ON EXTENDABILITY OF CAYLEY GRAPHS

Štefko Miklavič, Primož Šparl

Abstract

A connected graph Γ of even order is n-extendable, if it contains a matching of size n and if every such matching is contained in a perfect matching of Γ. Furthermore, a connected graph Γ of odd order is $n \frac{1}{2}$-extendable, if for every vertex v of Γ the graph $\Gamma-v$ is n-extendable.

It is proved that every connected Cayley graph of an abelian group of odd order which is not a cycle is $1 \frac{1}{2}$-extendable. This result is then used to classify 2-extendable connected Cayley graphs of generalized dihedral groups.

1 Introductory remarks

Throughout this paper graphs are assumed to be finite and simple.
A connected graph Γ of even order is n-extendable, if it contains a matching of size n and if every such matching is contained in a perfect matching of Γ. The concept of n-extendable graphs was introduced by Plummer [8] in 1980. Since then a number of papers on this topic have appeared (see $[2,10,11,12]$ and the references therein). In 1993 Yu [11] introduced an analogous concept for graphs of odd order. A connected graph Γ of odd order is $n \frac{1}{2}$-extendable, if for every vertex v of Γ the graph $\Gamma-v$ is n-extendable.

The problem of n-extendability of Cayley graphs was first considered in [3] where a classification of 2-extendable Cayley graphs of dihedral groups was obtained. (For a definition of a Cayley graph see Section 2.) A few years later a classification of 2 -extendable Cayley graphs of abelian groups was obtained in [2]. In this paper we generalize these results in two different ways. First, we consider $n \frac{1}{2}$-extendability for Cayley graphs of abelian groups of odd order. In particular, we prove the following theorem.

Theorem 1 Let Γ be a connected Cayley graph on an abelian group of odd order $n \geq 3$. Then either Γ is a cycle, or Γ is $1 \frac{1}{2}$-extendable.

[^0]Second, using Theorem 1 we generalize the result of [3] to generalized dihedral groups as follows.

Theorem 2 Let Γ be a connected Cayley graph on a generalized dihedral group which is not a cycle. Then Γ is 2-extendable unless it is isomorphic to one of the following Cayley graphs on cyclic groups, also called circulants: $\operatorname{Circ}(2 n ;\{ \pm 1, \pm 2\})$ $(n \geq 3), \operatorname{Circ}(4 n ;\{ \pm 1,2 n\})(n \geq 2), \operatorname{Circ}(4 n+2 ;\{ \pm 2,2 n+1\})$ and $\operatorname{Circ}(4 n+$ $2 ;\{ \pm 1, \pm 2 n\})$.

2 Preliminaries

In this section we introduce the notation and some results needed in the rest of the paper.

A Cayley graph $\operatorname{Cay}(G ; S)$ of a group G with respect to the connection set $S \subseteq G \backslash\{1\}$, where $S^{-1}=S$, is a graph with vertex-set G in which $g \sim g s$ for all $g \in G, s \in S$. In the case that $G=\mathbb{Z}_{n}$ the graph $\operatorname{Cay}(G ; S)$ is called a circulant and is denoted by $\operatorname{Circ}(n ; S)$. Let M be a subset of edges of $\operatorname{Cay}(G ; S)$ and let $g \in G$. Then $M g$ denotes the set of all edges of the form $\{u g, v g\}$, where $\{u, v\} \in M$.

A Hamilton path of a graph is a path visiting all of its vertices. The question of existence of Hamilton paths in vertex-transitive graphs and in particular Cayley graphs has been extensively studied over the last forty years (see for instance $[1,5$, $6,7]$ and the references therein). The following result on this topic is of particular interest to us.

Proposition 3 [4] Let Γ be a connected Cayley graph of an abelian group and of valency at least three. If Γ is not bipartite then for any pair of its vertices u and v there exists a Hamilton path of Γ from u to v. If Γ is bipartite then for any pair of vertices u and v from different parts of bipartition of Γ there exists a Hamilton path of Γ from u to v.

Note that it follows from this proposition that every connected Cayley graph of an abelian group is 1-extendable if the order of the group is even and is $0 \frac{1}{2}$ extendable otherwise. However, as the following proposition (which will be used in the proofs of our main results) shows, not all Cayley graphs on abelian groups of even order are 2-extendable.

Proposition 4 [2] Let Γ be a connected Cayley graph of an abelian group of even order and valency at least three. Then Γ is 2 -extendable if and only if it is not isomorphic to any of $\operatorname{Circ}(2 n ;\{ \pm 1, \pm 2\})(n \geq 3), \operatorname{Circ}(4 n ;\{ \pm 1,2 n\})(n \geq 2)$, $\operatorname{Circ}(4 n+2 ;\{ \pm 2,2 n+1\})$ and $\operatorname{Circ}(4 n+2 ;\{ \pm 1, \pm 2 n\})$.

We remark that none of the exceptional graphs from Proposition 4 is bipartite. This fact will be used in the proof of Theorem 2.

3 Cayley graphs of abelian groups

In this section we prove Theorem 1. To do this, we first need the following result.

Proposition 5 Let G be an abelian group of odd order with identity 1, and let $S \subseteq G \backslash\{1\}$ be a nonempty set such that $S=S^{-1}$. Then $\Gamma=C a y\left(\left\langle S \cup\left\{g, g^{-1}\right\}\right\rangle ; S \cup\right.$ $\left\{g, g^{-1}\right\}$) is $1 \frac{1}{2}$-extendable for every $g \in G \backslash\langle S\rangle$.
Proof. Recall first that $\operatorname{Cay}(\langle S\rangle ; S)$ is $0 \frac{1}{2}$-extendable by the comment following Proposition 3. Let m be the smallest positive integer such that $g^{m} \in\langle S\rangle$. Note that the subgraphs of Γ induced on cosets $g^{i}\langle S\rangle, i \in\{0,1, \ldots, m-1\}$ are all isomorphic to $C a y(\langle S\rangle ; S)$. Furthermore, for every $i \in\{0,1, \ldots, m-1\}$ and $s \in\langle S\rangle$, the vertex $g^{i} s$ of Γ is adjacent to the vertex $g^{i+1} s$. Finally, since the order of G is odd, both $|\langle S\rangle|$ and m are also odd and $m \geq 3$.

Pick an edge $e=\left\{g^{i} s_{1}, g^{j} s_{2}\right\}, i, j \in\{0,1, \ldots, m-1\}, s_{1}, s_{2} \in\langle S\rangle$, and a vertex x of Γ. We show that there exists a perfect matching of $\Gamma-x$ containing e. Since Γ is vertex-transitive, we can assume that $x=1$. The proof is split into four cases depending on the numbers i and j. Note that we can assume $i \leq j$. Observe also that if $i \neq j$, then $s_{1}=s_{2}$ and either $j-i=1$ or $i=0, j=m-1$.

CASE 1: $i=j=0$. Since the subgraph of Γ induced on the coset $g^{2}\langle S\rangle$ is isomorphic to $C a y(\langle S\rangle ; S)$, which is $0 \frac{1}{2}$-extendable, there exists an almost perfect matching M of this subgraph missing the vertex g^{2}. But then

$$
\begin{gathered}
\left\{\left\{s_{1}, s_{2}\right\},\left\{g s_{1}, g s_{2}\right\},\left\{g, g^{2}\right\}\right\} \cup\left\{\{s, g s\}: s \in\langle S\rangle \backslash\left\{1, s_{1}, s_{2}\right\}\right\} \cup M \cup \\
\left\{\left\{g^{k} s, g^{k+1} s\right\}: k \in\{3,5, \ldots, m-2\}, s \in\langle S\rangle\right\}
\end{gathered}
$$

is an almost perfect matching of Γ missing 1 and containing e.
CASE 2: $i=j \neq 0$. Since $C a y(\langle S\rangle ; S)$ is $0 \frac{1}{2}$-extendable, there exists an almost perfect matching M of $\operatorname{Cay}(\langle S\rangle ; S)$ missing 1 . If i is odd, then

$$
\begin{gathered}
M \cup\left\{\left\{g^{k} s, g^{k+1} s\right\}: k \in\{1,3, \ldots, i-2, i+2, \ldots, m-2\}, s \in\langle S\rangle\right\} \cup \\
\left\{\left\{g^{i} s, g^{i+1} s\right\}: s \in\langle S\rangle \backslash\left\{s_{1}, s_{2}\right\}\right\} \cup\left\{\left\{g^{i} s_{1}, g^{i} s_{2}\right\},\left\{g^{i+1} s_{1}, g^{i+1} s_{2}\right\}\right\}
\end{gathered}
$$

is an almost perfect matching of Γ missing 1 and containing e. If i is even, then

$$
\begin{gathered}
M \cup\left\{\left\{g^{k} s, g^{k+1} s\right\}: k \in\{1,3, \ldots, i-3, i+1, \ldots, m-2\}, s \in\langle S\rangle\right\} \cup \\
\left\{\left\{g^{i-1} s, g^{i} s\right\}: s \in\langle S\rangle \backslash\left\{s_{1}, s_{2}\right\}\right\} \cup\left\{\left\{g^{i-1} s_{1}, g^{i-1} s_{2}\right\},\left\{g^{i} s_{1}, g^{i} s_{2}\right\}\right\}
\end{gathered}
$$

is an almost perfect matching of Γ missing 1 and containing e.
Case 3: $i=j-1 \neq 0$. Recall that in this case $s_{1}=s_{2}$. Since $\operatorname{Cay}(\langle S\rangle ; S)$ is $0 \frac{1}{2}$-extendable, there exists an almost perfect matching M of $C a y(\langle S\rangle ; S)$ missing 1. If i is odd, then

$$
M \cup\left\{\left\{g^{k} s, g^{k+1} s\right\}: k \in\{1,3, \ldots, m-2\}, s \in\langle S\rangle\right\}
$$

is an almost perfect matching of Γ missing 1 and containing e.
Assume now that i is even. Pick an edge $\left\{s, s^{\prime}\right\}$ of M. Since subgraphs of Γ induced on the cosets $g\langle S\rangle$ and $g^{m-1}\langle S\rangle$ are $0 \frac{1}{2}$-extendable, there exist almost perfect matchings M_{1} and M_{m-1} of these subgraphs, which miss vertices $g s$ and $g^{-1} s^{\prime}$, respectively. But now

$$
\begin{gathered}
\left(M \backslash\left\{\left\{s, s^{\prime}\right\}\right\}\right) \cup\left\{\{s, s g\},\left\{s^{\prime}, g^{-1} s^{\prime}\right\}\right\} \cup M_{1} \cup M_{m-1} \cup\left\{\left\{g^{k} s, g^{k+1} s\right\}:\right. \\
k \in\{2,4, \ldots, m-3\}, s \in\langle S\rangle\}
\end{gathered}
$$

is an almost perfect matching of Γ missing 1 and containing e.
CASE 4: $i=0, j \in\{1, m-1\}$. Without loss of generality we can assume $j=1$ (otherwise replace g by g^{-1}). Since a subgraph of Γ induced on the coset $g^{2}\langle S\rangle$ is isomorphic to $\operatorname{Cay}(\langle S\rangle ; S)$, there exist an almost perfect matching M of this subgraph missing the vertex g^{2}. But then
$\{\{s, g s\}: s \in\langle S\rangle \backslash\{0\}\} \cup\left\{\left\{g, g^{2}\right\}\right\} \cup M \cup\left\{\left\{g^{k} s, g^{k+1} s\right\}: k \in\{3,5, \ldots, m-2\}, s \in\langle S\rangle\right\}$
is an almost perfect matching of Γ missing 1 and containing e.
Proof. [Of Theorem 1] Assume that $\Gamma=\operatorname{Cay}(G ; S)$ is not a cycle and note that this implies $|S| \geq 4$. We show that Γ is $1 \frac{1}{2}$-extendable using induction on $|S|$.

Suppose first that $|S|=4$. If for some $s \in S$ we have that $\langle s\rangle \neq G$, then $\operatorname{Cay}(G ; S)$ is $1 \frac{1}{2}$-extendable by Proposition 5 . We are left with the possibility that $S=\left\{s, s^{-1}, t, t^{-1}\right\}$ where $\langle s\rangle=\langle t\rangle=G$. Pick a vertex x and an edge e of $C a y(G ; S)$. Let n denote the order of G. Without loss of generality we can assume that $x=1$, that $s=t^{\ell}$ for some $\ell \in\{2,3, \ldots, n-2\}$, and that $e=\left\{t^{i}, t^{i} s\right\}$ for some $i \in$ $\{1,2, \ldots, n-\ell-1, n-\ell+1, \ldots, n-1\}$. We now construct an almost perfect matching M of Γ containing e and missing x depending on the parity of i and ℓ. If i and ℓ are both odd, then

$$
M=\{e\} \cup\left\{\left\{t^{j}, t^{j+1}\right\}: j \in J\right\}
$$

where $J=\{1,3, \ldots, i-2, i+1, i+3, \ldots, i+\ell-2, i+\ell+1, i+\ell+3, \ldots, n-2\}$. If i is odd and ℓ is even, then

$$
M=\left\{e,\left\{t^{i+1}, t^{i+\ell+1}\right\}\right\} \cup\left\{\left\{t^{j}, t^{j+1}\right\}: j \in J\right\}
$$

where $J=\{1,3, \ldots, i-2, i+2, i+4, \ldots, i+\ell-2, i+\ell+2, i+\ell+4, \ldots, n-2\}$. If i and ℓ are both even, then

$$
M=\left\{e,\left\{t^{i-1}, t^{i+\ell-1}\right\}\right\} \cup\left\{\left\{t^{j}, t^{j+1}\right\}: j \in J\right\}
$$

where $J=\{1,3, \ldots, i-3, i+1, i+3, \ldots, i+\ell-3, i+\ell+1, i+\ell+3, \ldots, n-2\}$. Finally, if i is even and ℓ is odd, then

$$
M=\left\{e,\left\{t^{i-1}, t^{i+\ell-1}\right\},\left\{t^{i+1}, t^{i+\ell+1}\right\}\right\} \cup\left\{\left\{t^{j}, t^{j+1}\right\}: j \in J\right\}
$$

where $J=\{1,3, \ldots, i-3, i+2, i+4, \ldots, i+\ell-3, i+\ell+2, i+\ell+4, \ldots, n-2\}$.

Now suppose $|S| \geq 6$ and pick a vertex x and an edge $e=\{u, u s\}, s \in S$, of $\operatorname{Cay}(G ; S)$. We will show that there exists an almost perfect matching of Cay $(G ; S)$ which contains e and misses x. Let $t \in S \backslash\left\{s, s^{-1}\right\}$, let $S^{\prime}=S \backslash\left\{t, t^{-1}\right\}$ and consider the subgraph $\Gamma^{\prime}=C a y\left(\left\langle S^{\prime}\right\rangle ; S^{\prime}\right)$, which, by induction, is $1 \frac{1}{2}$-extendable. If $\left\langle S^{\prime}\right\rangle=G$, then an almost perfect matching of Γ^{\prime}, containing e and missing x, is also an almost perfect matching of Γ containing e and missing x. If however $\left\langle S^{\prime}\right\rangle \neq G$, then Γ is $1 \frac{1}{2}$-extendable by Proposition 5 .

4 Cayley graphs of generalized dihedral groups

A group G containing an abelian subgroup H of index 2 and an involution $t \notin H$ such that $t h t=h^{-1}$ for each $h \in H$ is called a generalized dihedral group. In this case we denote G by D_{H}. Observe that if $\Gamma=\operatorname{Cay}\left(D_{H} ; S\right)$ is a Cayley graph of a generalized dihedral group D_{H} and $h, t h^{\prime} \in S$, then for any vertex x of $\Gamma,\left(x, x h, x t h^{-1} h^{\prime}, x t h^{\prime}\right)$ is a 4-cycle of Γ. Note also that for each $t a \in S$ and for each subgroup $H^{\prime} \leq H$ the edges corresponding to $t a$ introduce perfect matchings between components of the subgraph $\operatorname{Cay}\left(D_{H} ; S \cap H^{\prime}\right)$.

Proof. [Of Theorem 2] Let $\Gamma=\operatorname{Cay}\left(D_{H} ; S\right)$ and let $S_{1}=H \cap S$ and $S_{2}=S \backslash S_{1}$. Let Γ_{1} be the subgraph of Γ induced by Γ on H and let Γ_{2} be the subgraph of Γ induced on $t H$. Furthermore pick any two disjoint edges e_{1} and e_{2} of Γ. We distinguish four cases depending on whether the edges e_{i} belong to Γ_{1} or Γ_{2} or neither of them.

CASE 1: $e_{1} \in \Gamma_{1}$ and $e_{2} \notin \Gamma_{1} \cup \Gamma_{2}$. (The case $e_{1} \in \Gamma_{2}, e_{2} \notin \Gamma_{1} \cup \Gamma_{2}$ is done analogously.)
Let $t a \in S_{2}$ be the unique element such that $e_{2}=\left\{x, t x^{-1} a\right\}$ for some $x \in H$ and let $h \in S_{1}$ be such that $e_{1}=\{y, y h\}$ for some $y \in H$. Then a perfect matching of Γ containing e_{1} and e_{2} is

$$
\left\{e_{1}, e_{2}\right\} \cup\left\{\left\{z, t z^{-1} a\right\}: z \in H \backslash\{y, y h, x\}\right\} \cup\left\{\left\{t y^{-1} a, t y^{-1} h^{-1} a\right\}\right\} .
$$

Case 2: $e_{1}, e_{2} \in \Gamma_{1}$. (The case $e_{1}, e_{2} \in \Gamma_{2}$ is done analogously.)
Since Γ is connected, S_{2} is nonempty. With no loss of generality we can assume $t \in S_{2}$. Letting $h, h^{\prime} \in S_{1}$ be such that $e_{1}=\{x, x h\}$ and $e_{2}=\left\{y, y h^{\prime}\right\}$ for some $x, y \in H$ a perfect matching of Γ containing e_{1} and e_{2} is

$$
\left\{e_{1}, e_{2}\right\} \cup\left\{\left\{z, t z^{-1}\right\}: z \in H \backslash\left\{x, y, x h, y h^{\prime}\right\}\right\} \cup\left\{\left\{t x^{-1}, t x^{-1} h^{-1}\right\},\left\{t y^{-1}, t y^{-1} h^{\prime-1}\right\}\right\} .
$$

CASE 3: $e_{1} \in \Gamma_{1}, e_{2} \in \Gamma_{2}$.
If $H^{\prime}=\left\langle S_{1}\right\rangle$ is of even order, then each of the $\left[H: H^{\prime}\right]$ components of Γ_{1} (and Γ_{2}), and thus Γ_{1} (and Γ_{2}) itself, is 1-extendable by the remark following Proposition 3. Thus in this case Γ clearly contains a desired perfect matching. We can therefore assume that H^{\prime} is of odd order. Moreover, we can also assume that $e_{1}=\{1, h\}$ for some $h \in S_{1}$. Let $x, h^{\prime} \in H$ be such that $e_{2}=\left\{t x, t x h^{\prime}\right\}$. If there exists an element
$t a \in S_{2}$ such that $\left\{t a, t h^{-1} a\right\} \cap e_{2}=\emptyset$, then $\left\{x^{-1} a, x^{-1} h^{-1} a\right\} \cap e_{1}=\emptyset$, and so a perfect matching of Γ containing e_{1} and e_{2} is
$\left\{e_{1}, e_{2}\right\} \cup\left\{\left\{z, t z^{-1} a\right\}: z \in H \backslash\left\{1, h, x^{-1} a, x^{-1} h^{\prime-1} a\right\}\right\} \cup\left\{\left\{t a, t h^{-1} a\right\},\left\{x^{-1} a, x^{-1} h^{\prime-1} a\right\}\right\}$.
Similarly, if for some $t a \in S_{2}$ we have that $e_{2}=\left\{t a, t h^{-1} a\right\}$, then a desired perfect matching of Γ is

$$
\left\{e_{1}, e_{2}\right\} \cup\left\{\left\{z, t z^{-1} a\right\}: z \in H \backslash\{1, h\}\right\}
$$

We are left with the possibility that for each $t a \in S_{2}$ we have $\left|\left\{t a, t h^{-1} a\right\} \cap e_{2}\right|=1$. In view of the connectedness of Γ this implies $H^{\prime}=H$. Suppose first that $\left|S_{1}\right|>2$. Then $|H|>4$, and so there exists an edge $e=\left\{y, t y^{-1} a\right\}$ such that $e \cap\left(e_{1} \cup e_{2}\right)=\emptyset$. By Theorem 1 both Γ_{1} and Γ_{2} are $1 \frac{1}{2}$-extendable, and so a desired perfect matching of Γ clearly exists. Suppose now that $S_{1}=\left\{h, h^{-1}\right\}$. In this case each of Γ_{1} and Γ_{2} is isomorphic to a cycle of odd length, say $2 n+1$. Using the remarks from the beginning of this section it is easy to see that the above assumptions imply $\left|S_{2}\right| \leq 2$ and $\Gamma \cong \operatorname{Cay}\left(\mathbb{Z}_{2 n+1} \times \mathbb{Z}_{2} ;\{(\pm 1,0),(0,1)\}\right) \cong \operatorname{Circ}(4 n+2 ;\{ \pm 2,2 n+1\})$ in the case of $\left|S_{2}\right|=1$, and $\Gamma \cong \operatorname{Cay}\left(\mathbb{Z}_{2 n+1} \times \mathbb{Z}_{2} ;\{(\pm 1,0),(\pm 1,1)\}\right) \cong \operatorname{Circ}(4 n+2 ;\{ \pm 1, \pm 2 n\})$ in the case of $\left|S_{2}\right|=2$. Hence, in either case Γ is a Cayley graph of an abelian group, so that Proposition 4 applies.

CASE 4: $e_{1}, e_{2} \notin \Gamma_{1} \cup \Gamma_{2}$.
With no loss of generality we can assume that $e_{1}=\{1, t\}$ and $e_{2}=\left\{x, t x^{-1} a\right\}$ for some $x, a \in H$. If $a=1$ then a perfect matching of Γ containing e_{1} and e_{2} is $\left\{\left\{z, t z^{-1}\right\}: z \in H\right\}$. We can thus assume $a \neq 1$ (implying that $\left|S_{2}\right| \geq 2$). We distinguish two subcases depending on whether $\left|S_{2}\right|=2$ or not.
Subcase 4.1: $\left|S_{2}\right| \geq 3$.
We show that in this case a desired perfect matching of Γ can be constructed using just some of the edges corresponding to elements of S_{2}. Now, if $x \notin\langle a\rangle$ then a desired perfect matching of Γ is given by

$$
\left\{\left\{z, t z^{-1}\right\}: z \in H \backslash\langle a\rangle x\right\} \cup\left\{\left\{z, t z^{-1} a\right\}: z \in\langle a\rangle x\right\}
$$

so that we can assume $x \in\langle a\rangle$. Let $t b \in S_{2} \backslash\{t, t a\}$, let $H^{\prime}=\langle a, b\rangle \leq H$ and consider the subgraph Γ^{\prime} of Γ induced on $H^{\prime} \cup H^{\prime} t$ by the edges corresponding to $t, t a$ and $t b$. Note that it suffices to prove that Γ^{\prime} is 2-extendable. To prove this we use a result of [9] that a bipartite graph with bipartition $A \cup B$, where $|A|=|B|$, is 2-extendable if and only if for each subset $X \subset A$ with $|X| \leq|A|-2$ we have that $|N(X)| \geq|X|+2$ (here $N(X)$ denotes the set of neighbours of vertices from X). Suppose there exists a subset X of H^{\prime} of cardinality at most $\left|H^{\prime}\right|-2$ for which $|N(X)| \leq|X|+1$. Since $t x^{-1} \in N(X)$ for each $x \in X$, there cannot exist distinct $x_{1}, x_{2} \in X$ with $x_{1} a^{-1}, x_{2} a^{-1} \notin X$ (in this case $\left\{t x^{-1}: x \in X\right\} \cup\left\{t x_{1}^{-1} a, t x_{2}^{-1} a\right\} \subseteq N(X)$ would contradict $|N(X)| \leq|X|+1)$. Hence, except possibly with one exception, for each $x \in X$ we have that $x a^{-1} \in X$. Similarly, except possibly with one exception, for each $x \in X$ we have that $x b^{-1} \in X$. It is easy to see that these two conditions imply that $|X| \geq\left|H^{\prime}\right|-1$, a contradiction, showing that Γ^{\prime} and thus Γ is 2-extendable.

Subcase 4.2: $\left|S_{2}\right|=2$, that is $S_{2}=\{t, t a\}$. Note that since, by assumption, Γ is not a cycle, this forces S_{1} to be nonempty.
Subsubcase 4.2.1: $\left\langle S_{1}\right\rangle$ is of even order.
Suppose first that $x \notin\left\langle S_{1}\right\rangle$ and $t x^{-1} a \notin t\left\langle S_{1}\right\rangle$. Then a desired perfect matching of Γ is obtained by taking $\left\{\left\{z, t z^{-1}\right\}: z \in\left\langle S_{1}\right\rangle\right\} \cup\left\{\left\{x z, t x^{-1} z^{-1} a\right\}: z \in\left\langle S_{1}\right\rangle\right\}$ together with perfect matchings of the remaining $2\left(\left[H:\left\langle S_{1}\right\rangle\right]-2\right)$ components of $\Gamma_{1} \cup \Gamma_{2}$ (which exist as they are Cayley graphs of an abelian group of even order). Next, suppose $x \in\left\langle S_{1}\right\rangle$ but $t x^{-1} a \notin t\left\langle S_{1}\right\rangle$ (the case $x \notin\left\langle S_{1}\right\rangle, t x^{-1} a \in t\left\langle S_{1}\right\rangle$ is dealt with analogously). If $\left|S_{1}\right|=1$ (that is, S_{1} consists of a single involution), then either $\langle a\rangle=H$ or $[H:\langle a\rangle]=2$. Hence either $\Gamma \cong \operatorname{Circ}(4 n ;\{ \pm 1,2 n\})$ (the cycle of length $4 n$ corresponding to ± 1 is given by the edges corresponding to t and $t a)$ or $\Gamma \cong \operatorname{Cay}\left(\mathbb{Z}_{2 n} \times \mathbb{Z}_{2} ;\{(\pm 1,0),(0,1)\}\right)$, depending on whether $\langle a\rangle=H$ or not, respectively. This shows that Γ is a Cayley graph of an abelian group of even order and valency three, so Proposition 4 applies. We can thus assume that $\left|S_{1}\right| \geq 2$ implying that there exists some $h \in S_{1} \backslash\{x\}$. Since $\Gamma^{\prime}=\operatorname{Cay}\left(\left\langle S_{1}\right\rangle ; S_{1}\right)$ is 1-extendable, there exists a perfect matching M of Γ^{\prime} containing $\{1, h\}$. Let $h^{\prime} \in H$ be such that $\left\{x, x h^{\prime}\right\} \in M$. Taking $M_{1}=M t \backslash\left\{\left\{t, t h^{-1}\right\}\right\}$ and $M_{2}=$ $M t a \backslash\left\{\left\{t x^{-1} a, t x^{-1} h^{-1} a\right\}\right\}$ a desired perfect matching of Γ is obtained by taking

$$
M \backslash\left\{\{1, h\},\left\{x, x h^{\prime}\right\}\right\} \cup\left\{e_{1}, e_{2}\right\} \cup\left\{\left\{h, t h^{-1}\right\},\left\{x h^{\prime}, t x^{-1} h^{\prime-1} a\right\}\right\} \cup M_{1} \cup M_{2}
$$

together with perfect matchings of the remaining $2\left[H:\left\langle S_{1}\right\rangle\right]-3$ components of $\Gamma_{1} \cup \Gamma_{2}$, each of which is isomorphic to Γ^{\prime}. Finally, suppose $x \in\left\langle S_{1}\right\rangle$ and $t x^{-1} a \in$ $t\left\langle S_{1}\right\rangle$ (note that this implies $\left\langle S_{1}\right\rangle=H$.) We can clearly assume $\left|S_{1}\right|>1$ (otherwise $\left.\Gamma=K_{4}\right)$. Now, if $\left|S_{1}\right|=2$, then each of Γ_{1} and Γ_{2} is isomorphic to a cycle of length $2 n$ for some n. We can thus identify the vertex set of Γ with the set $V=\mathbb{Z}_{2 n} \times \mathbb{Z}_{2}$ in such a way that $(i, j) \sim(i+1, j)$ for each $i \in \mathbb{Z}_{2 n}$ and $j \in\{0,1\},(i, 0) \sim(i, 1)$ for each $i \in \mathbb{Z}_{2 n}$ and $(i, 0) \sim(i+k, 1)$ for each $i \in \mathbb{Z}_{2 n}$ and some fixed nonzero $k \in \mathbb{Z}_{2 n}$. If $k=2 k_{1}$ for some k_{1}, then (relabeling the vertices $(i, 1)$ by $\left(i-k_{1}, 1\right)$ for $\left.i \in \mathbb{Z}_{2 n}\right)$ we clearly have that $\Gamma \cong \operatorname{Cay}\left(\mathbb{Z}_{2 n} \times \mathbb{Z}_{2} ;\left\{(\pm 1,0),\left(\pm k_{1}, 1\right)\right\}\right)$. If on the other hand $k=2 k_{1}-1$ for some k_{1}, then the permutation ρ of the vertex set V defined by $\rho((i, 0))=\left(i+k_{1}, 1\right)$ and $\rho((i, 1))=\left(i-k_{1}+1,0\right)$ for every $i \in \mathbb{Z}_{2 n}$ is easily seen to be an automorphism of Γ of order $4 n$, so that Γ is a circulant in this case (in particular, $\Gamma \cong \operatorname{Circ}(4 n ;\{ \pm 2, \pm k\})$). In either case Γ is a Cayley graph of an abelian group, so that Proposition 4 applies. We can thus assume $\left|S_{1}\right| \geq 3$, and so Proposition 3 applies to Γ_{1} and Γ_{2}. If Γ_{1} is not bipartite, there is a Hamilton path of Γ_{1} between 1 and x and there is a Hamilton path of Γ_{2} between t and $t x^{-1} a$. Together with e_{1} and e_{2} this gives a Hamilton cycle of Γ, and so a desired perfect matching of Γ can be obtained by taking every other edge of this cycle, starting with e_{1} (recall that Γ_{1} is of even order). If Γ_{1} is bipartite then it is 2-extendable by Proposition 4. It is easy to see that, since Γ_{1} contains no triangles, there exist disjoint edges $e=\{1, h\}$ and $e^{\prime}=\left\{x, x h^{\prime}\right\}$ such that $e t$ and e^{\prime} ta are also disjoint. As Γ_{1} is 2-extendable we can now find a perfect matching of Γ_{1} containing e and e^{\prime} as well as a perfect matching of Γ_{2} containing et and $e^{\prime} t a$. It is now clear how to construct a desired perfect matching of Γ.
Subsubcase 4.2.2: $\left\langle S_{1}\right\rangle$ is of odd order.

Consider first the case that $x \notin\left\langle S_{1}\right\rangle$ and $t x^{-1} a \notin t\left\langle S_{1}\right\rangle$. Note that this implies $\left[H:\left\langle S_{1}\right\rangle\right] \geq 2$, and therefore the connectivity of Γ forces that $a \notin\left\langle S_{1}\right\rangle$. Let $y \in\left\langle S_{1}\right\rangle x, y \neq x$, and observe that then $y a^{-1} \notin\left\langle S_{1}\right\rangle$ (otherwise $t x^{-1} a \in t\left\langle S_{1}\right\rangle$). Letting $e=\left\{y, t y^{-1}\right\}$ and $e^{\prime}=\left\{y a^{-1}, t y^{-1} a\right\}$, a desired perfect matching of Γ is

$$
\left\{e, e^{\prime}\right\} \cup\left\{\left\{z, t z^{-1} a\right\}: z \in\left\langle S_{1}\right\rangle x \backslash\{y\}\right\} \cup\left\{\left\{z, t z^{-1}\right\}: z \in H \backslash\left(\left\langle S_{1}\right\rangle x \cup\left\langle S_{1}\right\rangle x a^{-1}\right)\right\} \cup M_{1} \cup M_{2},
$$

where M_{1} is an almost perfect matching of the component of Γ_{1} containing $x a^{-1}$ which misses $y a^{-1}$ and M_{2} is an almost perfect matching of the component of Γ_{2} containing $t x^{-1}$ which misses $t y^{-1}$. In the case that $x \in\left\langle S_{1}\right\rangle$ and $t x^{-1} a \in t\left\langle S_{1}\right\rangle$ we clearly have $\left\langle S_{1}\right\rangle=H$. The existence of a desired perfect matching of Γ then depends on $\left|S_{1}\right|$. If $\left|S_{1}\right|=2$, then each of Γ_{1} and Γ_{2} is just a cycle. Similar argument as in Subsubcase 4.2 .1 shows that then Γ is a Cayley graph of an abelian group, so that Proposition 4 applies. If $\left|S_{1}\right|>2$, then Γ_{1} and Γ_{2} are $1 \frac{1}{2}$-extendable by Theorem 1. Taking $h \in S_{1} \backslash\left\{x, x a^{-1}\right\}$ (which exists since $\left|S_{1}\right|>2$) there thus exists an almost perfect matching of Γ_{1} which contains $\{1, h\}$ but misses x and there exists an almost perfect matching of Γ_{2} which contains $\left\{t, t h^{-1}\right\}$ but misses $t x^{-1} a$. It is now clear how to obtain a desired perfect matching of Γ. We are left with the possibility that $x \in\left\langle S_{1}\right\rangle$ but $t x^{-1} a \notin t\left\langle S_{1}\right\rangle$ (the case $x \notin\left\langle S_{1}\right\rangle, t x^{-1} a \in t\left\langle S_{1}\right\rangle$ is dealt with analogously). Let M_{1} be an almost perfect matching of the component of Γ_{2} containing t which misses t. By Proposition 3 each component of $\Gamma_{1} \cup \Gamma_{2}$ contains a Hamilton cycle (if $\left|S_{1}\right|=2$, then each component of $\Gamma_{1} \cup \Gamma_{2}$ consists of a single cycle). Take a Hamilton cycle C of the component containing 1 and let y be the neighbor of x on this cycle, such that the length of the subpath of C from 1 to x not passing through y consists of an even number of vertices. Let M_{2} be the unique matching in $\operatorname{Cay}\left(\left\langle S_{1}\right\rangle ; S_{1}\right)$ consisting of edges of C which misses $1, x$ and y. Furthermore, let $M_{3}=M_{2} t a$ and let M_{4} be an almost perfect matching of the component containing a^{-1} which misses a^{-1}. Then a desired perfect matching of Γ is

$$
\left\{\left\{z, t z^{-1}\right\}: z \in H \backslash\left(\left\langle S_{1}\right\rangle \cup\left\langle S_{1}\right\rangle a^{-1}\right)\right\} \cup\left\{e_{1}, e_{2},\left\{y, t y^{-1} a\right\},\left\{a^{-1}, t a\right\}\right\} \cup M_{1} \cup M_{2} \cup M_{3} \cup M_{4}
$$

Acknowledgement. The authors were supported in part by "Agencija za raziskovalno dejavnost Republike Slovenije", research program P1-0285.

References

[1] B. Alspach and C. Q. Zhang, Hamilton cycles in cubic Cayley graphs on dihedral groups, Ars Combin. 28 (1989) 101-108.
[2] O. Chan, C. C. Chen and Q. Yu, On 2-extendable abelian Cayley graphs, Discrete Math. 146 (1995), 19-32.
[3] C. C. Chen, J. Liu and Q. Yu, On the classification of 2-extendable Cayley graphs on dihedral groups, Australas. J. Combin. 6 (1992), 209-219.
[4] C. C. Chen and N. Quimpo, On strongly hamiltonian abelian group graphs, in: Combinatorial Mathematics VIII, K. L. Mcavaney (ed.), Lecture Notes in Mathematics 884, Springer, Berlin, 1981, 23-34.
[5] E. Dobson, H. Gavlas, J. Morris and D. Witte, Automorphism groups with cyclic commutator subgroup and Hamilton cycles, Discrete Math. 189 (1998) 69-78.
[6] K. Kutnar and D. Marušič, Hamiltonicity of vertex-transitive graphs of order 4p, Europ. J. Combin. 29 (2008) 423-438.
[7] D. Marušič, Hamilonian circuits in Cayley graphs, Discrete Math. 46 (1983) 49-54.
[8] M. D. Plummer, On n-extendable graphs, Discrete Math. 31 (1980), 201-210.
[9] M. D. Plummer, Matching extension in bipartite graphs, in: Proceedings of the seventeenth Southeastern international conference on combinatorics, graph theory, and computing, Congr. Numer. 54 (1986), 245-258.
[10] M. D. Plummer, Extending matchings in graphs: a survey, Discrete Math. 127 (1994), 277-292.
[11] Q. Yu, Characterizations of various matching extensions in graphs, Australas. J. Combin. 7 (1993), 55-64.
[12] Z. Zhang, D. Lou and X. Zhang, Notes on factor-criticality, extendibility and independence number, Ars Combin. 87 (2008), 139-146.

Štefko Miklavič
Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 2, 6000 Koper, Slovenia
E-mail: stefko.miklavic@upr.si
Primož Šparl
Faculty of Education, University of Ljubljana, Kardeljeva ploščad 16,
1000 Ljubljana, Slovenia
E-mail: primoz.sparl@pef.uni-lj.si

[^0]: 2000 Mathematics Subject Classifications. 05C70, 05C25.
 Key words and Phrases. n-extendable, $n \frac{1}{2}$-extendable, Cayley graph, abelian group, generalized dihedral group.

 Received: July 10, 2009
 Communicated by Dragan Stevanović

