
Faculty of Sciences and Mathematics, University of Nǐs, Serbia
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ON THE SOLVABILITY OF NONLINEAR INTEGRAL

EQUATIONS IN LEBESGUE SPACE

E. M. El-Abd

Abstract

In this paper we prove theorems on the existence of integrable and mono-
tonic solutions of nonlinear integral equation in Lebesgue Space. The basic
tool used in the proof is the fixed point theorem due to Darbo with respect
to the so-called measure of weak noncompactness.

1 Introduction

Linear integral equations are considered as branch of the applications of functional
analysis. This branch is of great importance, not only for the specialists in this field
but also for those whose interest lies in the other branaches of mathematics with
special reference to mathematical physics.

The most frequently investigated integral equation in nonlinear functional anal-
ysis are the Hammerstein equation and the Urysohn equation. these equations have
been studied in several papers and monograph ( see for example Krasnoselskii et al
( [11] and Appell [1, 2] )

The aim of this paper is to prove theorem on existence of solutions of the non-
linear integral equation

y (t ) = g ( t )+λ (t )
∫ t

0
k ( t, s ) f (s, y (φ (s ))) ds, t ∈ (0, 1) (1)

The considered nonlinear integral equation in this paper is the general form of
Hammerstein integral equation. These kinds of nonlinear integral equations appear
in many applications. For instance, it can be applied to solve many problems in
physic, engineering and economics. Also many problems considered in the theory
of partial differential equation lead us to nonlinear integral equations of the type
mentioned in J. Banas and K. Goebel [6] .
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2 Notation and auxiliary facts

Definition: Let E be a measurable set and f (x) is a real function defined on E.
We say that f (x) is Lebesgue measurable or briefly, measurable on E if for

each real number k the values x ∈ E for which f (x) Â k is measurable.
Let L1 (a, b) denote the space of Lebesgue integral functions on the interval (a, b)

with the stander form
‖y ‖ =

∫ b

a
| y ( t )| dt .

For simplicity, we shall consider the space L1 = L1 (0, 1) .
This section is mainly devoted to recall some auxiliary result which will be

needed further on. Denoted by M be the set of all functions which are measurable
on (0, 1) with the metric

d (x, y) = inf . {a + meas. (t : |x ( t )− y ( t )| º a) : a Â 0} ,
then M becomes a complete metric space. Moreover, it is well known that
the convergence in measure coincides with convergence generated by the metric
d (see Dunford and Schwarts |10| ) .

The convergence in measure of a sequence {xn} < L1does not imply the weak
convergence of this sequennce and conversely. Nevertheless, we have the following
result.

Lemma : If a sequence {xn} < L1converges weakly to x ∈ L1 and is compact
in measure then it converges in measure to x [11] .

Apart from this we recall that a sequence {xn} < L1 is convergent strongly(
that is, in the norm of L1

)
to x if and only if it converges in measure to x and is

weakly compact.
We will present notes about the linear integral operator.
Consider the integral operator.

(Ky) (t) =
∫ 1

0
k (t, s) y (s) ds, t ∈ (0, 1) ,

where x is assumed to be a function of L1 and k : (0, 1) × (0, 1) −→ R is
assumed to be measurable with respect to both its variables.

Note that there are no necessary and sufficient conditions for the linear integral
operator K , generated by the kernel k (t, s) to be self mapping of the space L1,
but if the operator K satisfies the following conditions :

There exists a positive constant C such that

ess. sup
t ∈ (0,1)

∫ 1

0
| k (t, s )| ds ¹ C , ess. sup

s ∈ (0,1)

∫ 1

0
| k (t, s )| ds ¹ C ,

then K maps the space L1 into itself [10] and so it will continuous on L1 [11] .
In the sequel the following theorem, due to Krzyz [12] gives the necessary and

sufficient condition that the linear operator K maps functions being non-increasing
on (0, 1) into function of the same kind.
Theorem 1. Let k : (0, 1) × (0, 1) −→ R+ be a measurable function generating
the linear operator K acting from L1 into L1. If for every p ∈ [o, 1] and for all
t1, t2 ∈ [o, 1] the implication holds
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t 1 ≺ t 2 =⇒ ∫ b

0
k (t1 , s) ds º ∫ b

0
k (t2 , s) ds ,

then the operator K transforms the set of positive and non-increasing functions
from L1 into itself .

The following sufficient condition will be more convenient for our purposes.
Theorem 2. Let X be a bounded subset of L1 (0, 1) and suppose that

there is a family of measurable subset { Ωc }o ¹ c ¹ 1 of the interval [o, 1] such
that meas. Ωc = c . If for any c ∈ [o, 1] and for any y ∈ X , y ( t1 ) ¹ y (t2 ),
(t1 ∈ Ωc, t2 /∈ Ωc ) then the set X is compact in measure [11] .

Now, let us assume that f = f (t, x) and f : (0, 1) × R −→ R satisfies
Caratheodory conditions i.e. it is measurable in t for any x and continuous in x
for almost all t . Then to every function y (t) being measurable on the interval
(0, 1) we may assign the function (F y ) ( t ) = f (t, y ( t )) , t ∈ (0, 1) . The
operator defined in such way is called the superposition operator.

Notice that this operator is one of the simplest and most important operator
investigated in nonlinear functional analysis ( [1] , [11] ) .

Theorem 3. The superposition operator F maps continuously the space L1 (0, 1)
into itself if and only if | f ( t, s )| ¹ a ( t ) + b | x | for all t ∈ (0, 1) and x
∈ R , where a ( t ) is a function from L1 and b is a non-negative constant.

Now, let S denotes an arbitrary Banach space and let X be a nonempty and
bounded subset of S . Moreover, denote by Br the closed ball in S centered
at θ and with radius r .

Let us recall the notion of the measure of weak and strong noncompactness
defined by De Blasi [9] and Hausdorff [6], respectively in the following way:
β (X ) = inf . {r Â 0 there exists a weakly compact subset Y of E such that

X < Y + Br } ,

χ (X ) = inf {r Â 0 there exists a compact subset Y of E such that
X < Y + Br } .

The functions β ( X) and χ (X ) possess several useful properties which may
be found in [9] and [7] . The convenient and handly formula for the function β
(X ) in the space L1 was gives by Appell and De pascale [3]:

β (X) = lim
c −→ 0

{
sup

x ∈ X

{
sup

[∫
D
| y ( t ) | dt : D < (0, 1) , meas. D ≤ ε

]}}
,

where the symbol meas.D stands for Lebesgue measure of a subset D. The
two measures β ( X) and χ (X ) are connected in the case when X is compact in
measure as in the following theorem.
Theorem 4. Let X be an arbitrary nonempty and bounded subset of L1 (0, 1)
if X is compact in measure then β ( X ) = χ (X ) .

Now, we recall the fixed point theorem due to Darbo [8] .
Theorem 5. Let Q be a nonempty, closed, convex and bounded subset of S and
let T : Q −→ Q be a continuous operator having the property that there is a
constant k ∈ (0, 1) such that χ (TX ) ≤ k χ (X ) for any nonempty subset X
of Q , then T has at least one fixed point in the Q.
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3 Main results

In this section we shall investigate the nonlinear integral equation (1). For conve-
nience the Hammerstein operator

( H y ) ( t ) =
∫ t

0

k (t, s) f (s, y (s)) ds.

Will be written as product H = K F of the superposition operator

( Fy ) ( t ) = f ( t, y ( t ))

and the linear integral operator

(K y ) ( t ) =
∫ t

0

k ( t, s ) y (s) ds.

Then the equation (1) has the form y = T y where
T y = g + λ K F y (2)

Now, we formulate the assumption under which the equation (1) will be invesi-
gated. Namely, we assume the following :

(i) The function λ, g ∈ L1 is a.e. positive non-increasing on the interval (0, 1) ,
(ii) f :(0, 1) × R −→ R+ satisfies Caratheodory conditions and there exist a

function a (t) ∈ L1and a
non-negative constant b such that f ( t, x ) ≤ a (t) + b | x | , for all t ∈

(o, 1) and x ∈ R .
Moreover, f ( t, x ) is assumed to be non-increasing on the set (0, 1)×R −→ R

with respect to t
and non-decreasing with respect to x ,

(iii) k : (0, 1) × (0, 1) −→ R is measurable with respect to both variables and
such that the integral

operator K maps L1 into itself,
(iv) For every p ∈ (0, 1) and for all t1, t2 ∈ (0, 1) the following implication

holds true
t 1 ≺ t 2 =⇒ ∫ p

0
k (t1 , s) ds º ∫ p

0
k (t2 , s) ds ,

(v) φ : (0, 1) −→ (0, 1) is an increasing absolutely continuous and there exists
constant C Â 0

such that ϕ́ ( t ) º C for almost all t ∈ (0, 1) ,

(vi) b ‖ λ ‖ ‖ k ‖
C ≺ 1.

Then we can prove the following theorem:
Theorem 6. Under the above assumptions ( i ) =⇒ (vi ) the equation (1) has at
least one solution y ∈ L1which is a.e. non-increasing on the interval (0, 1) .

P roof : Let us take an arbitrary y ∈ L1, then according to the assumption (ii)
, (iii) ,and (v) we have T y ∈ L1, where T is the operator defined in (2) .
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Moreover, we get

‖Ty ‖ =
∫ 1

0

∣∣∣ g (t) + λ (t)
∫ 1

0
k (t, s) f (s, y (φ (s))) ds

∣∣∣ dt

¹ ‖ g ‖+ ‖ λ ‖ ‖ k ‖ ∫ 1

0
|f (s, y (φ (s))) ds| dt

¹ ‖ g ‖+ ‖ λ ‖ ‖ k ‖ ∫ 1

0
{a (s) + b |y (φ (s))|} ds

¹ ‖ g ‖+ ‖ λ ‖ ‖ k ‖ ‖ a ‖+ b ‖ λ ‖‖ k ‖
C

∫ 1

0
|y (φ (s))| φ́ds

¹ ‖ g ‖+ ‖ λ ‖ ‖ k ‖ ‖ a ‖+ b ‖ λ ‖‖ k ‖
C ‖y‖ .

From the above estimate we conclude the operator T transform the ball Br

into itself, where

r = ‖ g ‖+‖ a ‖‖ λ ‖‖ k ‖
1− b ‖ λ ‖‖ k ‖ .

Now, let Qr denoted the subset of Br consisting of all functions being positive
and a.e. non-increasing on (0, 1) . The set Qr is obviously nonempty, bounded,
convex, closed and compact in measure, this is since, the convexity of Qr is for if
y1, y2 ∈ Qr , then ‖yi‖ ¹ r , (i = 1, 2) .

Now, for 0 ¹ t ¹ 1 let y = t y1 + (1− t) y2 , then we have

‖ y ‖ ¹ t ‖ y1‖+ (1− t) ‖ y2‖ ¹ t r + (1− t) r = r ,

it means that y ∈ Qr and so Qr is convex. For closeness of Qr , let (yn) be
a strong convergent sequence of elements in Qr and it converges to y , then the
sequence (yn) converges in measure to y [4] . By using Vitali theorem [13] there
exists a subsequence (ykn) of (yn) which converges to y a.e. on (o, 1) and y will
be non-increasing a.e. on (0, 1) which means that y ∈ Qr and so Qr is closed.

Finally, the compactness in measure of Qr can be deduced by using Theorem
2 considering that Ωc = c for any c ∈ (0, 1) .

Further, let us take an arbitrary function y ∈Qr then y (φ) is a.e. non-increasing
and positive on the interval (0, 1). By using the assumption (ii) Fy (φ) is also a.e.
non- increasing and positive on (0, 1) . The image KFy (φ) by the operator K is
also of the same kind that is due to Theorem 1 and the assumption (iii) , (iv) .

Next, in view of the assumption (ii) again we deduce that T y is a.e. non-
increasing and positive on the interval (0, 1) .Therefore, given that T : Br −→
Br , we conclude that T is a self mapping of the set Qr

Now, we observe that the assumption (ii) in conjunction with Theorem 3 and
the continuity of the opoerator K on the space L1allows us to deduce that the
operator T is continuous on the set Qr .

In what follows take a nonempty set X < Qr and fix ε Â 0. Further, let
D < (0, 1) be such that meas D ¹ ε . Then, for an arbitrary x ∈ X in view of
our assumptions we obtain

∫
D

(Ty ) (t ) dt =
∫

D
| g (t)| dt +

∫
D

∣∣∣λ (t)
∫ 1

0
k (t, s) f (s, y (φ (s))) ds

∣∣∣ dt

¹ ‖g‖L1(D ) +
∫

D
|λ (t)|

∣∣∣
∫ 1

0
k (t, s) f (s, y (φ (s))) ds

∣∣∣ dt



208 E. M. El-Abd

¹ ‖g‖L1(D ) +
∫

D
|λ (t)| |KF (y (φ))| dt

¹ ‖g‖L1(D ) + ‖B‖
L1( D )

‖K‖D

∫
D
|a + b |y (φ (s)) || ds

¹ ‖g‖L1(D )+‖B‖L1(D )
‖K‖D

[
‖a‖L1(D ) + b

C

∫
D
|y (φ (s))| φ́ (s) ds

]

where the operator K maps the space L1 (D ) into itself and continuous.
Also, the symbol ‖K‖D stands for the norm of the operator K : L1 (D ) −→

L1 (D ) .

Now applying the theorem on integration by substitution for Lebesgue integrals
we can rewrite the last estimation in the following way:
∫

D
|(Ty ) (t )| dt ¹ ‖g‖L1(D ) + ‖a‖L1(D ) ‖B‖L1(D )

‖K‖D +
b ‖ B ‖

L1(D )
‖ K ‖D

C∫
φ( D )

|y (t)| dt.

Further, taking into account the equality
lim

ε−→0

{
sup

[∫
D

g (t) dt + ‖a‖L1(D) ‖B‖L1(D)
‖K‖D : D < (0, 1) ,meas.D ≤ ε

]}
= 0,

and keeping in mind the absolute continuity of the function φ we obtain

β (T Y ) ¹
b ‖ B ‖

L1(D )
‖ K ‖D

C β (Y ) ,
where β is the De Blasě measure of weak noncompactness.
In view of the properties of the set Qr established before and Theorem (4) we

can rewrite the last inequality in the following form

χ (T Y ) ¹
b ‖ B ‖

L1(D )
‖ K ‖D

C χ (Y ) ,
where χ is the Hausdorf measure of noncompact.

The last inequality together with assumption (vi) enables us to apply Theorem
5. This completes the proof.

Example. Consider the integral equation

y ( t ) = 1 − t
1 + t + 1

1 + t

∫ 1

0
e−t + s tan−1

(
s | y + 2 |

s + 2

)
ds ........... (3)

In this case we have g ( t ) = 1 − t
1 + t , is a.e. positive non-increasing function on

(0, 1) , where
ǵ ( t ) = −2

(1 + t)2
≺ 0 for t ∈ (o, 1) ,

λ ( t ) = 1
1 + t is also a.e. positive non-increasing function on (0, 1) , so

condition (i) is satisfied.
k ( t, s ) = e−t + s is continuous and so measurable function for all t , s.
For x ∈ L1, we can see that the linear operator

(K x ) ( t ) =
∫ 1

0
k ( t, s )x (s ) ds,

Transform L1 (0, 1 ) into itself.
Indeed,

∫ 1

o

∣∣∣
∫ 1

0
k ( t, s ) | x (s )| ds

∣∣∣ ≺ et
∫ 1

o
| x (s )| ds,

and hence condition (iii) is satisfied.

Next, f (t, y) = tan−1
(

t | y + 2 |
t + 2

)
is continuous function for y and measurable

for t as well as
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| f (t, y)| =
∣∣∣tan−1

(
t | y + 2 |

t + 2

)∣∣∣ = tan−1
(

t | y + 2 |
t + 2

)
≺ t ( y + 2 )

t + 2

≺ 1
3 | y | +2t
So, a ( t ) = 2t ∈ L1 (0, 1 )and b = 1

3 Â 0 hence we get (ii) .

Also, condition (iv) is satisfied, when b = 1
3 , | λ | = 1

1 + t ≺ 1, ‖ k ‖ ≺ e,
φ (t ) = t and φ́ ( t ) = 1 , C = 1.

Then, we have

b ‖ λ ‖‖ K ‖
C ≺ e

3 ≺ 1.

So, all conditions of Theorem (6) are satisfied, hence the integral equation (3)
has a non-increasing solution in L1 (0, 1 ) .
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