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UNIVALENCE OF TWO GENERAL INTEGRAL OPERATORS

B. A. Frasin

Abstract

In this paper, we give some sufficient conditions for general two integral
operators to be univalent in the open unit disk.

1 Introduction and definitions

Let A be the class of all analytic functions f(z) defined in the open unit disk
U = {z : |z| < 1} and normalized by the condition f(0) = 0 = f ′(0)−1. Further, by
S we shall denote the class of all functions in A which are univalent in U .Recently,
Breaz and Breaz [6] and Breaz et al. [10] introduced and studied the integral
operators

Fn(z) =

z∫

0

(
f1(t)

t

)α1

. . .

(
fn(t)

t

)αn

dt (1)

and

Fα1,...,αn(z) =

z∫

0

(f ′1(t))
α1 . . . (f ′n(t))αn dt (2)

where fi ∈ A and for αi > 0, for all i = 1, . . . , n (see also [3, 4, 5, 7, 9]).
Breaz and Güney [8] considered the above integral operators and they obtained

their properties on the classes S∗α(b), Cα(b) of starlike and convex functions of com-
plex order b and type α introduced and studied by Frasin [11].

Very recently, Frasin [12] obtained some sufficient conditions for the above inte-
gral operators to be in the classes S∗, C(α) and UCV, where C(α) and UCV denote
the subclasses of A consisting of functions which are, respectively, close -to-convex
of order α(0 ≤ α < 1) in U and uniformly convex functions.
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In the present paper, we obtain some sufficient conditions for the above integral
operators Fn(z) and Fα1,...,αn(z) to be univalent in U .

In order to derive our main results, we have to recall here the following lemma:

Lemma 1.1. ([1]) Let f ∈ A , β ∈ C, Re(β) > 0. If for some θ ∈ [0, 2π] the
inequality

Re
{

eiθ zf ′′(z)
f ′(z)

}
≤





1
2Re(β) for 0 < Re(β) < 1

1
4 for Re(β) ≥ 1

(z ∈ U)

is valid , then the function

Gβ(z) =



β

z∫

0

uβ−1f ′(u)du





1/β

is in S, for all θ ∈ [0, 2π].

2 Main results.

Theorem 2.1. Let αj > 0 be real numbers for all j = 1, 2, . . . , n, β ∈ C, Re(β) >
0. If fj ∈ A for all j = 1, 2, . . . , n satisfies

Re
(

eiθ
zf ′j(z)
fj(z)

)
≤





Re(β)

2
nP

j=1
αj

+ cos θ for 0 < Re(β) < 1

1

4
nP

j=1
αj

+ cos θ for Re(β) ≥ 1
(3)

for all z ∈ U and for some θ ∈ [0, 2π],then the function


β

z∫

0

uβ−1
n∏

j=1

(
fj(u)

u

)αj

du





1/β

∈ S

for all θ ∈ [0, 2π].

Proof. From (1) we observe that Fn ∈ A, i.e. Fn(0) = F ′n(0)− 1 = 0. On the other
hand, it is easy to see that

F ′n(z) =
n∏

j=1

(
fj(z)

z

)αj
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and (
zF ′′n (z)
F ′n(z)

)
=

n∑

j=1

αj

(
zf ′j(z)
fj(z)

)
−

n∑

j=1

αj

thus we have
(

eiθ zF ′′n (z)
F ′n(z)

)
=

n∑

j=1

αj

(
eiθ

zf ′j(z)
fj(z)

)
− eiθ

n∑

j=1

αj . (4)

It follows from (4) and the hypothesis (3) that

Re
(

eiθ zF ′′n (z)
F ′n(z)

)
=

n∑

j=1

αjRe
(

eiθ
zf ′j(z)
fj(z)

)
− (cos θ)

n∑

j=1

αj

≤




1
2Re(β) for 0 < Re(β) < 1

1
4 for Re(β) ≥ 1

for all z ∈ U and for some θ ∈ [0, 2π]. Applying Lemma 1.1, we have



β

z∫

0

uβ−1F ′n(u)du





1/β

∈ S

or, equivalently



β

z∫

0

uβ−1
n∏

j=1

(
fj(u)

u

)αj

du





1/β

∈ S

for all θ ∈ [0, 2π].
This completes the proof.

Letting n = 1 , α1 = α and f1 = f in Theorem 2.1, we have

Corollary 2.2. Let α > 0 be real number, β ∈ C, Re(β) > 0. If f ∈ A satisfies

Re
(

eiθ zf ′(z)
f(z)

)
≤





Re(β)
2α + cos θ for 0 < Re(β) < 1

1
4α + cos θ for Re(β) ≥ 1

for all z ∈ U and for some θ ∈ [0, 2π],then the function


β

z∫

0

uβ−1

(
f(u)

u

)α

du





1/β

∈ S

for all θ ∈ [0, 2π].
Letting α = 1 in Corollary 2.2, we have
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Corollary 2.3. Let β ∈ C, Re(β) > 0. If f ∈ A satisfies

Re
(

eiθ zf ′(z)
f(z)

)
≤





Re(β)
2 + cos θ for 0 < Re(β) < 1

1
4 + cos θ for Re(β) ≥ 1

for all z ∈ U and for some θ ∈ [0, 2π],then the function



β

z∫

0

uβ−2f(u)du





1/β

∈ S

for all θ ∈ [0, 2π].
Letting β = 1 in Corollary 2.3, we have

Corollary 2.4. If f ∈ A satisfies

Re
(

eiθ zf ′(z)
f(z)

)
≤ 1

4
+ cos θ

for all z ∈ U and for some θ ∈ [0, 2π],then the function

z∫

0

f(u)
u

du ∈ S

for all θ ∈ [0, 2π].
Next, we have

Theorem 2.5. Let αj > 0 be real numbers for all j = 1, 2, . . . , n, β ∈ C, Re(β) >
0. If fj ∈ A for all j = 1, 2, . . . , n satisfies

Re
(

eiθ zf ′′i (z)
f ′i(z)

)
≤





Re(β)

2
nP

j=1
αj

for 0 < Re(β) < 1

1

4
nP

j=1
αj

for Re(β) ≥ 1
(5)

for all z ∈ U and for some θ ∈ [0, 2π],then the function



β

z∫

0

uβ−1
n∏

j=1

(
f ′j(u)

)αj
du





1/β

∈ S

for all θ ∈ [0, 2π].
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Proof. It follows from (2) that Fα1,...,αn
(0) = F ′α1,...,αn

(0) − 1 = 0. Also a simple
computation yields

(
zF ′′α1,...,αn

(z)
F ′α1,...,αn

(z)

)
=

n∑

j=1

αj

(
zf ′′j (z)
f ′j(z)

)
. (6)

Thus we have

Re
(

eiθ
zF ′′α1,...,αn

(z)
F ′α1,...,αn

(z)

)
=

n∑

j=1

αjRe

(
eiθ

zf ′′j (z)
f ′j(z)

)
. (7)

Since fj satisfies the condition (5) for every j = 1, . . . , n, then from (7), we
obtain

Re
(

eiθ
zF ′′α1,...,αn

(z)
F ′α1,...,αn

(z)

)
≤





1
2Re(β) for 0 < Re(β) < 1

1
4 for Re(β) ≥ 1

for all z ∈ U and for some θ ∈ [0, 2π]. Lemma 1.1 implies that



β

z∫

0

uβ−1F ′α1,...,αn
(u)du





1/β

∈ S

or, equivalently



β

z∫

0

uβ−1
n∏

j=1

(
f ′j(u)

)αj
du





1/β

∈ S

for all θ ∈ [0, 2π].

Letting n = 1 , α1 = α and f1 = f in Theorem 2.5, we have

Corollary 2.6. Let α > 0 be real number, β ∈ C, Re(β) > 0. If f ∈ A satisfies

Re
(

eiθ zf ′′(z)
f ′(z)

)
≤





Re(β)
2α for 0 < Re(β) < 1

1
4α for Re(β) ≥ 1

for all z ∈ U and for some θ ∈ [0, 2π],then the function


β

z∫

0

uβ−1 (f ′(u))α
du





1/β

∈ S

for all θ ∈ [0, 2π].
Letting α = 1 in Corollary 2.6, we have
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Corollary 2.7. Let β ∈ C, Re(β) > 0. If f ∈ A satisfies

Re
(

eiθ zf ′′(z)
f ′(z)

)
≤





Re(β)
2 for 0 < Re(β) < 1

1
4 for Re(β) ≥ 1

for all z ∈ U and for some θ ∈ [0, 2π],then the function



β

z∫

0

uβ−1f ′(u)du





1/β

∈ S

for all θ ∈ [0, 2π].
Letting β = 1 in Corollary 2.7, we obtain the following result of Blezu and

Pascu [2].

Corollary 2.8. ([2])If f ∈ A satisfies

Re
(

eiθ zf ′′(z)
f ′(z)

)
≤ 1

4

for all z ∈ U and for some θ ∈ [0, 2π],then f ∈ S for all θ ∈ [0, 2π].
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