Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Filomat **23:3** (2009), 199–202 DOI:10.2298/FIL0903199A

ON THE MODULUS OF CONTINUITY OF HARMONIC QUASIREGULAR MAPPINGS ON THE UNIT BALL IN \mathbb{R}^n

Miloš Arsenović and Vesna Manojlović

Abstract

We show that, for a class of moduli functions $\omega(\delta)$, $0 \le \delta \le 2$, the property $|\varphi(\xi) - \varphi(\eta)| \le \omega(|\xi - \eta|)$, ξ , $\eta \in \mathbb{S}^{n-1}$ implies the corresponding property $|u(x)-u(y)| \le C\omega(|x-y|) x, y \in \mathbb{B}^n$, for $u = P[\varphi]$, provided u is a quasiregular mapping. Our class of moduli functions includes $\omega(\delta) = \delta^{\alpha}$ ($0 < \alpha \le 1$), so our result generalizes earlier results on Hölder continuity (see [1]) and Lipschitz continuity (see [2]).

1 Introduction and notations

We set, for any $n \ge 2$

$$P[\varphi](x) = \int_{\mathbb{S}^{n-1}} P(x,\xi)\varphi(\xi)d\sigma(\xi)$$

where $P(x,\xi) = \frac{1-|x|^2}{|x-\xi|^n}$ is the Poisson kernel for $\mathbb{B}^n = \{x \in \mathbb{R} : |x| < 1\}, d\sigma$ is the normalized surface measure on \mathbb{S}^{n-1} and $\varphi : \mathbb{S}^{n-1} \to \mathbb{R}^n$ is a continuous mapping.

We are going to work with moduli functions $\omega(\delta)$, $0 \le \delta \le 2$, satisfying the following conditions:

1° $\omega(\delta)$ is continuous, increasing and $\omega(0) = 0$,

 $2^{\circ} \omega(\delta)/\delta$ is a decreasing function,

$$3^{\circ} \int_{0}^{\delta} \frac{\omega(\rho)}{\rho} d\rho \leq C\omega(\delta),$$

We say that f is ω -continuous if $|f(x) - f(y)| \leq \omega(|x - y|)$ for all x and y in the domain of f.

We note that the following properties of ω follow from the conditions 1° and 2°:

²⁰⁰⁰ Mathematics Subject Classifications. 30C62.

Key words and Phrases. quasihyperbolic metric, bilipschitz maps.

Received: October 4, 2009

Communicated by Dragan S. Djordjević

Miloš Arsenović and Vesna Manojlović

$$\begin{aligned} 4^{\circ} \quad & \int_{\delta}^{2} \frac{\omega(\rho)}{\rho^{3}} d\rho \leq C \frac{\omega(\delta)}{\delta^{2}}, \\ 5^{\circ} \quad & \int_{0}^{\delta} \omega(\rho) \rho^{n-1} d\rho \leq C \delta^{n} \omega(\delta). \end{aligned}$$

2 The Main Result

Theorem 2.1 Assume $\varphi : \mathbb{S}^{n-1} \to \mathbb{R}^n$ is ω -continuous mapping, where ω is a modulus function satisfying properties $1^\circ - 3^\circ$. If the harmonic extension $u = P[\varphi]$ of φ to \mathbb{B}^n is K-quasiregular, then u is $C\omega$ -continuous, where C depends on n, K and ω only.

In the case of Lipschitz continuity, i.e. $\omega(\delta) = L\delta$, this was proved in [2]. If $\omega(\delta) = L\delta^{\alpha}$, $0 < \alpha < 1$, then the conclusion holds without the assumption of quasiregularity of $u = P[\varphi]$, see [3].

We use the same method of proof as in [2], adapted to deal with our class of moduli functions.

Let us choose $x_0 = r\xi_0 \in \mathbb{B}$, $r = |x_0|$, $\xi_0 \in \mathbb{S}^{n-1}$; let $T = T_{x_0} r \mathbb{S}^{n-1}$ be the (n-1)-dimensional tangent plane to the sphere $r \mathbb{S}^{n-1}$ at point x_0 . The proof is based on the following estimate

$$||D(u|_T)(x_0)|| \le C(\omega, n) \cdot \frac{\omega(\delta)}{\delta}, \ \delta = 1 - |x_0|, \qquad (*)$$

which is of independent interest.

Without loss of generality $x_0 = re_n$, where $e_n = (0, 0, \dots, 0, 1) \in \mathbb{S}^{n-1}$. We have, by a simple calculation,

$$\frac{\partial}{\partial x_j} P(x,\xi) = -\frac{2x_j}{|x-\xi|^n} - n(1-|x|^2) \frac{x_j - \xi_j}{|x-\xi|^{n+2}}.$$

Hence, for $1 \leq j < n$ and for $x_0 = re_n$ we have

$$\frac{\partial}{\partial x_j} P(x_0,\xi) = n(1-|x_0|^2) \frac{\xi_j}{|x_0-\xi|^{n+2}}$$

Note that this integral kernel is odd in $\xi \in \mathbb{S}^{n-1}$. We have, using this property of the kernel,

$$\begin{aligned} \frac{\partial u}{\partial x_j}(x_0) &= n(1-|x_0|^2) \int_{\mathbb{S}^{n-1}} \varphi(\xi) \cdot \frac{\xi_j}{|x_0-\xi|^{n+2}} d\sigma(\xi) \\ &= n(1-|x_0|^2) \int_{\mathbb{S}^{n-1}} [\varphi(\xi)-\varphi(\xi_0)] \frac{\xi_j}{|x_0-\xi|^{n+2}} d\sigma(\xi). \end{aligned}$$

Of course, since $x_0 = re_n$, we have $\xi_0 = e_n$. Now, using

200

On the modulus of continuity of harmonic quasiregular mappings on the unit ball in $\mathbb{R}^n 201$

$$|\xi_j| \le |\xi - \xi_0|,$$
 $(1 \le j < n, \ \xi \in \mathbb{S}^{n-1})$

and ω continuity of φ we get, for $1 \leq j < n$,

$$\left|\frac{\partial u}{\partial x_j}(x_0)\right| \le n(1-|x_0|^2) \cdot \int_{\mathbb{S}^{n-1}} \frac{|\xi-\xi_0|\omega(|\xi-\xi_0|)}{|x_0-\xi|^{n+2}} d\sigma(\xi).$$

In order to estimate the last integral, we split \mathbb{S}^{n-1} into two disjoint subsets $E = \{\xi \in \mathbb{S}^{n-1} : |\xi - \xi_0| \le 1 - |x_0|\}$ and $F = \{\xi \in \mathbb{S}^{n-1} : |\xi - \xi_0| > 1 - |x_0|\}$. Since $|\xi - x_0| \ge 1 - |x_0|$ for $\xi \in \mathbb{S}^{n-1}$ we have

$$\begin{split} \int_{E} \frac{|\xi - \xi_{0}|\omega(|\xi - \xi_{0}|)}{|x_{0} - \xi|^{n+2}} d\sigma(\xi) &\leq (1 - |x_{0}|)^{-n-2} \cdot \int_{E} |\xi - \xi_{0}|\omega(|\xi - \xi_{0}|) d\sigma(\xi) \\ &\leq (1 - |x_{0}|)^{-n-2} \int_{0}^{\delta} \rho \omega(\rho) \rho^{n-2} d\rho \\ &\leq C \cdot \frac{\omega(\delta)}{\delta^{2}}, \end{split}$$

where $\delta = 1 - |x_0|$. Here we used property 5° of the modulus function ω . On the other hand, there is a constant C_n such that

$$\frac{|\xi - \xi_0|}{|\xi - x_0|} \le C_n \quad \text{for} \quad \xi \in F$$

and therefore, using property 4° of ω , we have

$$\begin{split} \int_{F} \frac{|\xi - \xi_{0}|\omega(|\xi - \xi_{0}|)}{|x_{0} - \xi|^{n+2}} d\sigma(\xi) &\leq C_{n}^{n+2} \int_{E} \frac{\omega(|\xi - \xi_{0}|) d\sigma(\xi)}{|\xi - \xi_{0}|^{n+1}} \\ &\leq C \cdot \int_{\delta}^{2} \rho^{-n-1} \omega(\rho) \rho^{n-2} d\rho \\ &\leq C \cdot \frac{\omega(\delta)}{\delta^{2}}, \quad \delta = 1 - |x_{0}|. \end{split}$$

Combining the above estimates for integrals over E and F we obtain, for $1 \leq j < n,$

$$\left|\frac{\partial u}{\partial x_j}(x_0)\right| \le C(n,\omega) \cdot \frac{\omega(\delta)}{\delta}, \quad \delta = 1 - |x_0|$$

and this is precisely estimate (*) in direction of coordinate axis x_j $(1 \le j < n)$. However, the same estimate is true for any tangential direction, by rotational symmetry and (*) is proved.

Now, K-quasiregularity gives the estimate of the derivative of u:

$$||u'(x)|| \le KC(n,\omega)\frac{\omega(\delta)}{\delta}, \qquad \delta = 1 - |x|.$$

Using property 3° of ω and a simple argument involving integration one concludes the proof.

References

- Craig A. Nodler and Daniel M. Oberlin, Moduli of continuity and a Hardy-Littlewood theorem. In Complex analysis, Joensuu 1987, volume 1351 of Lecture Notes in Math., pages 265-272. Springer, Berlin 1988.
- [2] Arsenović M., Kojić V. and Mateljević M., On Lipschitz continuity of harmonic quasiregular maps on the unit ball in ℝⁿ, Ann. Acad. Sci. Fenn., Volumen 33, 2008, 315-318.
- [3] Antoni Zygmund, Trigonometrical Series, 2nd ed. Vol I, II, Cambridge university Press, New York, 1959.
- [4] Sheldon Axler, Paul Bourdon and Wade Ramey, *Harmonic Function Theory.*, Springer Verlag New York 1992.
- [5] M. Vuorinen, Conformal Geometry and quasiregular mappings, Lecture Notes in Math., 1319, Springer, Berlin, 1988
- [6] Pavlović M., Remarks on L^p-oscillation of the modulus of a holomorphic function, J. Math. Anal. Appl. 326 (2007), 1-11.
- [7] Pavlović M., Lipschitz conditions on the modulus of a harmonic function, Revista Mat. Iberoamericana, 23 (2007), no. 3, 831-845.

Miloš Arsenović

Faculty of Mathematics, University of Belgrade, Studentski trg 16, 11000 Beograd, Serbia

E-mail: arsenovic@matf.bg.ac.rs

Vesna Manojlović

University of Belgrade, Faculty of Organizational Sciences, Jove Ilica 154, Belgrade, Serbia

E-mail: vesnam@fon.bg.ac.rs

202