UNIVALENCE OF TWO GENERAL INTEGRAL OPERATORS

B. A. Frasin

Abstract

In this paper, we give some sufficient conditions for general two integral operators to be univalent in the open unit disk.

1 Introduction and definitions

Let \mathcal{A} be the class of all analytic functions $f(z)$ defined in the open unit disk $\mathcal{U}=\{z:|z|<1\}$ and normalized by the condition $f(0)=0=f^{\prime}(0)-1$. Further, by \mathcal{S} we shall denote the class of all functions in \mathcal{A} which are univalent in \mathcal{U}.Recently, Breaz and Breaz [6] and Breaz et al. [10] introduced and studied the integral operators

$$
\begin{equation*}
F_{n}(z)=\int_{0}^{z}\left(\frac{f_{1}(t)}{t}\right)^{\alpha_{1}} \ldots\left(\frac{f_{n}(t)}{t}\right)^{\alpha_{n}} d t \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{\alpha_{1}, \ldots, \alpha_{n}}(z)=\int_{0}^{z}\left(f_{1}^{\prime}(t)\right)^{\alpha_{1}} \ldots\left(f_{n}^{\prime}(t)\right)^{\alpha_{n}} d t \tag{2}
\end{equation*}
$$

where $f_{i} \in \mathcal{A}$ and for $\alpha_{i}>0$, for all $i=1, \ldots, n$ (see also $[3,4,5,7,9]$).
Breaz and Güney [8] considered the above integral operators and they obtained their properties on the classes $\mathcal{S}_{\alpha}^{*}(b), \mathcal{C}_{\alpha}(b)$ of starlike and convex functions of complex order b and type α introduced and studied by Frasin [11].

Very recently, Frasin [12] obtained some sufficient conditions for the above integral operators to be in the classes $\mathcal{S}^{*}, \mathcal{C}(\alpha)$ and $\mathcal{U C} \mathcal{V}$, where $\mathcal{C}(\alpha)$ and $\mathcal{U C} \mathcal{V}$ denote the subclasses of \mathcal{A} consisting of functions which are, respectively, close -to-convex of order $\alpha(0 \leq \alpha<1)$ in \mathcal{U} and uniformly convex functions.

[^0]In the present paper, we obtain some sufficient conditions for the above integral operators $F_{n}(z)$ and $F_{\alpha_{1}, \ldots, \alpha_{n}}(z)$ to be univalent in \mathcal{U}.

In order to derive our main results, we have to recall here the following lemma:
Lemma 1.1. ([1]) Let $f \in \mathcal{A}, \beta \in \mathbb{C}, \operatorname{Re}(\beta)>0$. If for some $\theta \in[0,2 \pi]$ the inequality

$$
\operatorname{Re}\left\{e^{i \theta} \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\} \leq\left\{\begin{array}{cc}
\frac{1}{2} \operatorname{Re}(\beta) & \text { for } 0<\operatorname{Re}(\beta)<1 \\
\frac{1}{4} & \text { for } \operatorname{Re}(\beta) \geq 1
\end{array} \quad(z \in \mathcal{U})\right.
$$

is valid, then the function

$$
G_{\beta}(z)=\left\{\beta \int_{0}^{z} u^{\beta-1} f^{\prime}(u) d u\right\}^{1 / \beta}
$$

is in \mathcal{S}, for all $\theta \in[0,2 \pi]$.

2 Main results.

Theorem 2.1. Let $\alpha_{j}>0$ be real numbers for all $j=1,2, \ldots, n, \beta \in \mathbb{C}, \operatorname{Re}(\beta)>$ 0 . If $f_{j} \in \mathcal{A}$ for all $j=1,2, \ldots, n$ satisfies

$$
\operatorname{Re}\left(e^{i \theta} \frac{z f_{j}^{\prime}(z)}{f_{j}(z)}\right) \leq \begin{cases}\frac{\operatorname{Re}(\beta)}{2 \sum_{j=1}^{n} \alpha_{j}}+\cos \theta & \text { for } 0<\operatorname{Re}(\beta)<1 \tag{3}\\ \frac{1}{4 \sum_{j=1}^{n} \alpha_{j}}+\cos \theta & \text { for } \operatorname{Re}(\beta) \geq 1\end{cases}
$$

for all $z \in \mathcal{U}$ and for some $\theta \in[0,2 \pi]$, then the function

$$
\left\{\beta \int_{0}^{z} u^{\beta-1} \prod_{j=1}^{n}\left(\frac{f_{j}(u)}{u}\right)^{\alpha_{j}} d u\right\}^{1 / \beta} \in \mathcal{S}
$$

for all $\theta \in[0,2 \pi]$.
Proof. From (1) we observe that $F_{n} \in \mathcal{A}$, i.e. $F_{n}(0)=F_{n}^{\prime}(0)-1=0$. On the other hand, it is easy to see that

$$
F_{n}^{\prime}(z)=\prod_{j=1}^{n}\left(\frac{f_{j}(z)}{z}\right)^{\alpha_{j}}
$$

and

$$
\left(\frac{z F_{n}^{\prime \prime}(z)}{F_{n}^{\prime}(z)}\right)=\sum_{j=1}^{n} \alpha_{j}\left(\frac{z f_{j}^{\prime}(z)}{f_{j}(z)}\right)-\sum_{j=1}^{n} \alpha_{j}
$$

thus we have

$$
\begin{equation*}
\left(e^{i \theta} \frac{z F_{n}^{\prime \prime}(z)}{F_{n}^{\prime}(z)}\right)=\sum_{j=1}^{n} \alpha_{j}\left(e^{i \theta} \frac{z f_{j}^{\prime}(z)}{f_{j}(z)}\right)-e^{i \theta} \sum_{j=1}^{n} \alpha_{j} \tag{4}
\end{equation*}
$$

It follows from (4) and the hypothesis (3) that

$$
\begin{aligned}
\operatorname{Re}\left(e^{i \theta} \frac{z F_{n}^{\prime \prime}(z)}{F_{n}^{\prime}(z)}\right) & =\sum_{j=1}^{n} \alpha_{j} \operatorname{Re}\left(e^{i \theta} \frac{z f_{j}^{\prime}(z)}{f_{j}(z)}\right)-(\cos \theta) \sum_{j=1}^{n} \alpha_{j} \\
& \leq\left\{\begin{array}{cr}
\frac{1}{2} \operatorname{Re}(\beta) & \text { for } 0<\operatorname{Re}(\beta)<1 \\
\frac{1}{4} & \text { for } \operatorname{Re}(\beta) \geq 1
\end{array}\right.
\end{aligned}
$$

for all $z \in \mathcal{U}$ and for some $\theta \in[0,2 \pi]$. Applying Lemma 1.1, we have

$$
\left\{\beta \int_{0}^{z} u^{\beta-1} F_{n}^{\prime}(u) d u\right\}^{1 / \beta} \in \mathcal{S}
$$

or, equivalently

$$
\left\{\beta \int_{0}^{z} u^{\beta-1} \prod_{j=1}^{n}\left(\frac{f_{j}(u)}{u}\right)^{\alpha_{j}} d u\right\}^{1 / \beta} \in \mathcal{S}
$$

for all $\theta \in[0,2 \pi]$.
This completes the proof.
Letting $n=1, \alpha_{1}=\alpha$ and $f_{1}=f$ in Theorem 2.1, we have
Corollary 2.2. Let $\alpha>0$ be real number, $\beta \in \mathbb{C}$, $\operatorname{Re}(\beta)>0$. If $f \in \mathcal{A}$ satisfies

$$
\operatorname{Re}\left(e^{i \theta} \frac{z f^{\prime}(z)}{f(z)}\right) \leq\left\{\begin{array}{rc}
\frac{\operatorname{Re}(\beta)}{2 \alpha}+\cos \theta & \text { for } 0<\operatorname{Re}(\beta)<1 \\
\frac{1}{4 \alpha}+\cos \theta & \text { for } \operatorname{Re}(\beta) \geq 1
\end{array}\right.
$$

for all $z \in \mathcal{U}$ and for some $\theta \in[0,2 \pi]$, then the function

$$
\left\{\beta \int_{0}^{z} u^{\beta-1}\left(\frac{f(u)}{u}\right)^{\alpha} d u\right\}^{1 / \beta} \in \mathcal{S}
$$

for all $\theta \in[0,2 \pi]$.
Letting $\alpha=1$ in Corollary 2.2, we have

Corollary 2.3. Let $\beta \in \mathbb{C}, \operatorname{Re}(\beta)>0$. If $f \in \mathcal{A}$ satisfies

$$
\operatorname{Re}\left(e^{i \theta} \frac{z f^{\prime}(z)}{f(z)}\right) \leq\left\{\begin{array}{rc}
\frac{\operatorname{Re}(\beta)}{2}+\cos \theta & \text { for } 0<\operatorname{Re}(\beta)<1 \\
\frac{1}{4}+\cos \theta & \text { for } \operatorname{Re}(\beta) \geq 1
\end{array}\right.
$$

for all $z \in \mathcal{U}$ and for some $\theta \in[0,2 \pi]$, then the function

$$
\left\{\beta \int_{0}^{z} u^{\beta-2} f(u) d u\right\}^{1 / \beta} \in \mathcal{S}
$$

for all $\theta \in[0,2 \pi]$.
Letting $\beta=1$ in Corollary 2.3, we have
Corollary 2.4. If $f \in \mathcal{A}$ satisfies

$$
\operatorname{Re}\left(e^{i \theta} \frac{z f^{\prime}(z)}{f(z)}\right) \leq \frac{1}{4}+\cos \theta
$$

for all $z \in \mathcal{U}$ and for some $\theta \in[0,2 \pi]$, then the function

$$
\int_{0}^{z} \frac{f(u)}{u} d u \in \mathcal{S}
$$

for all $\theta \in[0,2 \pi]$.
Next, we have
Theorem 2.5. Let $\alpha_{j}>0$ be real numbers for all $j=1,2, \ldots, n, \beta \in \mathbb{C}, \operatorname{Re}(\beta)>$ 0 . If $f_{j} \in \mathcal{A}$ for all $j=1,2, \ldots, n$ satisfies

$$
\operatorname{Re}\left(e^{\left.i \theta \frac{z f_{i}^{\prime \prime}(z)}{f_{i}^{\prime}(z)}\right) \leq\left\{\begin{align*}
\frac{\operatorname{Re}(\beta)}{2 \sum_{j=1}^{n} \alpha_{j}} & \text { for } 0<\operatorname{Re}(\beta)<1 \tag{5}\\
\frac{1}{4 \sum_{j=1}^{n} \alpha_{j}} & \text { for } \operatorname{Re}(\beta) \geq 1
\end{align*}\right. \text { }}\right.
$$

for all $z \in \mathcal{U}$ and for some $\theta \in[0,2 \pi]$, then the function

$$
\left\{\beta \int_{0}^{z} u^{\beta-1} \prod_{j=1}^{n}\left(f_{j}^{\prime}(u)\right)^{\alpha_{j}} d u\right\}^{1 / \beta} \in \mathcal{S}
$$

for all $\theta \in[0,2 \pi]$.

Proof. It follows from (2) that $F_{\alpha_{1}, \ldots, \alpha_{n}}(0)=F_{\alpha_{1}, \ldots, \alpha_{n}}^{\prime}(0)-1=0$. Also a simple computation yields

$$
\begin{equation*}
\left(\frac{z F_{\alpha_{1}, \ldots, \alpha_{n}}^{\prime \prime}(z)}{F_{\alpha_{1}, \ldots, \alpha_{n}}^{\prime}(z)}\right)=\sum_{j=1}^{n} \alpha_{j}\left(\frac{z f_{j}^{\prime \prime}(z)}{f_{j}^{\prime}(z)}\right) \tag{6}
\end{equation*}
$$

Thus we have

$$
\begin{equation*}
\operatorname{Re}\left(e^{i \theta} \frac{z F_{\alpha_{1}, \ldots, \alpha_{n}}^{\prime \prime}(z)}{F_{\alpha_{1}, \ldots, \alpha_{n}}^{\prime}(z)}\right)=\sum_{j=1}^{n} \alpha_{j} \operatorname{Re}\left(e^{i \theta} \frac{z f_{j}^{\prime \prime}(z)}{f_{j}^{\prime}(z)}\right) \tag{7}
\end{equation*}
$$

Since f_{j} satisfies the condition (5) for every $j=1, \ldots, n$, then from (7), we obtain

$$
\operatorname{Re}\left(e^{i \theta} \frac{z F_{\alpha_{1}, \ldots, \alpha_{n}}^{\prime \prime}(z)}{F_{\alpha_{1}, \ldots, \alpha_{n}}^{\prime}(z)}\right) \leq\left\{\begin{array}{rc}
\frac{1}{2} \operatorname{Re}(\beta) & \text { for } 0<\operatorname{Re}(\beta)<1 \\
\frac{1}{4} & \text { for } \operatorname{Re}(\beta) \geq 1
\end{array}\right.
$$

for all $z \in \mathcal{U}$ and for some $\theta \in[0,2 \pi]$. Lemma 1.1 implies that

$$
\left\{\beta \int_{0}^{z} u^{\beta-1} F_{\alpha_{1}, \ldots, \alpha_{n}}^{\prime}(u) d u\right\}^{1 / \beta} \in \mathcal{S}
$$

or, equivalently

$$
\left\{\beta \int_{0}^{z} u^{\beta-1} \prod_{j=1}^{n}\left(f_{j}^{\prime}(u)\right)^{\alpha_{j}} d u\right\}^{1 / \beta} \in \mathcal{S}
$$

for all $\theta \in[0,2 \pi]$.
Letting $n=1, \alpha_{1}=\alpha$ and $f_{1}=f$ in Theorem 2.5, we have
Corollary 2.6. Let $\alpha>0$ be real number, $\beta \in \mathbb{C}, \operatorname{Re}(\beta)>0$. If $f \in \mathcal{A}$ satisfies

$$
\operatorname{Re}\left(e^{i \theta} \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) \leq\left\{\begin{array}{cc}
\frac{\operatorname{Re}(\beta)}{2 \alpha} & \text { for } 0<\operatorname{Re}(\beta)<1 \\
\frac{1}{4 \alpha} & \text { for } \operatorname{Re}(\beta) \geq 1
\end{array}\right.
$$

for all $z \in \mathcal{U}$ and for some $\theta \in[0,2 \pi]$, then the function

$$
\left\{\beta \int_{0}^{z} u^{\beta-1}\left(f^{\prime}(u)\right)^{\alpha} d u\right\}^{1 / \beta} \in \mathcal{S}
$$

for all $\theta \in[0,2 \pi]$.
Letting $\alpha=1$ in Corollary 2.6, we have

Corollary 2.7. Let $\beta \in \mathbb{C}, \operatorname{Re}(\beta)>0$. If $f \in \mathcal{A}$ satisfies

$$
\operatorname{Re}\left(e^{i \theta} \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) \leq\left\{\begin{array}{cc}
\frac{\operatorname{Re}(\beta)}{2} & \text { for } 0<\operatorname{Re}(\beta)<1 \\
\frac{1}{4} & \text { for } \operatorname{Re}(\beta) \geq 1
\end{array}\right.
$$

for all $z \in \mathcal{U}$ and for some $\theta \in[0,2 \pi]$, then the function

$$
\left\{\beta \int_{0}^{z} u^{\beta-1} f^{\prime}(u) d u\right\}^{1 / \beta} \in \mathcal{S}
$$

for all $\theta \in[0,2 \pi]$.
Letting $\beta=1$ in Corollary 2.7, we obtain the following result of Blezu and Pascu [2].

Corollary 2.8. ([2])If $f \in \mathcal{A}$ satisfies

$$
R e\left(e^{i \theta} \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) \leq \frac{1}{4}
$$

for all $z \in \mathcal{U}$ and for some $\theta \in[0,2 \pi]$, then $f \in \mathcal{S}$ for all $\theta \in[0,2 \pi]$.

References

[1] D. Blezu, On univalence criteria, Gen. Math. 14(1) (2006), 77-84.
[2] D. Blezu, N. N. Pascu, Some univalence criteria, Demonstratio Mathematica Vol. XXXV, No. 1(2002), 31-34.
[3] D. Breaz, A convexity property for an integral operator on the class $\mathcal{S}_{p}(\beta)$, Gen. Math. Vol. 15 Nr.2-3 (2007), 177-183.
[4] D. Breaz, Certain Integral Operators on the Classes $\mathcal{M}\left(\beta_{i}\right)$ and $\mathcal{N}\left(\beta_{i}\right)$, J. Ineq. Appl.
Volume 2008, Article ID 719354, 4 pages
[5] S. Bulut, A Note on the paper of Breaz and Güney, J. Math. Ineq. Vo. 2, No. 4 (2008), 549-553.
[6] D. Breaz and N. Breaz, Two integral operator, Studia Universitatis BabesBolyai, Mathematica, Cluj-Napoca, 3 (23002), 13-21.
[7] D. Breaz and N. Breaz, Some convexity properties for a general integral operator, JIPAM, Volume 7, Issue 5, Article 177, 2006.
[8] D. Breaz and H. Güney, The integral operator on the classes $\mathcal{S}_{\alpha}^{*}(b)$ and $\mathcal{C}_{\alpha}(b)$, J. Math. Ineq. Vol. 2, No. 1 (2008), 97-100.
[9] D. Breaz and V. Pescar, Univalence conditions for some general integral operators, Banach J. Math. Anal. (1) 2 (2008), 53-58.
[10] D. Breaz, S.Owa, N. Breaz, A new integral univalent operator, Acta Univ. Apul. 16 (2008), 11-16.
[11] B.A. Frasin, Family of analytic functions of complex order, Acta Math. Acad. Paed. Ny. 22 (2006), 179-191.
[12] B.A. Frasin, Some sufficient conditions for certain integral operators, J. Math. Ineq. Vol. 2, No. 4 (2008), 527-535

Department of Mathematics, Al al-Bayt University, P.O. Box: 130095 Mafraq, Jordan
E-mail: bafrasin@yahoo.com

[^0]: 2000 Mathematics Subject Classifications. 30C45.
 Key words and Phrases. Analytic functions, univalent functions, integral operator.
 Received: April 10, 2009
 Communicated by Jelena Manojlović

