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ON STOCHASTIC INTEGRODIFFERENTIAL EQUATIONS
VIA NON-LINEAR INTEGRAL CONTRACTORS I

Miljana Jovanović∗ and Svetlana Janković†

Abstract

The aim of this paper is to study the existence and uniqueness of solutions
for a general stochastic integrodifferential equation of the Ito type, by using the
concept of non-linear bounded random integral contractors, which includes the
Lipschitz condition as a special case. The method applied in this consideration
follows partially the basic ideas of the contractor theory introduced earlier by
Altman [1, 2] and Kuo [6]. It is also shown that the Lipschitz condition and the
condition based on a bounded random integral contractor for the coefficients
of the considered equation, in general, cannot be compared.

1 Introduction

Several phenomena in life and sciences, especially in mechanics, engineering and,
since recently, in finance, have been found to depend on random excitations. It
therefore seems natural that current trend in describing and studying these phe-
nomena is focused on the use of stochastic mathematical models rather than deter-
ministic ones. Having in mind that in many cases random excitations are of the
Gaussian white noise type, which is mathematically described as a formal deriva-
tive of the Brownian motion, all such phenomena are mathematically modelled and
essentially represented by complex stochastic differential equations of the Ito type.
Obviously, the interest oh researchers is usually focused on conditions guaranteeing
the existence, uniqueness and bifurcational behavior of solutions to these equations.

For example, the behavior of a non-linear dynamical system can be represented
by the following differential equation

ÿ + f(t, ẏ, y) = g(t, ẏ, y) · ξ(t, ω), t ≥ 0,
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where ξ(t, ω) is a Gaussian white noise perturbation and ω ∈ Ω are random events.
Since ξ(t, ω) = ẇ(t, ω), where w(t, ω) is a Brownian motion, this equation can be
transformed into the following stochastic system,

dy(t) = x(t) dt

dx(t) = −f
(
t, x(t), c +

∫ t

0

x(s) ds
)
dt + g

(
t, x(t), c +

∫ t

0

x(s) ds
)
dw(t),

where y(0) = c and ω is usually omitted, as we will do throughout the paper. The
second equation in this system is the stochastic integrodifferential equation of the
Ito type, which is a special case of the equation considered in the present paper,

dx(t) = F
(
t, x(t),

∫ t

0

f1(t, s, x(s)) ds,

∫ t

0

f2(t, s, x(s)) dw(s)
)
dt (1)

+G
(
t, x(t),

∫ t

0

g1(t, s, x(s)) ds,

∫ t

0

g2(t, s, x(s)) dw(s)
)
dw(t),

t ∈ [0, T ], x(0) = x0 a.s.

Here w = (w(t), t ≥ 0) is a scalar Brownian motion defined on a complete
probability space (Ω,F ,P) with a natural filtration (Ft, t ≥ 0) of non-decreasing
sub-σ-algebras of F (Ft = σ{w(s), 0 ≤ s ≤ t}), x0 is a random variable independent
of w, the functions F : [0, T ] × R3 → R, G : [0, T ] × R3 → R, fi : J × R → R,
gi : J×R → R, i = 1, 2, where J = {(s, t) : 0 ≤ s ≤ t ≤ T}, are assumed to be Borel
measurable on their domains. The process x = (x(t), t ∈ [0, T ]) is a strong solution
to Eq. (1) provided it is adapted to (Ft, t ≥ 0), all the Lebesgue and Ito integrals
in the integral form of Eq. (1) are well defined, and Eq. (1) holds a.s. for each
t ∈ [0, T ]. We restricted ourselves to one-dimensional case; the multi-dimensional
one is analogous and is not difficult by itself, but involves a complex notation.

Eq. (1) was studied earlier by many authors, first of all by Murge and Pachpatte
[10, 11]. A somewhat simpler form of this equation, that is, linear with respect to
Lebesgue and Ito integrals, was presented in paper [3] by Berger and Mizel. The
basic existence-and-uniqueness theorem under classical conditions was proved in
the above cited papers: Let E|x0|2 < ∞ and the functions F, G, fi, gi, i = 1, 2 be
globally Lipschitzian and satisfy the linear growth condition, i.e., let there exist a
constant L > 0 such that for all (t, s) ∈ J and (x, y, z), (x′, y′, z′) ∈ R3,

|F (t, x, y, z)− F (t, x′, y′, z′)| ≤ L(|x− x′|+ |y − y′|+ |z − z′|), (2)
|fi(t, s, x)− fi(t, s, x′)| ≤ L|x− x′|, i = 1, 2

|F (t, x, y, z)| ≤ L(1 + |x|+ |y|+ |z|), (3)
|fi(t, s, x)| ≤ L(1 + |x|), i = 1, 2,

and analogously for G, g1, g2. Then, Eq. (1) has a unique a.s. continuous and
Ft-adapted solution x(t) satisfying E supt∈[0,T ] |x(t)|2 < ∞.
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The focus of our analysis in the present paper is to study the existence and
uniqueness of the solution to Eq. (1) under some non-classical conditions, that is,
by using the concept of a random integral contractor which includes the Lipschitz
condition as a special case.

2 Formulation of the problem and main results

The concept of integral contractors was introduced by Altman [1, 2] for studying
some different classes of deterministic equations in Banach spaces. Later, this ap-
proach was appropriately extended by Kuo [6] to the notion of random integral
contractors for stochastic differential equations of the Ito type, and also for special
classes of stochastic integral and integrodifferential equations in various functional
spaces. In particular, we highlight papers [4, 5, 6, 8, 9, 13, 12, 14] and esspecially
paper [8] by Mao treating stochastic differential-functional equations with semi-
martingales. The important fact is that in all these papers, with a partial exception
of [9], the considered equations were linear with respect to Lebesgue and Ito in-
tegrals, so the regular integral contractor was defined as a solution to any linear
functional equation. However, in the present paper we study the non-linear case,
which makes it difficult for us to introduce notions and present conditions guaran-
teeing the existence and uniqueness of the solution to Eq. (1). For that reason, the
main aim in this paper is to introduce the notion of a non-linear bounded random
integral contractor, so that the non-linearity of the Lebesgue and Ito integrals in
Eq. (1) could be exceeded, and then to prove the existence and uniqueness of the
solution.

In the remainder, let us denote that C is a collection of scalar stochastic processes,
defined on [0, T ], continuous almost surely and adapted to the filtration (Ft, t ≥ 0).

For reasons of notational simplicity, let us introduce the following operators: For
each x ∈ C,

(A1x)(t) :=
∫ t

0

f1(t, s, x(s)) ds, (A2x)(t) :=
∫ t

0

f2(t, s, x(s)) dw(s)

(B1x)(t) :=
∫ t

0

g1(t, s, x(s)) ds, (B2x)(t) :=
∫ t

0

g2(t, s, x(s)) dw(s).

Likewise, let us denote that

F [x(t)] = F
(
t, x(t), (A1x)(t), (A2x)(t)

)
,

G[x(t)] = G
(
t, x(t), (B1x)(t), (B2x)(t)

)
.

In accordance with this, Eq. (1) can be written in a shorter integral form

x(t) = x0 +
∫ t

0

F [x(s)] ds +
∫ t

0

G[x(s)] dw(s), t ∈ [0, T ]. (4)

Let

Φ : [0, T ]×R3 → R, Γ : [0, T ]×R3 → R,

Φi : J ×R → R, Γi : J ×R → R, i = 1, 2,
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be measurable mappings, bounded in the sense that there exist positive constants
α, β, αi, βi, i = 1, 2, such that for every (t, x, u, v) ∈ [0, T ] × R3, (t, s, x) ∈ J × R,
y ∈ R,

|Φ(t, x, u, v) · y| ≤ α |y|, |Γ(t, x, u, v) · y| ≤ β |y|, (5)
|Φi(t, s, x) · y| ≤ αi |y|, |Γi(t, s, x) · y| ≤ βi |y|, i = 1, 2.

We also introduce the following operators: For every x, y ∈ C,

((Φ̃1x)y)(t) :=
∫ t

0

Φ1(t, s, x(s)) y(s) ds,

((Φ̃2x)y)(t) :=
∫ t

0

Φ2(t, s, x(s)) y(s) dw(s), (6)

((Γ̃1x)y)(t) :=
∫ t

0

Γ1(t, s, x(s)) y(s) ds,

((Γ̃2x)y)(t) :=
∫ t

0

Γ2(t, s, x(s)) y(s) dw(s),

and denote that

Φ[x(t), y(t)] = Φ
(
t, x(t), ((Φ̃1x)y)(t), ((Φ̃2x)y)(t)

)
,

Γ[x(t), y(t)] = Γ
(
t, x(t), ((Γ̃1x)y)(t), ((Γ̃2x)y)(t)

)
.

We are now able to introduce the following non-linear operator A: For every x, y ∈ C,

((Ax)y)(t) := y(t) +
∫ t

0

Φ[x(s), y(s)] y(s) ds (7)

+
∫ t

0

Γ[x(s), y(s)] y(s) dw(s), t ∈ [0, T ].

Clearly, (Ax)y ∈ C.
Definition 2.1 Let there exist a positive constant K such that for every x, y ∈ C
the following inequalities hold almost surely:

∣∣F [x(t)− ((Ax)y)(t)]− F [x(t)] + Φ[x(t), y(t)] · y(t)
∣∣

≤ K
[||y||t +

∣∣(A1(x− (Ax)y))(t)− (A1x)(t) + ((Φ̃1x)y)(t)
∣∣

+
∣∣(A2(x− (Ax)y))(t)− (A2x)(t) + ((Φ̃2x)y)(t)

∣∣]
∣∣fi(t, s, x(s)− ((Ax)y)(s))− fi(t, s, x(s)) + Φi(t, s, x(s)) · y(s)

∣∣
≤ K ||y||s, i = 1, 2, (8)∣∣G[x(t)− ((Ax)y)(t)]−G[x(t)] + Γ[x(t), y(t)] · y(t)

∣∣
≤ K

[||y||t +
∣∣(B1(x− (Ax)y))(t)− (B1x)(t) + ((Γ̃1x)y)(t)

∣∣
+

∣∣(B2(x− (Ax)y))(t)− (B2x)(t) + ((Γ̃2x)y)(t)
∣∣],∣∣gi(t, s, x(s)− ((Ax)y)(s))− gi(t, s, x(s)) + Γi(t, s, x(s)) · y(s)
∣∣

≤ K ||y||s, i = 1, 2,
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where ||y||t = sup
0≤s≤t

|y(s)|. Then the set of functions {F, f1, f2, G, g1, g2} has a

bounded random integral contractor
{

I +
∫ t

0

Φ
(
s, x,

∫ s

0

Φ1 dr,

∫ s

0

Φ2 dw(r)
)
ds (9)

+
∫ t

0

Γ
(
s, x,

∫ s

0

Γ1 dr,

∫ s

0

Γ2 dw(r)
)
dw(s)

}
.

Definition 2.2 A bounded random integral contractor (9) is said to be regular if
the equation

(Ax) y = z (10)

has a solution y in C for any x and z in C.
Let L2([0, T ]×Ω) be a collection of stochastic processes in C such that P

{ ∫ T

0
|x(t)|2dt <

∞}
= 1.

Definition 2.3 The functions F and G in Eq. (4) are said to be stochastically
closed if for any x and xn in C, such that xn → x and F [xn] → y, G[xn] → z
in L2([0, T ] × Ω), it follows that y = F [x] and z = G[x] almost surely, for every
t ∈ [0, T ].

It is easy to check that if the functions F, f1, f2, G, g1, g2 satisfy the global Lips-
chitz condition (2), then F and G are stochastically closed and the set {F, f1, f2, G, g1, g2}
has a trivial integral contractor (9) for Φ = Γ = Φi = Γi ≡ 0, i = 1, 2. Obviously,
the converse also holds. Moreover, if the global Lipschitz condition (2) is valid, let
us prove that there exists a class of non-trivial bounded integral contractors, but
that the converse assumption does not hold.

First, we can prove that
{

I +
∫ t

0

Φ
(
s, x,

∫ s

0

Φ1 dr, 0
)

ds

}
(11)

is a bounded integral contractor for Φ2 = Γ = Γ1 = Γ2 ≡ 0. Since the Lipschitz
condition (2) and the conditions (5) imply

|F [x(t)− ((Ax)y)(t)]− F [x(t)] + Φ[x(t), y(t)] · y(t)|
≤ |F [x(t)− ((Ax)y)(t)]− F [x(t)]|+ |Φ[x(t), y(t)] · y(t)|
≤ L

[|((Ax)y)(t)|+ |(A1(x− (Ax)y))(t)− (A1x)(t)|
+|(A2(x− (Ax)y))(t)− (A2x)(t)|] + α |y(t)|

≤ L
[||((Ax)y||t + |(A1(x− (Ax)y))(t)− (A1x)(t) + ((Φ̃1x)y)(t)|
+|(A2(x− (Ax)y))(t)− (A2x)(t)|] + (α + Lα1T ) ||y||t a.s.,

then

||(Ax)y||t ≤ sup
0≤s≤t

[
|y(s)|+

∫ s

0

|Φ[x(r), y(r)] y(r)| dr

]
(12)

≤ (1 + αT ) ||y||t.
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Hence

|F [x(t)− ((Ax)y)(t)]− F [x(t)] + Φ[x(t), y(t)] · y(t)|
≤ K

[||y||t + |(A1(x− (Ax)y))(t)− (A1x)(t) + ((Φ̃1x)y)(t)|
+|(A2(x− (Ax)y))(t)− (A2x)(t)|].

that is, F satisfies (8) with the constant K = L(1 + α1T + αT ) + α. However,

|((Φ̃1x)y)(t)| ≤
∫ t

0

|Φ1(t, s, x(s)) y(s)| ds ≤ α1T ||y||t a.s., Φ2 ≡ 0,

and thus

|f1(t, s, x(s)− ((Ax)y)(s))− f1(t, s, x(s)) + Φ1(t, s, x(s)) · y(s)|
≤ L|((Ax)y)(s)|+ α1 |y(s)| ≤ [L(1 + αT ) + α1] · ||y||s a.s.

Since Γ = Γ1 = Γ2 ≡ 0, all the relations in (8) are satisfied and, therefore, the set
of functions {F, f1, f2, G, g1, g2} has a class of bounded integral contractors (11).

Conversely, if there exists a regular bounded integral contractor (11), it follows
from (7) and (10) that the equation

y(t) +
∫ t

0

Φ[x(s), y(s)] y(s) ds = z(t), t ∈ [0, T ],

has a solution y ∈ C for every x and z in C. Then,

|z(t)| ≤ |y(t)|+
∫ t

0

|Φ[x(s), y(s)] y(s)| ds ≤ (1 + αT ) ||y||t a.s., t ∈ [0, T ]. (13)

Since ((Ax)y)(t) = z(t) a.s., from (8) we derive
∣∣F [x(t)− z(t)]− F [x(t)]

∣∣
≤ ∣∣F [x(t)− z(t)]− F [x(t)] + Φ[x(t), y(t)] y(t)

∣∣ +
∣∣− Φ[x(t), y(t)] y(t)

∣∣
≤ K

[||y||t + |(A1(x− z))(t)− (A1x)(t) + ((Φ̃1x)y)(t)|
+ |(A2(x− z))(t)− (A2x)(t)|] + α |y(t)|

≤ [
K(1 + α1T ) + α

][||y||t + |(A1(x− z))(t)− (A1x)(t)|
+ |(A2(x− z))(t)− (A2x)(t)|] a.s., t ∈ [0, T ].

However, from (13) we see that ||y||t does not have to be reduced with |z(t)|
a.s., so that Eq. (4) can have a bounded integral contractor, although the Lipschitz
condition, in general, does not have to be satisfied. Therefore, the Lipschitz condi-
tion and the one based on the integral contractor cannot, in general, be mutually
compared. This fact could be a motivation to focus our future analysis on conditions
and function spaces in order to obtain some alternative existence-and-uniqueness
theorems, as well as to establish relations between them.

We now state the following existence-and-uniqueness theorems using the notion
of a bounded random integral contractor.
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Theorem 2.1 Let F and G be stochastically closed and
∫ T

0
|F [x0]|2dt < ∞,

∫ T

0
|G[x0]|2dt <

∞ a.s. Let also the set of functions {F, f1, f2, G, g1, g2} has a bounded random in-
tegral contractor (9). Then Eq. (4) has a solution x in C.

Proof. The proof is based on the following iteration procedures: We define the
sequences {xn(t), n ≥ 0} and {yn(t), n ≥ 0} in C such that

x0(t) = x0 a.s.
xn+1(t) = xn(t)− ((Axn)yn)(t) (14)

= xn(t)− yn(t)−
∫ t

0

Φ[xn(s), yn(s)] yn(s) ds

−
∫ t

0

Γ[xn(s), yn(s)] yn(s) dw(s),

yn(t) = xn(t)− x0 −
∫ t

0

F [xn(s)] ds−
∫ t

0

G[xn(s)] dw(s). (15)

For simplicity, we shall prove this assertion step by step.

Step 1.

E||y||2t ≤ a
Antn

n!
, 0 ≤ t ≤ T, n ∈ N, (16)

where a and A are some generic constants.

Proof . Let us denote that

a(t) = F [xn(t)]− Φ[xn(t), yn(t)] yn(t)− F [xn+1(t)], (17)
ai(t, s) = fi(t, s, xn(s))− Φi(t, s, xn(s)) yn(s)− fi(t, s, xn+1(s)), i = 1, 2,

b(t) = G[xn(t)]− Γ[xn(t), yn(t)] yn(t)−G[xn+1(t)],
bi(t, s) = gi(t, s, xn(s))− Γi(t, s, xn(s)) yn(s)− gi(t, s, xn+1(s)), i = 1, 2.

Then, from (14) and (15) we have

yn+1(t) = xn+1(t)− x0 −
∫ t

0

F [xn+1(s)] ds−
∫ t

0

G[xn+1(s)] dw(s)

= xn(t)− yn(t)−
∫ t

0

Φ[xn(s), yn(s)] yn(s) ds

−
∫ t

0

Γ[xn(s), yn(s)] yn(s) dw(s) (18)

−x0 −
∫ t

0

F [xn+1(s)] ds−
∫ t

0

G[xn+1(s)] dw(s)

≡
∫ t

0

a(s) ds +
∫ t

0

b(s) dw(s).
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If we take xn instead of x and yn instead of y in (8), we obtain

| − a(t)| =
∣∣F [xn(t)− ((Axn)yn)(t)]− F [xn(t)] + Φ[xn(t), yn(t)] yn(t)

∣∣

≤ K

[
||yn||t +

∣∣∣−
∫ t

0

a1(t, s) ds
∣∣∣ +

∣∣∣−
∫ t

0

a2(t, s) dw(s)
∣∣∣
]

,

and similarly,

| − b(t)| ≤ K

[
||yn||t +

∣∣∣−
∫ t

0

b1(t, s) ds
∣∣∣ +

∣∣∣−
∫ t

0

b2(t, s) dw(s)
∣∣∣
]

.

By applying the usual stochastic integral isometry, Schwarz inequality and Doob
inequality [7], we find from (18) that

E sup
0≤s≤t

|yn+1(s)|2 ≤ 2
[
t

∫ t

0

E|a(s)|2ds + 4
∫ t

0

E|b(s)|2ds

]
(19)

≤ 2K2

{
3t

∫ t

0

E

[
||yn||2s +

∣∣∣−
∫ s

0

a1(s, r)dr
∣∣∣
2

+
∣∣∣−

∫ s

0

a2(s, r)dw(r)
∣∣∣
2
]

ds

+4 · 3
∫ t

0

E

[
||yn||2s +

∣∣∣−
∫ s

0

b1(s, r)dr
∣∣∣
2

+
∣∣∣−

∫ s

0

b2(s, r)dw(r)
∣∣∣
2
]

ds

}
.

We can estimate these integrals by using (8) and by applying integration by parts,
which yields finally

E||yn+1||2t = E sup
0≤s≤t

|yn+1(s)|2 ≤ A

∫ t

0

E||yn||2s ds, n ∈ N,

where A is a generic constant. By repeating integration, it follows that

E||yn||2t ≤
An

(n− 1)!

∫ t

0

(t− s)n−1E||y0||2s ds, n ∈ N.

Since y0(t) = − ∫ t

0
F [x0] ds− ∫ t

0
G[x0] dw(s), then

E||y0||2T ≤ 2
[
T

∫ T

0

E
∣∣F [x0]

∣∣2 ds + 4
∫ T

0

E
∣∣G[x0]

∣∣2 ds

]
= a,

so that
E||yn||2t ≤ a

Antn

n!
, t ∈ [0, T ], n ∈ N,

which proves the first step.

Step 2.

P
{||yn+1||T > 2−n−1

} ≤ c
cn
1

(n + 1)!
, (20)

where c and c1 are generic constants.
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Proof. It follows from (18) that

P
{||yn+1||T > 2−n−1

}
(21)

≤ P

{ ∫ T

0

|a(s)| ds > 2−n−2

}
+ P

{
sup

0≤t≤T

∣∣∣
∫ t

0

b(s) dw(s)
∣∣∣ > 2−n−2

}
.

The application of Chebyshev’s inequality and (19) yields

P

{ ∫ T

0

|a(s)| ds > 2−n−2

}
≤ 22n+4E

( ∫ T

0

|a(s)| ds

)2

≤ 22n+4 · T
∫ T

0

E|a(s)|2 ds ≤ 3 · 22n+4K2T

[ ∫ T

0

E||yn||2t dt

+K2

∫ T

0

t

∫ T

0

E||yn||2s ds dt + K2

∫ T

0

∫ T

0

E||yn||2s ds dt

]

≤ c
(4AT )n

(n + 1)!
,

where c is a generic constant. The second term on the right-hand side in (21) can
be estimated analogously and, therefore, (20) holds.

Step 3. The sequence {xn} in C converges almost surely, uniformly in [0, T ].

Proof. Let us start from (14) and derive that

sup
0≤t≤T

|xn+1(t)− xn(t)| = ||xn+1 − xn||T

≤ ||yn||T +
∫ T

0

∣∣Φ[xn(s), yn(s)] yn(s)
∣∣ ds

+
∣∣∣
∣∣∣
∫ t

0

Γ[xn(s), yn(s)] yn(s) dw(s)
∣∣∣
∣∣∣
T
.

From the boundedness of the mappings Φ and Γ we find that

P

{ ∫ T

0

∣∣Φ[xn(s), yn(s)] yn(s)
∣∣ ds > 2−n

}

≤ 22nT

∫ T

0

E
∣∣Φ[xn(s), yn(s)] yn(s)

∣∣2 ds

≤ 22nTα2

∫ T

0

E||yn||2s ds

≤ 22nTα2a
AnTn+1

(n + 1)!
,

P

{∣∣∣
∣∣∣
∫ t

0

|Γ[xn(s), yn(s)] yn(s)| dw(s)
∣∣∣
∣∣∣
T

> 2−n

}
≤ 4 · 22nβ2a

AnTn+1

(n + 1)!
.



176 Miljana Jovanović and Svetlana Janković

Thus,

P
{||xn+1 − xn||T > 3 · 2−n

}

≤ P
{||yn||T > 2−n

}
+ P

{ ∫ T

0

∣∣Φ[xn(s), yn(s)] yn(s)
∣∣ ds > 2−n

}

+P

{∣∣∣
∣∣∣
∫ t

0

Γ[xn(s), yn(s)] yn(s) dw(s)
∣∣∣
∣∣∣
T

> 2−n

}

≤ c · cn
1

n!
,

where c and c1 are generic constants. Since
∞∑

n=1

P
{||xn+1 − xn||T > 3 · 2−n

}
< ∞,

the application of Borel-Cantelli’s lemma yields that for all large enough n,

sup
0≤t≤T

|xn+1(t)− xn(t)| ≤ 3 · 2−n almost surely.

Therefore, the sequence {xn(t)} converges almost surely, uniformly in [0, T ].

Step 4. Let x∞ be a limit of the sequence {xn}. Then x∞ ∈ C and xn → x∞ in
L2([0, T ]× Ω).

Proof. It follows from Step 3 that x∞ is in C since the sequence {xn} in C converges
to x∞ almost surely. We deduce from (14) that

|xn+1(t)− xn(t)|2 ≤ 3 |yn(t)|2 + 3
∣∣∣
∫ t

0

Φ[xn(s), yn(s)] yn(s) ds
∣∣∣
2

+ 3
∣∣∣
∫ t

0

Γ[xn(s), yn(s)] yn(s) dw(s)
∣∣∣
2

.

Then, (16) yields

E||xn+1 − xn||2t ≤ 3
[
E||yn||2t + α2t

∫ t

0

E||yn||2s ds + 4β2

∫ t

0

E||yn||2s ds

]

≤ 3aAn

[
tn

n!
+ α2 tn+2

(n + 1)!
+ 4β2 tn+1

(n + 1)!

]
.,

which implies that ∫ T

0

E||xn+1 − xn||2t dt → 0, n →∞,

and, therefore, xn → x∞ in L2([0, T ]× Ω).

Step 5. Let Un(t) =
t∫
0

F [xn(s)] ds, Vn(t) =
t∫
0

G[xn(s)] dw(s), n ∈ N ,

U(t) =
t∫
0

F [x∞(s)] ds, V (t) =
t∫
0

G[x∞(s)] dw(s).
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Then Un → U , Vn → V in L2([0, T ]× Ω).

Proof. By applying (5) and (16), we find from (17) that

E

∫ T

0

∣∣F [xn+1(t)]− F [xn(t)]
∣∣2 dt

≤ 2 E

∫ T

0

∣∣F [xn+1(t)]− F [xn(t)] + Φ[xn(t), yn(t)] yn(t)
∣∣2 dt

+2 E

∫ T

0

∣∣Φ[xn(t), yn(t)] yn(t)
∣∣2 dt

≤ 2
[ ∫ T

0

E| − a(t)|2 dt +
∫ T

0

α E||yn||2t dt

]

≤ c
AnTn+1

(n + 1)!
→ 0, n →∞,

where c is a generic constant. Therefore, {F [xn]} is a Cauchy sequence in L2([0, T ]×
Ω), which implies that F [xn] → F [x∞] in L2([0, T ]×Ω) since xn → x∞ in L2([0, T ]×
Ω) and since the coefficients of Eq. (4) are stochastically closed in the sense of
Definition 2.2. Hence

∫ T

0

E|Un(t)− U(t)|2 dt =
∫ T

0

E

∣∣∣∣
∫ t

0

(
F [xn(s)]− F [x∞(s)]

)
ds

∣∣∣∣
2

dt

≤ T 2

∫ T

0

E
∣∣F [xn(t)]− F [x∞(t)]

∣∣2dt → 0, n →∞,

and, therefore, Un → U in L2([0, T ]× Ω).
Since Vn → V in L2([0, T ]× Ω) is based on the same computation, the proof of

Step 5 becomes complete.

Finally, we will complete the proof of Theorem 2.1. By taking L2([0, T ] × Ω)
limits on the both sides in (15) and by applying the conclusions of Steps 1, 4 and
5, we observe for all t ∈ [0, T ] that

x∞(t) =
∫ t

0

F [x∞(s)] ds +
∫ t

0

G[x∞(s)] dw(s) a.s. (22)

Consequently, x∞ is the solution to Eq. (4) since the processes on the both sides of
(22) are continuous almost surely for all t ∈ [0, T ], which completes the proof.

Theorem 2.2 Let the functions F, f1, f2, G, g1, g2 satisfy the assumptions of Theo-
rem 2.1 and the bounded random integral contractor (9) is regular. Then the solution
x to Eq. (4) in C is unique.

Proof. Let x1 and x2 be two solutions to Eq. (4). Since the bounded random
integral contractor (9) is regular, the equation

(Ax1)y = x1 − x2
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has a solution y ∈ C, that is,

y(t) +
∫ t

0

Φ[x1(s), y(s)] y(s) ds +
∫ t

0

Γ[x1(s), y(s)] y(s) dw(s)

= x1(t)− x2(t) (23)

=
∫ t

0

(
F [x1(s)]− F [x2(s)]

)
ds +

∫ t

0

(
G[x1(s)]−G[x2(s)]

)
dw(s).

Therefore,

y(t) = −
∫ t

0

(
F [x2(s)]− F [x1(s)] + Φ[x1(s), y(s)] y(s)

)
ds (24)

−
∫ t

0

(
G[x2(s)]−G[x1(s)] + Γ[x1(s), y(s)] y(s)

)
dw(s).

Since E||y||2t is generally not finite, we use the truncation:

I
N

(t) =
{

1, ||y||s ≤ N, 0 ≤ s ≤ t,
0, otherwise.

Then I
N
∈ C and I

N
(t) = I

N
(t) · I

N
(s) · I

N
(r) for 0 ≤ r ≤ s ≤ t ≤ T . Now, (24)

implies

EIN (t)||y||2t
≤ 2

[
t E

∫ t

0

I
N

(s)
∣∣F [x2(s)]− F [x1(s)] + Φ[x1(s), y(s)] y(s)

∣∣2ds

+4 E

∫ t

0

I
N

(s)
∣∣G[x2(s)]−G[x1(s)] + Γ[x1(s), y(s)] y(s)

∣∣2ds

]
.

From (8) we find that
∣∣F [x2(s)]− F [x1(s)] + Φ[x1(s), y(s)] y(s)

∣∣ (25)

≤ K
[||y||s +

∣∣(A1x2)(s)− (A1x1)(s) + ((Φ̃1x1)y)(s)
∣∣

+
∣∣(A2x2)(s)− (A2x1)(s) + ((Φ̃2x1)y)(s)

∣∣],
and similarly for G. From now on, we observe that

EIN (t)||y||2t
≤ 6K2

{
t E

∫ t

0

I
N

(s)
[ ||y||2s +

∣∣(A1x2)(s)− (A1x1)(s) + ((Φ̃1x1)y)(s)
∣∣2

+
∣∣(A2x2)(s)− (A2x1)(s) + ((Φ̃2x1)y)(s)

∣∣2] ds

+4E

∫ t

0

I
N

(s)
[ ||y||2s +

∣∣(B1x2)(s)− (B1x1)(s) + ((Γ̃1x1)y)(s)
∣∣2

+
∣∣(B2x2)(s)− (B2x1)(s) + ((Γ̃2x1)y)(s)

∣∣2] ds

}
.



On stochastic integrodifferential equations via non-linear integral contractors I 179

To estimate the right-hand side in the previous relation, we will proceed analogously
to (19). By omitting details, we obtain finally

EI
N

(t)||y||2t ≤ 6K2

{
t

∫ t

0

EI
N

(s)||y||2s ds

+ 2K2t

∫ t

0

I
N

(s)s
∫ s

0

EI
N

(r)||y||2r dr ds

+ 4
∫ t

0

EI
N

(s)||y||2s ds

+ 8K2

∫ t

0

I
N

(s)
∫ s

0

EI
N

(r)||y||2r dr ds

}

≤ c

∫ t

0

(1 + t− s)EI
N

(s)||y||2s ds

≤ c (1 + T )
∫ t

0

EI
N

(s)||y||2s ds,

where c is a constant. To close the proof, we apply the well-known the Gronwall-
Bellman lemma and conclude that EIN (t)||y||2t = 0 for all t ∈ [0, T ]. The ap-
plication of the Lebesgue monotone convergence theorem implies that E||y||2t =
limN→∞EIN (t)||y||2t = 0, t ∈ [0, T ] and, therefore, y(t) = 0 almost surely for all
t ∈ [0, T ]. Finally, from (23) it follows that x1 = x2 almost surely, which completes
the proof.
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180 Miljana Jovanović and Svetlana Janković
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