty} \frac{(i r b)^{n}}{n!}
\end{aligned}
$$

Suppose, for hermitian a, b and $x \in \mathcal{A}$ that $M_{a, b}^{2} x=0$, then

$$
a^{n} x b^{m}=0(m, n \geq 2)
$$

Hence, $K_{a} x K_{b}=0$ and therefore, we can leave in the expansion of $\left\|e^{i r a} x e^{i r b}\right\|$:

$$
\begin{aligned}
\|x\| & =\left\|e^{i r a} x(1+i r b)+(1+i r a) x e^{i r b}-(1+i r a) x(1+i r b)\right\| \\
& =\left\|r^{2} a x b-i r(a x+x b)-x+e^{i r a} x(1+i r b)+(1+i r a) x e^{i r b}\right\|,
\end{aligned}
$$

for all $r>0$.
Consequently if

$$
\left\|r^{2} a x b\right\| \leq\left\|i r(a x+x b)-x+e^{i r a} x(1+i r b)+(1+i r a) x e^{i r b}\right\|
$$

then,

$$
\begin{equation*}
\|a x b\| \leq \frac{1}{r^{2}}[r\|a x+x b\|+\|x\|+\|x(1+i r b)\|+\|(1+i r a) x\|] \tag{3.10}
\end{equation*}
$$

If not, we have

$$
\left\|r^{2} a x b\right\| \leq\left\|i r(a x+x b)-x+e^{i r a} x(1+i r b)+(1+i r a) x e^{i r b}\right\|+\|x\|
$$

and

$$
\begin{equation*}
\|a x b\| \leq \frac{1}{r^{2}}[r\|a x+x b\|+2\|x\|+\|x(1+i r b)\|+\|(1+i r a) x\|] . \tag{3.11}
\end{equation*}
$$

From the equations (3.10) and (3.11), we conclude that $a x b=0$.
If a, b are normal elements with $a=h_{1}+i k_{1}, b=h_{2}+i k_{2}$. Then, by Theorems (3.1) and (3.3), L_{a}, R_{b} are Fuglede operators and so it follows from $a^{2} x b^{2}=0$ that

$$
a^{* 2} x b^{* 2}=a a^{*} x b^{2}=a^{2} x b^{* 2}=a^{* 2} x b^{2}=a^{2} x b b^{*}=0
$$

Hence,

$$
\left(a^{*} \pm a\right)^{2} x\left(b^{*} \pm b\right)^{2}=0
$$

Using the first case, we get

$$
\left(a^{*} \pm a\right) x\left(b^{*} \pm b\right)=0
$$

This yields

$$
h_{1} x h_{2}=h_{1} x k_{2}=h_{1} x h_{2}=k_{1} x h_{2}=k_{1} x k_{2}=0
$$

Therefore $a x b=0$.
Corollary 3.5 If a, b are normal operators in $B(\mathcal{X})$ then

$$
\operatorname{ker} M_{a, b} \cap \operatorname{ran} M_{a, b}=\{0\} .
$$

Proposition 3.6 If $\mathcal{A}=B(\mathcal{X})$ where \mathcal{X} is a Banach space and $T \in B(\mathcal{X})$ is a normal operator, then T is a natural operator.

Proof. Let \mathcal{X}^{\dagger} be the dual of \mathcal{X} and T^{\dagger} be the dual adjoint of $T \in B(\mathcal{X})$. With respect to the involution (1.6) and its dual (3.9), we have that T^{\dagger} is normal. So that T^{\dagger} and T are Fuglede operators and by duality we get $\overline{\operatorname{ran} T}=\overline{\operatorname{ran} T^{*}}$. Using [8] we get $\operatorname{ker} T \cap \operatorname{ran} T^{*}=\{0\}$. Thus, $\operatorname{ker} T T^{*}=\operatorname{ker} T^{*}$ which means that T is a natural operator.

Consequently for $T \in B(\mathcal{X})$, we have

$$
\begin{align*}
T \text { normal } & \Rightarrow T \text { Fuglede } \Rightarrow T \text { reduced } \tag{3.12}\\
T \text { normal } & \Rightarrow T \text { natural. } \tag{3.13}
\end{align*}
$$

In what follows we show that the elmentary operator $L_{a} R_{b}$ induced by hermitians elements is not necessarily a hermitian operator.

Lemma 3.7 [14], Let T be a bounded linear operator on $B(H)$, for a Hilbert space H. Then T is hermitian if and only if there exist two self-adjoints operators A, $B \in B(H)$ such that $T=L_{A}+\delta_{B}$.

Proposition 3.8 Let $A, B \in B(H)$ be a self-adjoints operators. If A and B are not scalar operators then $M_{A, B}$ is not hermitian operator.

Proof. If $M_{A, B}$ is a hermitian operator, then by Lemma 3.7, $M_{A, B}=L_{A B}+\delta_{R}$ where R is a self-adjoint operator. Hence,

$$
\forall X \in B(H): A X B-A B X=X B A-B X A
$$

Therefore,

$$
\forall X \in B(H): A(X B-B X)-(X B-B X) A=0
$$

Thus,

$$
A \delta_{B}-\delta_{B} A=0
$$

Which means that $\delta_{A} \delta_{B}=\delta_{I}$ (I denotes the identity operator), by [16] it follows that either A or B is a scalar. Contradiction to our assumptions.

Remark 3.9 Theorem 3.3, showed that the hermitian and normal properties are preserved for L_{A} and R_{B} and their sum but not preserved for the product $L_{A} R_{B}$ (Proposition 3.8). However, Theorem 3.1, showed that the Fuglede property is preserved for L_{A}, R_{B}, their sum and their product for an arbitrary involution.

Let \mathcal{A} be a Banach algebra with unit e and E be the elementary operator defined on \mathcal{A} by $E=M_{a_{1}, b_{1}}+M_{a_{2}, b_{2}}$.

The following result generalizes Rosenblum's Theorem [11].
Proposition 3.10 If $\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right)$ are 2-tuples of commuting normal elements in \mathcal{A}^{2}, then E is a Fuglede operator.

Proof. If $a_{1} x b_{1}=a_{2} x b_{2}$, for $x \in \mathcal{A}$ then by induction, $a_{1}^{n} x b_{1}^{m}=a_{2}^{n} x b_{2}^{m}$, for all $n, m \in \mathbb{N}$. Hence,

$$
\begin{equation*}
\exp \left(a_{1}\right) x \exp \left(b_{1}\right)=\exp \left(a_{2}\right) x \exp \left(b_{2}\right) \tag{3.14}
\end{equation*}
$$

Let $a_{i}=h_{i}+i k_{i}$ and $b_{i}=v_{i}+i u_{i}, i=1,2$ where h_{i}, k_{i}, v_{i} and $u_{i} \in \mathcal{H}_{\mathcal{A}}$. Set

$$
\begin{equation*}
c_{i}=\exp \left(a_{i}-a_{i}^{*}\right), d_{i}=\exp \left(b_{i}-b_{i}^{*}\right), \quad i=1,2 \tag{3.15}
\end{equation*}
$$

Then,

$$
\begin{equation*}
c_{i}=\exp \left(2 i k_{i}\right), d_{i}=\exp \left(2 i u_{i}\right) \text { and }\left\|c_{i}\right\|=\left\|d_{i}\right\|=1, i=1,2 \tag{3.16}
\end{equation*}
$$

By (3.14) and $\left[a_{1}, a_{2}\right]=\left[b_{1}, b_{2}\right]=0$, we get

$$
\begin{equation*}
x=\exp \left(-a_{1}\right) \exp \left(a_{2}\right) x \exp \left(b_{2}\right) \exp \left(-b_{1}\right) \tag{3.17}
\end{equation*}
$$

From equations (3.15), (3.17), we obtain

$$
c_{1} c_{2}^{-1} x d_{2}^{-1} d_{1}=\exp \left(-a_{1}^{*}\right) \exp \left(a_{2}^{*}\right) x \exp \left(b_{2}^{*}\right) \exp \left(-b_{1}^{*}\right)
$$

and by (3.16),

$$
\begin{equation*}
\left\|\exp \left(-a_{1}^{*}\right) \exp \left(a_{2}^{*}\right) x \exp \left(b_{2}^{*}\right) \exp \left(-b_{1}^{*}\right)\right\| \leq\|x\| . \tag{3.18}
\end{equation*}
$$

Let f be the function from \mathbb{C} to \mathcal{A} defined by

$$
f(z)=\exp \left[z\left(a_{2}^{*}-a_{1}^{*}\right)\right] x \exp \left[z\left(b_{2}^{*}-b_{1}^{*}\right)\right]
$$

Clearly f is an entire function and by (3.18) f is bounded on the whole field \mathbb{C}. So by Liouville's Theorem, f is a constant function on \mathbb{C}.
Hence, for all $z \in \mathbb{C}, f(z)=f(0)=x$. Therefore

$$
\exp \left[z\left(a_{2}^{*}-a_{1}^{*}\right)\right] x \exp \left[z\left(b_{2}^{*}-b_{1}^{*}\right)\right]=x, \text { for all } z \in \mathbb{C}
$$

and

$$
\exp \left(z a_{1}^{*}\right) x \exp \left(z b_{1}^{*}\right)=\exp \left(z a_{2}^{*}\right) x \exp \left(z b_{2}^{*}\right), \text { for all } z \in \mathbb{C}
$$

Thus

$$
\sum_{n, k=0}^{\infty} \frac{z^{n+k}}{n!k!}\left(a_{1}^{* n} x b_{1}^{* k}-a_{2}^{* n} x b_{2}^{* k}\right)=\sum_{m=0}^{\infty} \frac{z^{m}}{n!k!} \sum_{n+k=m}\left(a_{1}^{* n} x b_{1}^{* k}-a_{2}^{* n} x b_{2}^{* k}\right)=0
$$

Finally, we get for all $(n, k) \in \mathbb{N}^{2}, a_{1}^{* n} x b_{1}^{* k}=a_{2}^{* n} x b_{2}^{* k}$.
In particular, for $n=k=1, x \in \operatorname{ker} E^{*}$.
The following corollary generalizes the result given by Brooke, Brush and Pearson [5]

Corollary 3.11 Let $\left(a_{1}, a_{2}\right)$, $\left(b_{1}, b_{2}\right)$ be 2-tuples of commuting hermitian elements in \mathcal{A}^{2} and $\lambda \in \mathbb{C}$. If $a_{1} x b_{1}=\lambda a_{2} x b_{2} \neq 0$, for certain element $x \in \mathcal{A}$ then $\lambda \in \mathbb{R}$.

In particular, for $b_{1}=a_{2}$ and $a_{1}=b_{2}=a$, if $a x=\lambda x a \neq 0$, then $\lambda \in \mathbb{R}$.
Proof. From the previous proposition we get $a_{1} x b_{1}=\bar{\lambda} a_{2} x b_{2}=\lambda a_{2} x b_{2}$. Hence $(\bar{\lambda}-\lambda) a_{2} x b_{2}=0$. Thus $\bar{\lambda}=\lambda$.

Acknowledgement. The authors thank the anonymous referees for their helpful remarks and for suggestions in proving the equivalence (3.7) in Theorem 3.1.

References

[1] J. Anderson, On normal derivation, Proc. Amer. Math. Soc., 38(1973), 136140.
[2] A. Bachir and A. Segres, Generalized Fuglede-Putnam theorem and orthogonality, AJMAA 1(2004), pp. 1-5.
[3] A. Bachir and A. Segres, An asymmetric Fuglede-Putnam's theorem and orthogonality, Kyungpook Math. J., 46(2006), 40-46.
[4] F.F. Bonsall and J. Duncan, Numerical range I, II, London Math. Soc., Lecture Notes 2(1971), 10(1973).
[5] J.A. Brooke, P. Busch and B. Pearson, Commutativity up to a factor of bounded operators in complex Hilbert space. R. Soc. Lon. Ser. A, M. Phys. Eng. Sci., A. 458(2002), 109-118.
[6] B.P. Duggal, Putnam-Fuglede theorem and the range-kernel orthogoanality of derivations, Integr. J. Math. Sci., 27(2001), 573-582.
[7] B.P. Duggal, Subspaces gaps and range-kernel orthogoanality of an elementary operator, Linear Algebra and its Applications, 383(2004), 93-106.
[8] C.K. Fong, Normal operators on Banach spaces, Glasgow Math. J., 20(1979), 163-168.
[9] B. Fuglede, A commutativity theorem for normal operators, Proc. Nat. Acad. Sci. U.S.A., 36(1950), 35-40.
[10] R.E. Harte, Skew exactness and range-kernel orthogonality, Filomat (Nis), 19(2005), 19-33.
[11] M. Rosenblum , On a theorem of Fuglede and Putnam's, J. London Math. Soc., 33(1958), 376-377.
[12] V.S. Shulman ,Multiplying operators in C^{*}-algebras and problems of reflexivity of algebras containing m.a.s.a (in Russian), Funkc. Analis i prilozhen, 8-1(1974), 92-93.
[13] V.S. Shulman and L. Turowska, Operator synthesis II: Individual synthesis and linear operator equations,(preprint).
[14] A.M. Sinclair, Jordan homomorphisms and derivations on semi-Banach algebra, Proc. Amer. Math. Soc., 24(1970), 209-214.
[15] J.G. Stampfli and B.L. Wadhwa, An asymmetric Putnam-Fuglede theorem for dominant operators, Indiana Univ. J., 25(1976), 359-365.
[16] J.P. Williams, On the range of a derivation, Pacific. J. Math., 38(1971), 273279.
A. Segres

Department of Mathematics, Mascara University, Mascara, Algeria
E-mail: segres03 @ yahoo.fr
A. Bachir

Department of Mathematics, Faculty of Science, King Khalid University, Abha, P.O.Box 9004 Saudi Arabia

E-mail: bachir_ahmed @ hotmail.com

[^0]: 2000 Mathematics Subject Classifications. 47B47, 47A30,47B10, 47B20, 46H99.
 Key words and Phrases. Hyponormal operators, Fuglede-Putnam's theorem, Banach algebra, elementary operators, Fuglede operator.

 Received: June 26, 2008
 Communicated by Dragan S. Djordjević

