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Pth MEAN ASYMPTOTIC STABILITY AND

INTEGRABILITY OF ITÔ–VOLTERRA

INTEGRODIFFERENTIAL EQUATIONS

Svetlana Janković∗† and Maja Obradović

Abstract

Sufficient conditions for the pth mean stability and integrability of the
solutions to non-linear Itô–Volterra integrodifferential equations with non-
convolution drift and diffusion terms are investigated in this paper. Asymp-
totic convergence rates in pth moment sense are also discussed for the convo-
lution case with infinite delay.

1 Introduction

In many fields of physical, engineering and social sciences there is a large number of
nonlinear dynamical systems dependent of random excitations of a Gaussian white
noise type. For example, the behavior of a non-linear dynamical system can be
represented by the following differential equation

ÿ + f(t, ẏ, y) = g(t, ẏ, y) · ξ(t, ω), t ≥ 0,

where ξ(t, ω) is a Gaussian white noise perturbation and ω ∈ Ω are random events.
Since ξ(t, ω) = ẇ(t, ω), where w(t, ω) is a Brownian motion, this equation can be
transformed into the following stochastic system,

dy(t) = x(t) dt (1)

dx(t) = −f
(
t, x(t), c +

∫ t

0

x(s) ds
)
dt + g

(
t, x(t), c +

∫ t

0

x(s) ds
)
dw(t),
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where y(0) = c and ω is usually omitted, as we will do throughout the paper. The
second equation in this system is the stochastic Volterra integrodifferential equation,
which is a special case of the equation considered in the present paper,

dx(t) =
[
f(t, x(t)) + g

(
t, x(t),

∫ t

0

G(t, s) g1(s, x(s)) ds

)]
dt (2)

+h

(
t, x(t),

∫ t

0

H(t, s)h1(s, x(s)) ds

)
dw(t), t ≥ 0, x(0) = x0.

In a different direction, there are several open problems concerning the solutions
of these equations. The researchers’ interest is focused, among other things, on
exploring the behavior of the solutions by comparing them in some sense with the
solutions of the corresponding deterministic Volterra integrodifferential equations

ẋ(t) = f(t, x(t)) + g

(
t, x(t),

∫ t

0

G(t, s)g1(s, x(s)) ds

)
, t ≥ 0, x(0) = x0, (3)

or, in a simpler form, with the solutions of ordinary differential equations ẋ(t) =
f(t, x(t)), t ≥ 0, x(0) = x0. One of the priority is to emphasize conditions under
which the asymptotically stable solution to Eq. (3) remains to be asymptotically
stable in the presence of stochastic excitations described by the diffusion coefficient
of Eq. (38).

It is well-known that there is significant and very rich literature discussing spe-
cial techniques to study almost sure and pth mean exponential stability of solutions
to various classes of stochastic differential equations (see monographs [12] and [15]
by X. Mao, and [6, 9, 11, 19], for instance). However, less attention has been
devoted to asymptotic stability of Itô–Volterra integrodifferential equations (see
[1, 2, 3, 13, 14] and literature cited therein, among other things). For example,
the exponential mean square asymptotic stability and integrability for the convo-
lution Itô–Volterra equation dx(t) = f(t, x(t)) dt + h

(
t,

∫ t

0
H(t− s)x(s) ds

)
dw(t)

is considered in [13] under the assumptions that the kernel H decays exponentially
fast. On the other hand, even in the deterministic linear case, that is, for the
equation ẋ(t) = −a x(t) +

∫ t

0
H(t − s) x(s) ds, exponential stability cannot always

be guaranteed if the kernel does not vanish exponentially fast (see Murakami [16],
for instance). Because of that, it is important to provide conditions guarantee-
ing pth mean asymptotic stability and integrability of the solutions to Eq. (2).
We highlight paper [1] by J. Appleby where the relations between integrability in
pth mean and almost sure, as well as pth mean asymptotic stability of the non-
linear time-homogeneous Itô–Volterra equation with convolution kernels, dx(t) =[
f1(x(t))+

∫ t

0
K1(t− s)g1(x(s)) ds

]
dt+

[
f2(x(t)) +

∫ t

0
K2(t− s) g2(x(s)) ds

]
dw(t) is

studied under various assumptions for the coefficients of the equation. Note that pa-
per [1] contains detailed literature about similar problems for various deterministic
and stochastic differential equations.

In the present paper, our investigation is essentially based on the recent paper
[14] by X. Mao and M. Riedle, where they studied asymptotic mean square stability
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and integrability of one restriction of Eq. (2), that is, of the following Itô–Volterra
integrodifferential equation

dx(t) =
[
f(t, x(t)) + g

(
t,

∫ t

0

G(t, s)x(s) ds

)]
dt (4)

+h

(
t,

∫ t

0

H(t, s)x(s) ds

)
dw(t), t ≥ 0, x(0) = x0.

In fact, we generalize the results of paper [14] in two directions: First, we discuss
Eq. (2) which is more complex than Eq. (4). Second, we study asymptotic pth
mean stability, p ≥ 2, and pth mean integrability of the solutions to Eq. (2). Note
that the stochastic Volterra integrodifferential equation in the system (1) is not of
the type (4).

The organization of the paper is as follows: Section 2 describes the problems
to be studied and contains the main results of the paper. Precisely, we provide
sufficient conditions under which the solutions to Eq. (2) are pth mean asymptot-
ically stable and integrable. In Section 3, the convolution case of Eq. (2) with
infinite delay is considered. Likewise, some pth mean asymptotic convergence rates
are discussed, based on comparison with the appropriate results [20] by D.F. Shea
and S. Wainger for deterministic Volterra integrodifferential equations. The con-
cluding Section 4 contains some comments on extension of the previous results to
cover the pth asymptotic stability and integrability of more complex Itô–Volterra
equations. This section also contains some examples that illustrate the usefulness
of the theoretical considerations.

2 Main results

As usual, we first estabilish some standard notations and notions. Our initial as-
sumption is that all random variables and processes considered here are defined on
a complete probability space (Ω,F , {Ft}t≥0, P ) with a natural filtration {Ft}t≥0

generated by a standard n-dimensional Brownian motion w = {w(t), t ≥ 0} (i.e.
Ft = σ{w(s), 0 ≤ s ≤ t}). Let |x| stand for the Euclidean norm of x ∈ Rk and
||A|| for the operator norm of a matrix A ∈ Rk×l, k, l ∈ N , while AT is the trans-
pose of a matrix or vector. Let also L

p
2 (R+) be the space of integrable functions

B : R+ → Rk×l with ||B||
L

p
2

: =
∫∞
0
||B(u)|| p

2 du, where p ≥ 2 and R+ = [0,∞).

The topic of our analysis is Eq. (2), that is, its equivalent integral form,

x(t) = x0 +
∫ t

0

[
f(s, x(s)) + g

(
s, x(s),

∫ s

0

G(s, u) g1(u, x(u)) du

)]
ds (5)

+
∫ t

0

h

(
s, x(s),

∫ s

0

H(s, u)h1(u, x(u)) du

)
dw(s), t ≥ 0.

We suppose that x0 is a random vector in Rd with E|x0|p < ∞ and independent of
w. The functions f : R+×Rd → Rd, g : R+×Rd×Rd1 → Rd, g1 : R+×Rd → Rd2 ,
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h : R+×Rd×Rd3 → Rd×n, h1 : R+×Rd → Rd4 are assumed to be Borel measurable
in their domains and satisfy the conditions f(t, 0) ≡ 0, g(t, 0, 0) ≡ 0, g1(t, 0) ≡
0, h(t, 0, 0) ≡ 0, h1(t, 0) ≡ 0 for all t ≥ 0. The kernels G : J → Rd1×d2 and
H : J × Rd3×d4 are continuous on J , where J = {(t, s) : 0 ≤ s ≤ t}, G ≡ 0, H ≡ 0
on Jc, and they are integrable in the sense

||G||B : = sup
t≥0

∫ t

0

||G(t, s)|| p
2 ds < ∞, (6)

||H||B : = sup
t≥0

∫ t

0

||H(t, s)|| p
2 ds < ∞.

The equation (5) was earlier studied in several papers [17, 18] by M.G. Murge,
B.G. Pachpatte and [8, 10] by S. Janković and M. Jovanović, for instance, and also
in the basic paper [4] by M.A. Berger, V.J. Mizel in somewhat simpler form, that
is, when the equation is linear with respect to all the Lebesgue and Itô integrals.
The basic existence-and-uniqueness theorem based on Picard method of iterations
was proved in [17]. Under the assumptions that all the functions in Eq. (5) are
globally Lipschitzian and satisfy the linear growth conditions uniformly in t, s, and if
E|x0|2 < ∞, then there exists a unique a.s. continuous and adapted strong solution
x(t;x0) to Eq. (5) satisfying supt∈[0,T ] E|x(t; x0)|2 < ∞ for all T > 0. Moreover, if
E|x0|p < ∞, p > 0, then supt∈[0,T ] E|x(t; x0)|p < ∞.

Throughout the paper, we assume, with no emphasis on conditions, that there
exists a unique strong solution x(t; x0), t ≥ 0 to Eq. (5) satisfying supt∈[0,T ] E|x(t;x0)|p <
∞, p ≥ 2, and that all the Lebesgue and Itô integrals employed further are well
defined. Obviously, the above assumptions ensure that if x0 = 0 a.s., then Eq. (5)
has the zero solution, that is, x(t, 0) = 0 a.s. for all t ≥ 0.

As we saw above, the main purpose of the paper is to estabilish conditions under
which the solution x(t; x0) to Eq. (5) is the pth mean asymptotically stable in the
sense that

lim
t→∞

E|x(t; x0)|p = 0 (7)

whatever the value of the initial condition x(0) = x0. For simplicity, we will further
use the notation x(t) instead of x(t; x0) to denote the solution to Eq. (5) for a given
initial condition x0. Likewise, we will sometimes write xt instead of x(t) because of
the clarity and shorter notation.

Theorem 1 Let there exist a symmetric (d × d)−matrix Q, continuous functions
ξ, η, ρ, θ : R+ → R+ and constants k1, k2 > 0 such that for all t ≥ 0, x ∈ Rd, y ∈
Rd1 , z ∈ Rd3 the following conditions hold:

(H1) |x|2 ≤ xT Qx,
(H2) p xT Qf(t, x) ≤ −ξ(t) · xT Qx,

(H3) |Qg(t, x, y)| ≤ η(t) · (|x|+ |y|),
(H4) |Qh(t, x, z)| ≤ ρ(t) · (|x|+ |z|),
(H5) trace[hT (t, x, z)Qh(t, x, z)] ≤ θ(t) · (|x|2 + |z|2),
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(H6) |g1(t, x)| ≤ k1 |x|, |h1(t, x)| ≤ k2 |x|.
If the functions

a(t) := ξ(t)−
[
(p− 1)

(
2η(t) + 2(p− 2)ρ2(t) + θ(t)

)
(8)

+k
p
2
1 ‖G‖B η(t) t

p
2−1

]
,

b(t, s) := k
p
2
1 η(t) t

p
2−1‖G(t, s)‖ p

2 (9)

+kp
2 ||H||B tp−2

(
θ(t) + 2(p− 2)ρ2(t)

) · ‖H(t, s)‖ p
2

for all (t, s) ∈ J satisfy the conditions

a(t) > 0 for all large t and

∫ ∞

0

a(s) ds = ∞, (10)

lim sup
t→∞

1
a(t)

∫ t

0

b(t, s) ds < 1, (11)

lim
t→∞

1
a(t)

∫ T

0

b(t, s) ds = 0 for each T ≥ 0, (12)

then the solution x to Eq. (5) is pth moment asymptotically stable, that is,

lim
t→∞

E|x(t)|p = 0.

Proof. Let us denote that

y(s) =
∫ s

0

G(s, u)x(u) du, z(s) =
∫ s

0

H(s, u)x(u) du, s ≥ 0.

Then Eq. (5) can be rewritten in its differential form as

dx(t) = [f(t, x(t)) + g(t, y(t))] dt + h(t, z(t)) dw(t).

If we take U(t) = (xT
t Qxt)p/2 and apply the Itô formula, we obtain for t ≥ 0 that

dU(t) = p (xT
s Qxs)

p
2−1

[
xT

t Qf(t, xt) + xT
t Qg(t, xt, yt)

+
1
2

trace[hT (t, xt, zt)Qh(t, xt, zt)]

+ p
(p

2
− 1

)
(xT

t Qxt)
p
2−2|xT

t Qh(t, xt, zt)|2
]
dt

+ p (xT
s Qxs)

p
2−1xst

T Qh(t, xt, zt) dw(t).

Let us define the function V (t) := EU(t). Then, (H2) yields for 0 ≤ t1 ≤ t,

V (t) ≤ V (t1)−
∫ t

t1

ξ(s)V (s) ds + I1(t) + I2(t) + I3(t), (13)
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where

I1(t) = pE

∫ t

t1

(xT
s Qxs)

p
2−1xT

s Qg(s, xs, ys) ds,

I2(t) =
p

2
E

∫ t

t1

(xT
s Qxs)

p
2−1trace[hT (s, xs, zs)Qh(s, xs, zs)] ds, (14)

I3(t) = p
(p

2
− 1

)
E

∫ t

t1

(xT
s Qxs)

p
2−2|xT

s Qh(s, xs, zs)|2 ds.

It remains to estimate these integrals.
In order to estimate I1(t), we will apply (H1) and (H3) and the following version

of the Young inequality: aν−1b ≤ ν−1
ν aν + 1

ν bν , a, b ≥ 0, ν ≥ 1. Thus, we have

I1(t) ≤ pE

∫ t

t1

(xT
s Qxs)

p
2−1|xs| |Qg(s, xs, ys)| ds

≤ pE

∫ t

t1

(xT
s Qxs)

p
2−1η(s)

(|xs|2 + |xs| |ys|
)
ds

≤ p

∫ t

t1

η(s) V (s) ds + pE

∫ t

t1

η(s)
[ p

2 − 1
p
2

(xT
s Qxs)

p
2 +

2
p
|xs|

p
2 |ys|

p
2

]
ds

= 2(p− 1)
∫ t

t1

η(s) V (s) ds + 2 E

∫ t

t1

η(s)|xs|
p
2 |ys|

p
2 ds.

The last integral can be estimated by applying the Hölder inequality to |ys| p
2 , by

using (H6) and the property (6) of the kernel G. Hence,

2 E

∫ t

t1

η(s)|xs|
p
2 |ys|

p
2 ds

= 2 E

∫ t

t1

η(s)|xs|
p
2

∣∣∣∣
∫ s

0

G(s, u) g1(u, xu) du

∣∣∣∣
p
2

ds

≤ 2k
p
2
1 E

∫ t

t1

η(s) s
p
2−1

(∫ s

0

‖G(s, u)xu‖
p
2 |xs|

p
2 |xu|

p
2 du

)
ds

≤ k
p
2
1 E

∫ t

t1

η(s) s
p
2−1

(∫ s

0

‖G(s, u)‖ p
2
(|xs|p + |xu|p

)
du

)
ds

≤ k
p
2
1 ‖G‖B

∫ t

t1

η(s) s
p
2−1V (s) ds

+k
p
2
1

∫ t

t1

η(s) s
p
2−1

(∫ s

0

‖G(s, u)‖ p
2 V (u) du

)
ds.

Therefore,

I1(t) ≤
∫ t

t1

η(s)
[
2(p− 1) + k

p
2
1 ||G||B s

p
2−1

]
V (s) ds (15)
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+k
p
2
1

∫ t

t1

η(s) s
p
2−1

(∫ s

0

‖G(s, u)‖ p
2 V (u) du

)
ds.

Similarly, by using (H5) we get

I2(t) ≤ p

2
E

∫ t

t1

(xT
s Qxs)

p
2−1θ(s)

(|xs|2 + |zs|2
)
ds

≤ p

2
E

∫ t

t1

θ(s) V (s) ds +
p

2

∫ t

t1

θ(s)
[ p

2 − 1
p
2

(xT
s Qxs)

p
2 +

2
p
|zs|p

]
ds

= (p− 1)
∫ t

t1

θ(s)V (s) ds + E

∫ t

t1

θ(s)|zs|p ds.

To estimate the second integral, we apply the Hölder inequality for µ = p, ν =
p

p−1 , 1
µ + 1

ν = 1, as well as (H6) and (6). So,

E

∫ t

t1

θ(s)|zs|p ds (16)

= E

∫ t

t1

θ(s)
∣∣∣∣
∫ s

0

H(s, u) h1(u, xu) du

∣∣∣∣
p

ds

≤ kp
2 E

∫ t

t1

θ(s)
(∫ s

0

‖H(s, u)‖ p
2(p−1) du

)p−1

×
(∫ s

0

‖H(s, u)‖ p
2 |h1(u, xu)|pdu

)
ds

≤ kp
2 ||H||B

∫ t

t1

θ(s) sp−2

(∫ s

0

‖H(s, u)‖ p
2 V (u) du

)
ds.

Hence,

I2(t) ≤ (p− 1)
∫ t

t1

θ(s)V (s) ds (17)

+kp
2 ||H||B

∫ t

t1

θ(s) sp−2

(∫ s

0

‖H(s, u)‖ p
2 V (u) du

)
ds.

By repeating the previous procedures and (H4), we see that

I3(t) ≤ p
(p

2
− 1

)
E

∫ t

t1

(xT
s Qxs)

p
2−2|xs|2|Qh(s, xs, zs)|2 ds (18)

≤ p(p− 2)E

∫ t

t1

(xT
s Qxs)

p
2−2ρ2(s) |xs|2

(|xs|2 + |zs|2
)
ds

≤ p(p− 2)
∫ t

t1

ρ2(s)V (s) ds

+ p(p− 2) E

∫ t

t1

ρ2(s)(xT
s Qxs)

p
2−1|zs|2 ds
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≤ 2(p− 1)(p− 2)
∫ t

t1

ρ2(s) V (s) ds

+ 2(p− 2)kp
2 ||H||B

∫ t

t1

ρ2(s) sp−2

(∫ s

0

‖H(s, u)‖ p
2 V (u) du

)
ds.

Finally, (13) together with (15), (17) and (18) implies that

V (t) ≤ V (t1) +
∫ t

t1

(
−a(s)V (s) +

∫ s

0

b(s, u)V (u) du

)
ds, (19)

where the functions a and b are determined with (8) and (9), respectively.
Since the remainder of the proof is the same as the proof of Theorem 1 in [14],

we will omit details and briefly describe the basic idea: The inequality (19) causes
for t ≥ 0 that

D+V (t) ≤ −a(t)V (t) +
∫ t

0

b(t, s)V (s) ds,

where D+V (t) is the right Dini derivative of V (t). The essence of the proof is to
compare V (t) with the solution of the initial value problem

ẏ(t) = −a(t)y(t) +
∫ t

0

b(t, s)y(s) ds, t ≥ 0, y(0) = V (0). (20)

According to Theorem 2.2.2 in [5] (see also [7]), there exists a unique solution y to
Eq. (20). Moreover, the conditions (10)–(12) imply that y(t) → 0 as t →∞. Since
V (t) ≤ y(t) for t ≥ 0, then E|x(t)|p ≤ V (t) → 0 as t →∞. ♦

The following theorem contains sufficient conditions under which the solution x
to Eq. (5) is pth mean integrable.

Theorem 2 Let the conditions (H1)–(H6) in Theorem 1 hold and let the functions
a and b be defined with (8) and (9), respectively. If

sup
s∈[0,T ]

∫ ∞

s

b(t, s) dt < ∞ for every T ≥ 0, (21)

lim sup
s→∞

(
−a(s) +

∫ ∞

s

b(t, s) dt

)
< 0, (22)

then the solution x to Eq. (5) is the pth moment integrable, that is,
∫ ∞

0

E|x(t)|p dt < ∞.

Proof. The proof is analogous to the one of Theorem 2 in [14]. We will briefly
present it for completeness.
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From (22), it follows that there exist T ≥ 0 and a constant k > 0 such that for
every s ≥ T ,

−a(s) +
∫ ∞

s

b(t, s) dt < −k,

A simple calculation yields from (19) that, for t ≥ T ,

V (t) ≤ V (0) +
∫ T

0

(
−a(s) +

∫ ∞

s

b(u, s) du

)
V (s) ds− k

∫ t

T

V (s) ds. (23)

Since (21) implies that
∫ t

T
V (s) ds ≤ c = const, independently of t, from (23) we see

that
∫∞
0

E|x(ts)|p ds ≤ ∫∞
0

V (s) ds < ∞. ♦

3 Itô–Volterra equations with convolution kernels

In this section, we will discuss pth mean asymptotic stability and integrability of
the solutions to Eq. (5) with continuous convolution kernels G,H ∈ L

p
2 (R+), that

is, to the equation

dx(t) =
[
f(t, x(t)) + g

(
t, x(t),

∫ t

0

G(t− s) g1(s, x(s)) ds

)]
dt (24)

+h

(
t, x(t),

∫ t

0

H(t− s)h1(s, x(s)) ds

)
dw(t), t ≥ 0, x(0) = x0,

where the functions f, g, g1, h, h1 are defined as above. Recall that ||G||B =
∫∞
0
||G(u)|| p

2 du =
||G||

L
p
2

and ||H||B = ||GH||
L

p
2

in this case.

Having in mind the results from Section 2, we can formulate the following as-
sertion.

Corollary 1 Let there exist a symmetric (d× d)−matrix Q, a continuous function
ξ : R+ → R+ such that tp−2 = o

(
ξ(t)

)
as t →∞ and positive constants η, ρ, θ, k1, k2

such that the conditions (H1)–(H6) hold with η(t) ≡ η, ρ(t) ≡ ρ, θ(t) ≡ θ. Then the
solution x to Eq. (24) obeys limt→∞E|x(t)|p = 0.

Proof. From (8) and (9), we have

a(t) = ξ(t)−
[
(p− 1)

(
2η + 2(p− 2)ρ2 + θ

)
+ k

p
2
1 ‖G‖L

p
2

η t
p
2−1

]
,

sup
t≥0

∫ t

0

b(t, s) ds ≤ k
p
2
1 η ||G||

L
p
2

t
p
2−1 + kp

2 ||H||2L p
2

(
θ + 2(p− 2)ρ2

)
tp−2.

Since the conditions (10)–(12) hold, the proof follows straightforwardly by applying
Theorem 1. ♦

Especially, if ξ(t) = ξ · tα, ξ = const > 0, the above assertion holds for α > p−2.
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Recall that the main square asymptotic stability and integrability for Eq. (4)
with convolution kernels in paper [14] were considered under the assumptions (H1)–
(H3) and (H5) with positive constants ξ, η, ρ, θ. However, these assumptions do not
allow us to apply of Theorem 1 and Theorem 2 in order to estabilish pth mean
asymptotic stability and integrability of the solutions to Eq. (24) since the condi-
tions (10) and (21) do not hold, for instance. Because of that, we will appropriately
modify (H2)–(H5) to verify the pth mean asymptotic stability and integrability of
the solutions to Eq. (24) and to significantly simplify the conditions (10)–(12) and
(21)–(22).

Theorem 3 Let there exist a symmetric (d× d)−matrix Q and positive constants
ξ, η, ρ, θ, k1, k2 such that for all t > 0, x ∈ Rd, y ∈ Rd1 , z ∈ Rd3 the conditions (H1)
and (H6) are valid and the following assumptions hold:

(H7) p xT Qf(t, x) ≤ −ξ · xT Qx,

(H8) |Qg(t, x, y)| ≤ η · t 2
p−1 · |y|,

(H9) |Qh(t, x, z)| ≤ ρ · t 2
p−1 · |z|,

(H10) trace[hT (t, x, z)Qh(t, x, z)] ≤ θ · t2( 2
p−1) · |z|2.

If

2k
p
2
1 η ||G||

L
p
2

+ kp
2

(
(p− 2)ρ2 + θ

) ||H||2L p
2

< ξ − p− 2
2

(
2η + (p− 2)ρ2 + θ

)
, (25)

then the solution x to Eq. (24) satisfies

lim
t→∞

E|x(t)|p = 0,

∫ ∞

0

E|x(t)|p dt < ∞. (26)

Proof. We can start from the relation (13) which, because of (H7), becomes

V (t) ≤ V (t1)− ξ

∫ t

t1

V (s) ds + I1(t) + I2(t) + I3(t), (27)

where Ii(t), i = 1, 2, 3 are determined with (14). By using (H8), we find for 0 ≤
t1 < t that

I1(t) ≤ pη E

∫ t

t1

(xT
s Qxs)

p
2−1s

2
p−1|xs| |ys| ds

≤ pη E

∫ t

t1

[ p
2 − 1

p
2

(xT
s Qxs)

p
2 +

2
p

s1− p
2 |xs|

p
2 |ys|

p
2

]
ds

= (p− 2)η
∫ t

t1

V (s) ds + 2η E

∫ t

t1

s1− p
2 |xs|

p
2 |ys|

p
2 ds.

Since

2 E

∫ t

t1

s1− p
2 |xs|

p
2 |ys|

p
2 ds ≤ k

p
2
1 ‖G‖L

p
2

∫ t

t1

V (s) ds

+ k
p
2
1

∫ t

t1

(∫ s

0

‖G(s− u)‖ p
2 V (u) du

)
ds,
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then

I1(t) ≤
[
(p− 2)η + k

p
2
1 η||G||L p

2

] ∫ t

t1

V (s) ds (28)

+k
p
2
1 η

∫ t

t1

(∫ s

0

‖G(s− u)‖ p
2 V (u) du

)
ds.

By applying (H9), (H10) and the procedure analogous to (16), we find that

I2(t) ≤ p− 2
2

θ

∫ t

t1

V (s) ds (29)

+kp
2 θ ||H||

L
p
2

∫ t

t1

(∫ s

0

‖H(s− u)‖ p
2 V (u) du

)
ds.

I3(t) ≤ (p− 2)2

2
ρ2

∫ t

t1

V (s) ds (30)

+(p− 2) kp
2 ρ2 ||H||

L
p
2

∫ t

t1

(∫ s

0

‖H(s− u)‖ p
2 V (u) du

)
ds.

Substituting (28)–(30) into (3) yields the relation (19), where

a(s) ≡ a = ξ −
[
p− 2

2
(
2η + (p− 2)ρ2 + θ

)
+ k

p
2
1 η ||G||

L
p
2

]
, (31)

b(s, u) : = b̃(s− u) (32)

= k
p
2
1 η ||G(s− u)|| p

2 + kp
2

(
(p− 2)ρ2 + θ

) ||H||
L

p
2
· ||H(s− u)|| p

2 .

It is easy to verify that the conditions (10)–(12) in Theorem 1 as well as (21)–(22)
in Theorem 2 can be replaced by the common condition (25). For instance, (25)
implies that

lim sup
t→∞

1
a

∫ t

0

b(t, s) ds =
1
a

[
k

p
2
1 η ||G||

L
p
2

+ kp
2

(
(p− 2)ρ2 + θ

) ||H||2L p
2

]
< 1.

Therefore, (26) holds by applying Theorem 1 and Theorem 2, which completes the
proof. ♦

Corollary 2 Let there exist a symmetric (d× d)−matrix Q, a continuous function
ξ : R+ → R+ such that ξ(t) → ∞ as t → ∞ and positive constants η, ρ, θ, k1, k2

such that the conditions (H1), (H2), (H6), (H8)–(H10) hold. Then the solution x
to Eq. (24) obeys limt→∞E|x(t)|p = 0.

Proof. The proof follows from Theorem 1 since (10)–(12) are valid. ♦
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Note that for p = 2, g1(t, x) ≡ x, h1(t, x) ≡ x, K = 1, the condition (25) is
reduced to the one from paper [14] discussing Eq. (4).

In the remainder of this section, we will briefly discuss asymptotic convergence
rates for the pth mean of the solutions to Eq. (24). More precisely, we explain con-
ditions that are easy to verify guaranteeing, in dependence on some rate functions,
the pth mean asymptotic stability and pth mean integrability of the solutions to
Eq. (24), to provide a full insight into the study on this type of stochastic Volterra
convolution equations. Since our discussion is motivated by paper [14] and since
the proofs of the assertions presented below contain insignificant modifications with
respect to the ones from [14], we will just formulate them and omit their proofs.
For details, we refer the reader to Theorem 4, Corollary 5 and Corollary 6) in [14].

Our discussion is based on the above results [20] by D. Shea and S. Wainger (see
also [5, 7]) on convergence rates for the deterministic Volterra integrodifferential
equation with unbounded delay,

ẏ(t) =
∫

[0,t]

y(t− s) µ(ds), t ≥ 0, (33)

where µ is a finite Borel function satisfying
∫∞
0

ϕ(s)|µ|(ds) < ∞ for a weight func-
tion ϕ and the total variation |µ| of µ. Hence, we first briefly introduce some notions
and present Shea and Wainger’s results needed in our discussion.

A function ϕ : R → R+ is said to be a weight function if ϕ(0) = 1, ϕ is
measurable, locally bounded and locally bounded away from zero and ϕ(t + s) ≤
ϕ(t) · ϕ(s) for t, s ∈ R. The last property causes (see [7], Lemma 4.4.1, p.120, for
example) the existence of the limit

πϕ = − lim
t→∞

ln ϕ(t)
t

.

There are some of the weight functions:

ϕ(t) = eαt, α ∈ R, with πϕ = −α,

ϕ(t) = (1 + |t|)α, α ≥ 0, with πϕ = 0,

ϕ(t) = (1 + ln(1 + |t|))α, α ≥ 0, with πϕ = 0.

If the so-called characteristic function of the measure µ,

hµ(z) := z −
∫ ∞

0

e−zuµ(du)

satisfies hµ(z) 6= 0 for every z ∈ C with Rez ≥ πϕ, it is shown in [20] (see also [7],
Theorems 4.4.13 and 4.4.16) that the solution y to Eq. (33) obeys

lim
t→∞

ϕ(t) y(t) = 0,

∫ ∞

0

ϕ(t) y(t) ds < ∞. (34)

We can now formulate the following assertion:
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Theorem 4 Let there exist a symmetric (d× d)−matrix Q and positive constants
ξ, η, ρ, θ, k1, k2 such that for all t > 0, x ∈ Rd, y ∈ Rd1 , z ∈ Rd3 the conditions (H1),
(H6), (H7)–(H10) hold. If there exists a weight function ϕ such that

∫ ∞

0

ϕ(u)
(
||G(u)|| p

2 + ||H(u)|| p
2

)
du < ∞, (35)

and if

h(z) : = z − a−
∫ ∞

0

e−zu b̃(u) du 6= 0 for z ∈ C, Re z ≥ πϕ,

where a and b̃ are defined by (31) and (32), respectively, then the solution x to Eq.
(24) obeys

lim
t→∞

ϕ(t)E|x(t)|p = 0,

∫ ∞

0

ϕ(t)E|x(t)|p dt < ∞. (36)

The conditions guaranteeing the properties (36) for the solutions to Eq. (24)
could be simplified significantly for weight functions ϕ with πϕ = 0 and ϕ(t) = eαt,
which will be seen from the following assertions.

Corollary 3 Let the conditions (H1), (H6), (H7)–(H10) hold. If there exists a
weight function ϕ with πϕ = 0 such that (35) and (25) hold, then the solution x to
Eq. (24) obeys (36).

Corollary 4 Let the conditions (H1), (H6), (H7)–(H10) and (25) hold. If there
exist constants α1, α2 > 0 such that

∫ ∞

0

eα1s‖G(s)‖ p
2 ds < ∞,

∫ ∞

0

eα2s‖H(s)‖ p
2 ds < ∞, (37)

then there exists a constant β > 0 such that the solution x to Eq. (24) obeys

lim
t→∞

eβt E|x(t)|p = 0,

∫ ∞

0

eβt E|x(t)|p dt < ∞.

4 Some comments and examples

First, let us give some conclusions and comments.

• As the general conclusion of the previous considerations, it is appropriate to say
that under the noted sufficient conditions presence of noise does not destabilize in
pth moment sense the asymptotically stable zero solution to deterministic equations
(3) or ẋ(t) = f(t, x(t)). Precisely, the above assertions show how much dynamical
system can tolerate stochastic perturbations without losing the property of pth
asymptotic stability.

• In the paper, we have focused on the Itô–Volterra integrodifferential equation
(2) and the appropriate convolution equation (24). However, the obtained results
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could be extended to more complex equations, for instance, to the equation

dx(t) =
[
f(t, x(t)) + g

(
t, x(t),

∫ t

0

g̃(t, s, x(s)) ds

)]
dt (38)

+h

(
t, x(t),

∫ t

0

h̃(t, s, x(s)) ds

)
dw(t), t ≥ 0,

with initial data x(0) = x0, where f : R+ × Rd → Rd, g : R+ × Rd × Rd1 → Rd,
h : R+ ×Rd ×Rd2 → Rd×n, g̃ : J ×Rd → Rd1 , h̃ : J ×Rd → Rd2 .

As usual, with no emphasis on conditions, we require that there exists a unique
a.s. continuous and adapted solution to Eq. (38) (see [17, 18] for details). We
suppose, for instance, that there exists a function ξ : R+ → R+ with tp−1 = o(ξ(t))
as t → ∞ such that −p xT f(t, x) ≥ ξ(t) |x|2 for all t ≥ 0 and x ∈ Rd. We also
suppose that |g(t, x, y)| ≤ K1(|x| + |y|) and ||h(t, x, z)|| ≤ K2(|x| + |z|) for some
constants K1,K2 > 0 and all t ≥ 0, x ∈ Rd, y ∈ Rd1 , z ∈ Rd2 , as well as that
|g̃(t, s, x)| ≤ G(t, s) |x| and |h̃(t, s, x)| ≤ H(t, s) |x|, where G and H are continu-
ous and L

p
2 -integrable scalar functions. If f(t, 0) ≡ 0, g(t, 0, 0) ≡ 0, h(t, 0, 0) ≡

0, g̃(t, s, 0) ≡ 0, h̃(t, s, 0) ≡ 0, all the conditions of Corollary 1 are valid with Q = I,
where I is a unit d-matrix, and, therefore, limt→∞E|x(t)|p = 0. Moreover, if (21)
and (22) hold, Theorem 2 yields that

∫∞
0

E|X(t)|p < ∞.

• Having in mind the results in [1], our future investigation has the benefit of
connecting the almost sure asymptotic stability and pth mean asymptotic stability
and integrability of the solutions to Eqs. (3) and (24) by using, among other things,
the procedures applied in the present paper.

In the remainder, we will examine the validity of the preceding considerations
by applying them to the following examples.

Example 1. Let us consider, for instance, the 4th mean asymptotic stability
and integrability of the scalar Itô–Volterra equation with non-convolution kernels,

dx(t) =

[
− a tαx(t) +

1
(1 + t)2

ln
(
1 + |x(t)|+

∣∣∣∣
∫ t

0

8 sin x(t)
(2 + t− s)

5
2

ds

∣∣∣∣
)]

dt (39)

+
1

1 + t2
sin

(
x(t) +

∫ t

0

es x(s)
(1 + et)(1 + s + |x(s)|) ds

)
dw(t), x(0) = x0.

Here, a and α ≥ 0 are constants and

f(t, x) = −a tαx, G(t, s) =
1

(2 + t− s)
5
2
, H(t, s) =

es

1 + et

g(t, x, y) =
1

(1 + t)2
ln(1 + |x|+ |y|), g1(t, x) = 8 sin x,

h(t, x, z) =
1

1 + t2
sin(x + z), h1(t, x) =

x

1 + t + |x| .
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All the functions are locally Lipschitzian and satisfy the linear growth conditions,
which guarantees the existence and uniqueness of the solution to Eq. (39) for an
arbitrary Cauchy problem. Likewise, there exists a zero solution.

It is easy to check that for p = 4 the conditions (H1)–(H6) are valid with

ξ(t) = a tα, η(t) =
1

(1 + t)2
, ρ(t) =

1
1 + t2

, θ(t) =
2

(1 + t2)2
,

||G||L2 =
1
64

, ||H||L2 =
1
2
, k1 = 8, k2 = 1.

From (8) and (9) we find that

a(t) = a tα − 6 + t

(1 + t)2
− 18

(1 + t2)2
,

b(t, s) =
64t

(2 + t− s)5
+

3t2

(1 + t2)2
· e2s

(1 + et)2
.

Clearly, the condition (10) holds for a > 1, α = 1 or a > 0, α > 1. A simple
calculation shows that

∫ t

0
b(t, s) ds = t + o(t) as t →∞ and

∫∞
s

b(t, s) dt = s + o(s)
as s → ∞, and, therefore, (11), (12), (21) and (22) hold for a > 0, α > 1. What
remains is to apply Theorem 1 and Theorem 2 to conclude that the solutions to Eq.
(39) satisfy limt→∞E|x(t)|4 = 0 and

∫∞
0

E|x(t)|4 dt < ∞.
Note that η(t) ≤ 1, ρ(t) ≤ 1, θ(t) ≤ 2. If we take an arbitrary convolution kernel

H ∈ L
p
2 (R+) instead of the kernel H in Eq. (39), the application of Corollary 1

causes that limt→∞E|x(t)|4 = 0 for a > 0, α > 2.

Example 2. Let us now consider, for instance, the 6th mean asymptotic stabil-
ity and integrability of the scalar Itô–Volterra equation with convolution kernels,

dx(t) =
[
f(t, x(t)) + 2

(
1 + t2 + |x(t)|)−

1
3

∫ t

0

e−3(t−s)x(s) ds

]
dt (40)

+
(
1 + t + x2(t)

)− 2
3

∫ t

0

e−(t−s) sin x(s) ds dw(t), t ≥ 0, x(0) = x0,

where we suppose that f(t, 0) ≡ 0 and that the condition (H2) holds, that is,
6xf(t, x) ≤ −ξ · x2 for a constant ξ > 0. Here,

g(t, x, y) = 2y
(
1 + t2 + |x|)−

1
3 , g1(t, x) = x, G(t) = e−3t,

h(t, x, z) = z
(
1 + t + x2

)− 2
3 , h1(t, x) = sin x, H(t) = e−t.

In addition to the zero solution and the fact that g, g1, h, h1 are Lipschitzian and
satisfy the linear growth conditions, we suppose the existence and uniqueness of
the solution of an arbitrary initial problem. It is easy to verify that the conditions
(H1), (H6), (H7)–(H10) hold with η = 2, ρ = θ = 1, k1 = k2 = 1, ||G||L3 =
1/9, ||H||K3 = 1/3. By applying Theorem 3, we find from (25) that ξ > 19 is the
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sufficient condition for the 6th mean asymptotic stability and integrability of the
solutions to Eq. (40).

Moreover, the conditions (37) hold for 0 < α1 < 9, 0 < α2 < 3. Hence, the ap-
plication of Corollary 4 implies that the solutions are exponentially asymptotically
stable and L6-integrable in the sense that there exists a constant β > 0 such that
limt→∞ eβt E|x(t)|6 = 0 and

∫∞
0

eβt E|x(t)|6 dt < ∞.
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equations with damped stochastic perturbations, Electron. J. Probab., 8 (22)
(2003), 1–22.

[3] J. Appleby, Almost sure subexponential decay rates of scalar Itô–Volterra equa-
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