Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Filomat **23:3** (2009), 125–133 DOI:10.2298/FIL0903125S

FUGLEDE AND ELEMENTARY OPERATORS ON BANACH SPACE

A. Segres and A. Bachir

Abstract

We generalize the notion of Fuglede-Putnam's property to general *-Banach algebra in the sense of Fuglede operator and study the elementary operator of length ≤ 2 in the context of this property

1 Introduction

Suppose \mathcal{A} is a complex linear algebra, with identity 1: then an involution * : $\mathcal{M} \to \mathcal{M}$ on a linear subspace $\mathcal{M} \subseteq \mathcal{A}$ is a mapping which is conjugate linear and self inverting: for each $x, y \in \mathcal{M}$ and each $\alpha, \beta \in \mathbb{C}$

$$(\alpha x + \beta y)^* = \overline{\alpha} x^* + \overline{\beta} y^*; \ (x^*)^* = x.$$
(1.1)

We shall describe $x \in \mathcal{A}$ as hermitian, whenever

$$x \in \mathcal{M} \text{ and } x^* = x.$$
 (1.2)

It is easily checked that

$$H + iH = \mathcal{M}; \ H \cap iH = \{0\}.$$
 (1.3)

The canonical example, when \mathcal{A} is a Banach algebra, comes from the numerical range: $x \in \mathcal{A}$ is said to be hermitian provided

$$\mathcal{V}_{\mathcal{A}}(x) = \{\varphi(a) : \varphi \in \text{state}(\mathcal{A})\} \subseteq \mathbb{R};$$
(1.4)

here state(\mathcal{A}) consists of the linear functionals $\varphi \in \mathcal{A}^*$ for which $\|\varphi\| = 1 = \varphi(1)$. It is well known ([4] Lemma 5.2) that

$$x \in \mathcal{A} \text{ hermitian} \iff \forall t \in \mathbb{R} : \left\| e^{itx} \right\| = 1.$$
 (1.5)

²⁰⁰⁰ Mathematics Subject Classifications. 47B47, 47A30,47B10, 47B20, 46H99.

 $Key\ words\ and\ Phrases.$ Hyponormal operators, Fuglede-Putnam's theorem, Banach algebra, elementary operators, Fuglede operator.

Received: June 26, 2008

Communicated by Dragan S. Djordjević

It is also known ([4] Lemma 5.7) that if $H = H_{\mathcal{A}}$ denotes the hermitian elements of \mathcal{A} in the sense of (1.4) then the second part of (1.3) holds: thus if we define the space $\mathcal{M} = H + iH$ as in the first part of (1.3) we can define an involution $*: \mathcal{M} \to \mathcal{M}$ by setting

$$(h+ik)^* = h - ik \ (h, k \in H).$$
 (1.6)

If $*: \mathcal{M} \to \mathcal{M} \subseteq A$ is an involution we define $a \in \mathcal{A}$ to be normal iff

$$a \in \mathcal{M} \text{ and } a^*a = aa^* \in \mathcal{A}:$$
 (1.7)

note that is not necessary that $a^*a \in \mathcal{M}$. Equivalently, with respect to (1.6),

$$a = h + ik \text{ with } h, k \in H \text{ and } hk = kh.$$
 (1.8)

Let $\mathcal{A} = B(\mathcal{H})$ be the algebra of all bounded operators acting on a complex separable Hilbert space \mathcal{H} and $A, B \in B(\mathcal{H})$, we say that the pair (A, B) satisfies the Fuglede-Putnam's property if ker $\delta_{A,B} \subseteq \ker \delta_{A^*,B^*}$ where $\delta_{A,B}$ denotes the generalized derivation defined on $B(\mathcal{H})$ by $\delta_{A,B}(X) = AX - XB$.

Many mathematicians have extended this property for several classes of operators. For detailed study for this property, the reader is referred to [2, 3, 6, 9, 15].

In this note we wish to discuss the "Fuglede-Putnam property" in algebras $\mathcal{A} = B(\mathcal{X})$ for Banach spaces \mathcal{X} , in particular for "elementary operators".

We will use the following further notations, the range of an operator $T \in B(\mathcal{X})$ is denoted by ran T and the commutator AB - BA is denoted by [A, B]. The set of complex numbers is denoted by \mathbb{C} .

2 Fuglede Operators

Suppose $* : \mathcal{M} \to \mathcal{M} \subseteq \mathcal{A}$ is an involution in the sense (1.1) and suppose in particular that $\mathcal{A} = B(\mathcal{X})$ for a Banach space \mathcal{X} : then

Definition 2.1 We define $T \in \mathcal{M} \subseteq B(\mathcal{X})$ to be Fuglede iff

 $ker T \subseteq ker T^*; \tag{2.1}$

reduced iff

 $ker T \subseteq ker TT^*; \tag{2.2}$

natural iff

$$ker TT^* = ker T^*. \tag{2.3}$$

These definitions come from [10], following an idea of Shulman and Turowska [13]; in [10, Definition 6] the condition (2.3) was described by saying that T^* was "ultra weakly *-orthogonal". We remark that if \mathcal{X} is a Hilbert space then every operator $T \in \mathcal{A}$ satisfies (2.3). An equivalent version of (2.3) is that ker $T \cap \operatorname{ran} T^* = \{0\}$. The simplest relationships between the concepts of Definition 2.1 are

Fuglede and elementary operators on Banach space

Theorem 2.2 If $T \in \mathcal{A} = B(\mathcal{X})$ for a Banach space \mathcal{X} then

$$T \text{ natural and reduced } \Longrightarrow T \text{ Fuglede } \Longrightarrow T \text{ reduced.}$$
 (2.4)

Also

$$T \text{ normal} \Longrightarrow T \text{ reduced.}$$
 (2.5)

Proof. If T is natural and reduced then ker $T \subseteq \ker TT^*$ giving (2.1). If T is normal then ker $T^* \subseteq \ker TT^* = \ker T^*T$, giving (2.2).

Note that the normality need not in general, imply the Fuglede property.

3 Elementary Operators

If $a \in \mathcal{A}$ we define left and right multiplication operators by setting, for each $x \in \mathcal{A}$,

$$L_a(x) = ax; \quad R_a(x) = xa; \tag{3.1}$$

more generally if $a \in \mathcal{A}^n$ and $b \in \mathcal{A}^n$ are *n*-tuples the elementary operator $L_a \circ R_b$: $\mathcal{A} \to \mathcal{A}$ is defined by setting, for each $x \in \mathcal{A}$,

$$(L_a \circ R_b)(x) = \sum_{j=1}^n a_j x b_j \cdot$$
(3.2)

The same operator $T = L_a \circ R_b$ can be given by many different pairs of tuples aand b: the minimum possible n is sometimes called the "length" of the operator. There is algebraic isomorphism between the linear space of elementary operators on \mathcal{A} and the tensor product $\mathcal{A} \otimes \mathcal{A}$: thus if there is an involution $* : \mathcal{M} \to \mathcal{M} \subseteq \mathcal{A}$ it is possible to successfully define an involution on the subspace of those elementary operators $L_a \circ R_b$ for which $(a, b) \in \mathcal{M}^n \times \mathcal{M}^n$ by setting

$$(L_a \circ R_b)^* = L_{a^*} \circ R_{b^*}, \tag{3.3}$$

where we write for example $(a_1, a_2, \dots, a_n)^* = (a_1^*, a_2^*, \dots, a_n^*)$ if $a \in \mathcal{A}^n$. The most important examples of elementary operators are the "mixed derivation" $L_a - R_b$ for single elements $a, b \in \mathcal{A}$ and the products $L_a R_b$; Duggal [6] has looked in particular at the operator $L_a R_b - I$.

When $\mathcal{A} = B(\mathcal{X})$ for a Banach space \mathcal{X} then an involution $* : \mathcal{M} \to \mathcal{M} \subseteq B(\mathcal{X})$ gives rise to a dual involution $* : \mathcal{M}^{\dagger} \to \mathcal{M}^{\dagger} = \{x^{\dagger} : x \in \mathcal{M}\} \subseteq B(\mathcal{X}^{\dagger})$ defined by setting

$$(x^{\dagger})^* = (x^*)^{\dagger}, \ (x \in \mathcal{M}).$$
 (3.4)

In this section we consider the relationship between the Fuglede property for tuples $a \in \mathcal{A}^n$, $b \in \mathcal{A}^n$ and $L_a \circ R_b \in B(\mathcal{A})$: For example Duggal [7] has obtained the result if $\mathcal{A} = B(\mathcal{H})$ for a Hilbert space \mathcal{H} and if a, b in \mathcal{A} are normal and c, d^* are hyponormal, then

$$ac - ca = bd - db = 0 \Longrightarrow L_a R_b - L_c R_d$$
 Fuglede. (3.5)

Theorem 3.1 If $\mathcal{M} \subseteq \mathcal{A} \subseteq B(\mathcal{X})$ for a Banach space \mathcal{X} and if $a, b \in \mathcal{A}$ then

$$a \in \mathcal{M} \ Fuglede \iff L_a \in B(\mathcal{A}) \ Fuglede;$$
 (3.6)

$$b^{\dagger} \in \mathcal{M}^{\dagger}$$
 Fuglede $\iff R_b \in B(\mathcal{A})$ Fuglede; (3.7)

 $a \in \mathcal{M}$ Fuglede and $b^{\dagger} \in \mathcal{M}^{\dagger}$ Fuglede $\implies L_a R_b \in B(\mathcal{A})$ Fuglede. (3.8)

Proof. If $x \in \mathcal{A}$ is arbitrary then $ax = 0 \iff \forall \xi \in \mathcal{X} : ax\xi = 0$ and if a is Fuglede it follows $a^*x\xi = 0$ so $a^*x = 0$: thus L_a is also Fuglede. Conversely if $x \in \mathcal{X}$ and $\varphi \in X^{\dagger}$ are arbitrary and if L_a is Fuglede, we obtain the following implication

$$L_a(\varphi \otimes x) = 0 \Longrightarrow \varphi \otimes a^* x = (L_a)^* (\varphi \otimes x).$$

In particular ax = 0 then (3.6) holds for all $\varphi \in \mathcal{X}^{\dagger}$, giving $a^*x = 0$ by Hahn-Banach.

Towards (3.7), if xb = 0 then

$$\forall \varphi \in \mathcal{X}^{\dagger} : b^{\dagger}(\varphi x) = \varphi x b,$$

giving if b^{\dagger} is Fuglede

$$\varphi x b^* = (b^*)^{\dagger}(\varphi x) = (b^{\dagger})^*(\varphi x) = 0$$

and hence by Hahn-Banach's theorem $R_b^* x = xb^* = 0$. Conversely if $b^{\dagger} \varphi = 0 \in \mathcal{X}^{\dagger}$ then for arbitrary $x \in \mathcal{X}$ we have $(\varphi \otimes x)b = 0$ and hence if R_b is Fuglede $(\varphi \otimes x)b^* = 0$. Since $x \in \mathcal{X}$ is arbitrary it follows $\varphi b^* = (b^{\dagger})^* \varphi = 0$.

Finally for (3.8) suppose $L_a(xb) = (L_aR_b)x = 0$: if $a \in \mathcal{A}$ and $L_a \in B(\mathcal{A})$) are Fuglede, this yields $R_b(a^*x) = a^*(xb) = 0$. Also if b^{\dagger} and R_b are Fuglede, we get $(L_aR_b)^*(x) = R_b^*(a^*x) = 0$.

Proposition 3.2 If $A, B \in \mathcal{M} \subseteq B(\mathcal{X})$ with the involution defined by (1.6) then,

- (i) A Fuglede $\Leftrightarrow L_A$ Fuglede
- (ii) B^{\dagger} Fuglede $\Leftrightarrow R_B$ Fuglede
- (iii) A, B^{\dagger} are Fuglede $\Rightarrow M_{A,B}$ Fuglede.

Proof. If $\mathcal{A} = B(\mathcal{X})$ where \mathcal{X} is a Banach spacec and $\mathcal{M} = \mathcal{H} + i\mathcal{H}$ is equipped with the involution * in the sense of (1.6) then we can check easily that $(\mathcal{M})^{\dagger} = \mathcal{H}^{\dagger} + i\mathcal{H}^{\dagger}$ and the dual involution * of * is given by

$$\forall h, k \in \mathcal{H} : \left(h^{\dagger} + ik^{\dagger}\right)^{\star} = h^{\dagger} - ik^{\dagger}.$$
(3.9)

The results follow immediately from the Theorem 3.1. \blacksquare

Let \mathcal{A} be a Banach algebra with unit 1.

Theorem 3.3 ([1, 8, 11]). For $a, b \in A$ we have the following statements. Fuglede and elementary operators on Banach space

- (i) a, b hermitian elements $\Rightarrow L_a, R_b$ hermitian operators $\Rightarrow \delta_{a,b}$ hermitian
- (ii) a, b normal elements $\Rightarrow L_a, R_b$ normal operators $\Rightarrow \delta_{a,b}$ normal
- (iii) if $\mathcal{A} = B(\mathcal{X})$; a normal \Rightarrow a Fuglede.

As a consequence, if a = h + ik is normal and $b \in \mathcal{A}$, then

$$[a,b] = 0 \Leftrightarrow [h,b] = [k,b] = 0.$$

Proposition 3.4 If a, b are normal operators in $B(\mathcal{X})$ and x any element in $\mathcal{A} = B(\mathcal{X})$, then

$$M_{a,b}^2 x = 0 \Rightarrow M_{a,b} x = 0.$$

Proof. If a, b are hermitian operators then we can check easily that, for arbitrary $r \in \mathbb{R}$ and all $x \in \mathcal{A}$, $||x|| = ||e^{ira}xe^{irb}||$. Let

$$e^{ira} = 1 + ira + K_a : K_a = \sum_{n=2}^{\infty} \frac{(ira)^n}{n!}$$

 $e^{irb} = 1 + irb + K_b : K_b = \sum_{n=2}^{\infty} \frac{(irb)^n}{n!}.$

Suppose, for hermitian a,b and $x\in \mathcal{A}$ that $M^2_{a,b}x=0,$ then

$$a^n x b^m = 0 (m, n \ge 2).$$

Hence, $K_a x K_b = 0$ and therefore, we can leave in the expansion of $||e^{ira} x e^{irb}||$:

$$\begin{split} \|x\| &= \|e^{ira}x(1+irb) + (1+ira)xe^{irb} - (1+ira)x(1+irb)\| \\ &= \|r^2axb - ir(ax+xb) - x + e^{ira}x(1+irb) + (1+ira)xe^{irb}\|, \end{split}$$

for all r > 0. Consequently if

$$||r^2axb|| \le ||ir(ax+xb) - x + e^{ira}x(1+irb) + (1+ira)xe^{irb}||$$

then,

$$\|axb\| \le \frac{1}{r^2} \left[r \|ax + xb\| + \|x\| + \|x(1 + irb)\| + \|(1 + ira)x\| \right]$$
(3.10)

If not, we have

$$\left\| r^{2}axb \right\| \leq \left\| ir\left(ax+xb\right)-x+e^{ira}x(1+irb)+(1+ira)xe^{irb} \right\| + \|x\|$$

and

$$\|axb\| \le \frac{1}{r^2} \left[r \|ax + xb\| + 2 \|x\| + \|x(1 + irb)\| + \|(1 + ira)x\| \right].$$
(3.11)

From the equations (3.10) and (3.11), we conclude that axb = 0.

If a, b are normal elements with $a = h_1 + ik_1$, $b = h_2 + ik_2$. Then, by Theorems (3.1) and (3.3), L_a , R_b are Fuglede operators and so it follows from $a^2xb^2 = 0$ that

$$a^{*2}xb^{*2} = aa^{*}xb^{2} = a^{2}xb^{*2} = a^{*2}xb^{2} = a^{2}xbb^{*} = 0.$$

Hence,

$$(a^* \pm a)^2 x (b^* \pm b)^2 = 0$$

Using the first case, we get

$$(a^* \pm a)x(b^* \pm b) = 0.$$

This yields

$$h_1xh_2 = h_1xk_2 = h_1xh_2 = k_1xh_2 = k_1xk_2 = 0.$$

Therefore axb = 0.

Corollary 3.5 If a, b are normal operators in $B(\mathcal{X})$ then

$$\ker M_{a,b} \cap ran \ M_{a,b} = \{0\}.$$

Proposition 3.6 If $\mathcal{A} = B(\mathcal{X})$ where \mathcal{X} is a Banach space and $T \in B(\mathcal{X})$ is a normal operator, then T is a natural operator.

Proof. Let \mathcal{X}^{\dagger} be the dual of \mathcal{X} and T^{\dagger} be the dual adjoint of $T \in B(\mathcal{X})$. With respect to the involution (1.6) and its dual (3.9), we have that T^{\dagger} is normal. So that T^{\dagger} and T are Fuglede operators and by duality we get $\overline{ran T} = \overline{ran T^*}$. Using [8] we get ker $T \cap ran T^* = \{0\}$. Thus, ker $TT^* = \ker T^*$ which means that T is a natural operator.

Consequently for $T \in B(\mathcal{X})$, we have

$$T \text{ normal} \Rightarrow T \text{ Fuglede} \Rightarrow T \text{ reduced}$$
(3.12)

$$T \text{ normal} \Rightarrow T \text{ natural.}$$
 (3.13)

In what follows we show that the elementary operator $L_a R_b$ induced by hermitians elements is not necessarily a hermitian operator.

Lemma 3.7 [14], Let T be a bounded linear operator on B(H), for a Hilbert space H. Then T is hermitian if and only if there exist two self-adjoints operators A, $B \in B(H)$ such that $T = L_A + \delta_B$.

Proposition 3.8 Let $A, B \in B(H)$ be a self-adjoints operators. If A and B are not scalar operators then $M_{A,B}$ is not hermitian operator.

Fuglede and elementary operators on Banach space

Proof. If $M_{A,B}$ is a hermitian operator, then by Lemma 3.7, $M_{A,B} = L_{AB} + \delta_R$ where R is a self-adjoint operator. Hence,

$$\forall X \in B(H) : AXB - ABX = XBA - BXA.$$

Therefore,

$$\forall X \in B(H) : A(XB - BX) - (XB - BX)A = 0.$$

Thus,

$$A\delta_B - \delta_B A = 0.$$

Which means that $\delta_A \delta_B = \delta_I$ (*I* denotes the identity operator), by [16] it follows that either *A* or *B* is a scalar. Contradiction to our assumptions.

Remark 3.9 Theorem 3.3, showed that the hermitian and normal properties are preserved for L_A and R_B and their sum but not preserved for the product $L_A R_B$ (Proposition 3.8). However, Theorem 3.1, showed that the Fuglede property is preserved for L_A , R_B , their sum and their product for an arbitrary involution.

Let \mathcal{A} be a Banach algebra with unit e and E be the elementary operator defined on \mathcal{A} by $E = M_{a_1,b_1} + M_{a_2,b_2}$.

The following result generalizes Rosenblum's Theorem [11].

Proposition 3.10 If $(a_1, a_2), (b_1, b_2)$ are 2-tuples of commuting normal elements in \mathcal{A}^2 , then E is a Fuglede operator.

Proof. If $a_1xb_1 = a_2xb_2$, for $x \in \mathcal{A}$ then by induction, $a_1^nxb_1^m = a_2^nxb_2^m$, for all $n, m \in \mathbb{N}$. Hence,

$$\exp(a_1)x\exp(b_1) = \exp(a_2)x\exp(b_2) \tag{3.14}$$

Let $a_i = h_i + ik_i$ and $b_i = v_i + iu_i$, i = 1, 2 where h_i, k_i, v_i and $u_i \in \mathcal{H}_{\mathcal{A}}$. Set

$$c_i = \exp(a_i - a_i^*), \ d_i = \exp(b_i - b_i^*), \ i = 1, 2.$$
 (3.15)

Then,

$$c_i = \exp(2ik_i), d_i = \exp(2iu_i) \text{ and } ||c_i|| = ||d_i|| = 1, \ i = 1, 2.$$
 (3.16)

By (3.14) and $[a_1, a_2] = [b_1, b_2] = 0$, we get

$$x = \exp(-a_1) \exp(a_2) x \exp(b_2) \exp(-b_1).$$
(3.17)

From equations (3.15), (3.17), we obtain

$$c_1 c_2^{-1} x d_2^{-1} d_1 = \exp(-a_1^*) \exp(a_2^*) x \exp(b_2^*) \exp(-b_1^*)$$

and by (3.16),

$$\|\exp(-a_1^*)\exp(a_2^*)x\exp(b_2^*)\exp(-b_1^*)\| \le \|x\|.$$
(3.18)

Let f be the function from \mathbb{C} to \mathcal{A} defined by

$$f(z) = \exp[z(a_2^* - a_1^*)]x \exp[z(b_2^* - b_1^*)]$$

Clearly f is an entire function and by (3.18) f is bounded on the whole field \mathbb{C} . So by Liouville's Theorem, f is a constant function on \mathbb{C} . Hence, for all $z \in \mathbb{C}$, f(z) = f(0) = x. Therefore

$$\exp[z(a_2^* - a_1^*)]x \exp[z(b_2^* - b_1^*)] = x$$
, for all $z \in \mathbb{C}$

and

$$\exp(za_1^*)x\exp(zb_1^*) = \exp(za_2^*)x\exp(zb_2^*), \text{ for all } z \in \mathbb{C}.$$

Thus

$$\sum_{n,k=0}^{\infty} \frac{z^{n+k}}{n!k!} \left(a_1^{*n} x b_1^{*k} - a_2^{*n} x b_2^{*k} \right) = \sum_{m=0}^{\infty} \frac{z^m}{n!k!} \sum_{n+k=m} \left(a_1^{*n} x b_1^{*k} - a_2^{*n} x b_2^{*k} \right) = 0.$$

Finally, we get for all $(n,k) \in \mathbb{N}^2$, $a_1^{*n}xb_1^{*k} = a_2^{*n}xb_2^{*k}$. In particular, for n = k = 1, $x \in \ker E^*$.

The following corollary generalizes the result given by Brooke, Brush and Pearson [5]

Corollary 3.11 Let $(a_1, a_2), (b_1, b_2)$ be 2-tuples of commuting hermitian elements in \mathcal{A}^2 and $\lambda \in \mathbb{C}$. If $a_1 x b_1 = \lambda a_2 x b_2 \neq 0$, for certain element $x \in \mathcal{A}$ then $\lambda \in \mathbb{R}$. In particular, for $b_1 = a_2$ and $a_1 = b_2 = a$, if $ax = \lambda xa \neq 0$, then $\lambda \in \mathbb{R}$.

Proof. From the previous proposition we get $a_1xb_1 = \overline{\lambda}a_2xb_2 = \lambda a_2xb_2$. Hence $(\overline{\lambda} - \lambda) a_2 x b_2 = 0$. Thus $\overline{\lambda} = \lambda$.

Acknowledgement. The authors thank the anonymous referees for their helpful remarks and for suggestions in proving the equivalence (3.7) in Theorem 3.1.

References

- [1] J. Anderson, On normal derivation, Proc. Amer. Math. Soc., 38(1973), 136– 140.
- [2] A. Bachir and A. Segres, Generalized Fuglede-Putnam theorem and orthogonal*ity*, AJMAA **1**(2004), pp. 1–5.
- [3] A. Bachir and A. Segres, An asymmetric Fuglede-Putnam's theorem and orthogonality, Kyungpook Math. J., **46**(2006), 40–46.
- [4] F.F. Bonsall and J. Duncan, Numerical range I, II, London Math. Soc., Lecture Notes 2(1971), **10**(1973).

132

- [5] J.A. Brooke, P. Busch and B. Pearson, Commutativity up to a factor of bounded operators in complex Hilbert space. R. Soc. Lon. Ser. A, M. Phys. Eng. Sci., A. 458(2002), 109-118.
- [6] B.P. Duggal, Putnam-Fuglede theorem and the range-kernel orthogoanality of derivations, Integr. J. Math. Sci., 27(2001), 573–582.
- [7] B.P. Duggal, Subspaces gaps and range-kernel orthogoanality of an elementary operator, Linear Algebra and its Applications, **383**(2004), 93–106.
- [8] C.K. Fong, Normal operators on Banach spaces, Glasgow Math. J., 20(1979), 163–168.
- B. Fuglede, A commutativity theorem for normal operators, Proc. Nat. Acad. Sci. U.S.A., 36(1950), 35–40.
- [10] R.E. Harte, Skew exactness and range-kernel orthogonality, Filomat (Nis), 19(2005), 19–33.
- [11] M. Rosenblum, On a theorem of Fuglede and Putnam's, J. London Math. Soc., 33(1958), 376–377.
- [12] V.S. Shulman , Multiplying operators in C^{*}-algebras and problems of reflexivity of algebras containing m.a.s.a (in Russian), Funkc. Analis i prilozhen, $\mathbf{8} - \mathbf{1}(1974), 92-93.$
- [13] V.S. Shulman and L. Turowska, Operator synthesis II: Individual synthesis and linear operator equations, (preprint).
- [14] A.M. Sinclair, Jordan homomorphisms and derivations on semi-Banach algebra, Proc. Amer. Math. Soc., 24(1970), 209–214.
- [15] J.G. Stampfli and B.L. Wadhwa, An asymmetric Putnam-Fuglede theorem for dominant operators, Indiana Univ. J., 25(1976), 359–365.
- [16] J.P. Williams, On the range of a derivation, Pacific. J. Math., 38(1971), 273– 279.

A. Segres

Department of Mathematics, Mascara University, Mascara, Algeria *E-mail*: segres03 @ yahoo.fr

A. Bachir

Department of Mathematics, Faculty of Science, King Khalid University, Abha, P.O.Box 9004 Saudi Arabia

E-mail: bachir_ahmed @ hotmail.com