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Abstract

The main purpose of the paper is to display the main structural properties
of hypercyclic and chaotic integrated C-cosine functions. The notions of hy-
percyclicity, mixing and chaoticity of an α-times integrated C-cosine function
(α ≥ 0) are defined by using distributional techniques. We provide several
examples which justify our abstract theoretical approach.

1 Introduction and preliminaries

Let E be a complex Banach space. A linear operator T on E is said to be hypercyclic
if there exists an element x ∈ D∞(T ) ≡

⋂
n∈ND(Tn) whose orbit {Tnx : n ∈ N0}

is dense in E; T is said to be topologically transitive, resp. topologically mixing, if
for every pair of open non-empty subsets U, V of E, there exists n0 ∈ N such that
Tn0(U) ∩ V 6= ∅, resp. if for every pair of open non-empty subsets U, V of E,
there exists n0 ∈ N such that, for every n ∈ N with n ≥ n0, T

n(U) ∩ V 6= ∅. A
periodic point for T is an element x ∈ D∞(T ) satisfying that there exists n ∈ N
with Tnx = x. Finally, T is said to be chaotic if T is hypercyclic and the set of
periodic points of T is dense in E.

The organization of this paper, which continues the researches of A. Bonilla, P.
J. Miana [11] and T. Kalmes [31], is given as follows. In the second section, we
introduce and systematically analyze the class of C-distribution cosine functions
and slightly improve the results obtained in collaboration with P. J. Miana [49],
[34]-[35]. In Definition 21 and Definition 22, we introduce the notions of various
types of hypercyclicity of C-distribution cosine functions and integrated C-cosine
functions. Motivated by the study of R. deLaubenfels, H. Emamirad and K.-G.
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Grosse-Erdmann [25], we clarify in Theorem 23 the equivalent conditions for hy-
percyclicity, mixing and chaoticity of C-distribution cosine functions. In Theorem
25 and Theorem 27, we significantly improve results given in [11] and [50]. The
main objective in Theorem 33 and Theorem 35 is to provide sufficient conditions
for mixing and chaoticity of certain classes of C-distribution cosine functions. The
last two sections of the paper are devoted to the study of hypercyclic and chaotic
cosine functions generated by squares of gradient operators ([28]-[31]) and disjoint
hypercyclicity of cosine functions on weighted function spaces. The notion of sub-
space chaoticity introduced by J. Banasiak and M. Moszyński [5] plays an important
role throughout the paper.

It is worth noting that several results established in this paper are obvious
modifications of corresponding results from the theory of hypercyclic single valued
operators. We are not primarily concerned with studying new concepts in the theory
of hypercyclicity and our main intention is, in fact, to analyze the basic properties
of a new important class of abstract second order (ill-posed) PDEs (cf. [3], [23],
[26], [32], [34]-[35], [39], [42]-[44], [49] and [56]-[57] for further information in this
direction).

Henceforth L(E) stands for the space of all continuous linear mappings from E
into E and L(E) 3 C is an injective operator which satisfies CA ⊆ AC. Recall that
the C-resolvent set of A, denoted by ρC(A), is defined by

ρC(A) :=
{
λ ∈ C : λ−A is injective and (λ−A)−1C ∈ L(E)

}
.

For a closed linear operator A, Kern(A), R(A), ρ(A), σ(A) and σp(A) denote its
kernel space, range, resolvent set, spectrum and point spectrum, respectively. By
[D(A)] we denote the Banach spaceD(A) equipped with the graph norm. Suppose F
is a closed subspace of E. Then the part ofA in F, denoted byAF , is a linear operator
defined by D(AF ) := {x ∈ D(A) ∩ F : Ax ∈ F} and AFx := Ax, x ∈ D(AF ).

Definition 1. Suppose A is a closed operator, α ≥ 0 and 0 < τ ≤ ∞. If there
exists a strongly continuous operator family (Cα(t))t∈[0,τ) such that:

(i) Cα(t)A ⊆ ACα(t), t ∈ [0, τ),

(ii) Cα(t)C = CCα(t), t ∈ [0, τ), and

(iii) for every x ∈ E and t ∈ [0, τ):
t∫

0

(t− s)Cα(s)xds ∈ D(A) and

A

t∫
0

(t− s)Cα(s)xds = Cα(t)x− tα

Γ(α+ 1)
Cx,

then it is said that A is a subgenerator of a (local) α-times integrated C-cosine
function (Cα(t))t∈[0,τ). If τ =∞, then it is said that (Cα(t))t≥0 is an exponentially
bounded, α-times integrated C-cosine function with a subgenerator A if, in addition,
there are constants M > 0 and ω ∈ R such that ||Cα(t)|| ≤Meωt, t ≥ 0.
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The set which consists of all subgenerators of (Cα(t))t∈[0,τ) need not be finite
and a local α-times integrated C-cosine function need not be extendible beyond the
interval [0, τ). In this paper, we primarily consider hypercyclicity and chaoticity of
global integrated C-cosine functions. The (integral) generator Â of (Cα(t))t∈[0,τ)

defined by

Â :=
{

(x, y) ∈ E ⊕ E : Cα(t)x− tα

Γ(α+ 1)
Cx =

t∫
0

(t− s)Cα(s)yds, t ∈ [0, τ)
}

is the maximal subgenerator of (Cα(t))t∈[0,τ) with respect to the set inclusion. We
refer the reader to [39] for further information concerning integrated C-cosine func-
tions and semigroups.

The Schwartz spaces of test functions D = C∞0 (R) and E = C∞(R) carry the
usual inductive limit topologies. The topology of the space of rapidly decreas-
ing functions S is induced by the following system of seminorms: pm,n(ψ) =:
supx∈R |xmψ(n)(x)|, ψ ∈ S, m, n ∈ N0. By D0 we denote the subspace of D
which consists of the elements supported by [0,∞). Further on, D′(E) := L(D :
E), E ′(E) := L(E : E) and S ′(E) := L(S : E) are the spaces of continuous lin-
ear functions D → E, E → E and S → E, respectively; D′0(E), E ′0(E) and S ′0(E)
are the subspaces of D′(E), E ′(E) and S ′(E), respectively, containing the elements
supported by [0,∞). Denote by B the family of all bounded subsets of D. Put
pB(f) := supϕ∈B ||f(ϕ)||, f ∈ D′(E), B ∈ B. Then pB , B ∈ B is a seminorm on
D′(E) and the system (pB)B∈B defines the topology on D′(E). The topology on
E ′(E), resp., S ′(E), is defined similarly. We employ the convolution product ∗ and
the finite convolution product ∗0 of measurable functions ϕ,ψ : R→ C :

ϕ ∗ ψ(t) =:

∞∫
−∞

ϕ(t− s)ψ(s)ds, ϕ ∗0 ψ(t) :=

t∫
0

ϕ(t− s)ψ(s)ds, t ∈ R

and refer the reader to [39, Section 1.3] for the basic properties of the convolution
products ∗ and ∗0 in the subspaces of scalar-valued distributions. The convolution
of vector-valued distributions is taken in the sense of [41, Proposition 1.1]:

Proposition 2. Suppose X, Y and Z are Banach spaces and b : X × Y → Z
is bilinear and continuous. Then there is a unique bilinear, separately continuous
mapping ∗b : D′0(X)×D′0(Y )→ D′0(Z) such that

(S ⊗ x) ∗b (T ⊗ y) = S ∗ T ⊗ b(x, y),

for all S, T ∈ D′0 and x ∈ X, y ∈ Y. Moreover, this mapping is continuous.

Definition 3. ([33]) Let G ∈ D′0(L(E)) satisfy CG(ϕ) = G(ϕ)C, ϕ ∈ D. If G(ϕ ∗0
ψ)C = G(ϕ)G(ψ), ϕ, ψ ∈ D, then G is called a pre−(C − DS). If, additionally,
N (G) =

⋂
ϕ∈D0

Kern(G(ϕ)) = {0}, then G is called a C-distribution semigroup,

(C − DS) in short. It is said that a pre−(C − DS) is dense if the set R(G) =
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⋃
ϕ∈D0

R(G(ϕ)) is dense in E. A pre−(C −DS) G is said to be exponential if there

exists ω ∈ R such that e−ωtG ∈ S ′0(L(E)); the shorthand (E − CDS) is used to
denote an exponential (C −DS).

Let G be a (C −DS) and let T ∈ E ′0(C), i.e., T is a scalar-valued distribution
with compact support in [0,∞). Then we define G1(T ) on a subset of E by

y = G1(T )x iff G(T ∗ ϕ)x = G(ϕ)y for all ϕ ∈ D0.

Then G1(T ) is a closed linear operator, G1(δ) = I and the (infinitesimal) generator
of a (C −DS) G is defined by A := G1(−δ′). In the case C = I, there is no risk for
confusion and we do not distinguish G and G1.

Put D+ := {f ∈ C∞([0,∞)) : f is compactly supported} and define K : D →
D+ by K(ϕ)(t) := ϕ(t), t ≥ 0, ϕ ∈ D. As is known, D+ is an (LF) space and there
exists a linear continuous operator Λ : D+ → D which satisfies KΛ = ID+

([52]).

2 C-distribution cosine functions, almost
C-distribution cosine functions and integrated
C-cosine functions

We begin this section by recalling the following notion ([34]). Let ζ ∈ D[−2,−1] be

a fixed test function satisfying
∞∫
−∞

ζ(t)dt = 1. Then, with ζ chosen in this way, we

define I(ϕ) (ϕ ∈ D) as follows

I(ϕ)(·) :=

·∫
−∞

[
ϕ(t)− ζ(t)

∞∫
−∞

ϕ(u)du
]
dt.

Then I(ϕ) ∈ D, I(ϕ′) = ϕ, d
dtI(ϕ)(t) = ϕ(t) − ζ(t)

∞∫
−∞

ϕ(u)du, t ∈ R and, for

every G ∈ D′(L(E)), the primitive G−1 of G is defined by setting G−1(ϕ) :=
−G(I(ϕ)), ϕ ∈ D. It is clear that G−1 ∈ D′(L(E)), (G−1)′ = G, i.e., −G−1(ϕ′) =
G(I(ϕ′)) = G(ϕ), ϕ ∈ D and that suppG ⊆ [0,∞) implies suppG−1 ⊆ [0,∞).

Definition 4. An element G ∈ D′0(L(E)) is called a pre−(C −DCF ) iff G(ϕ)C =
CG(ϕ), ϕ ∈ D and

(C −DCF1) : G−1(ϕ ∗0 ψ)C = G−1(ϕ)G(ψ) + G(ϕ)G−1(ψ), ϕ, ψ ∈ D;

if, additionally,

(C −DCF2) : x = y = 0 iff G(ϕ)x+ G−1(ϕ)y = 0, ϕ ∈ D0,

then G is called a C-distribution cosine function, in short (C−DCF ). A pre−(C−
DCF ) G is called dense if the set R(G) :=

⋃
ϕ∈D0

R(G(ϕ)) is dense in E.
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Notice that (DCF2) implies
⋂

ϕ∈D0

Kern(G(ϕ)) = {0} and
⋂

ϕ∈D0

Kern(G−1(ϕ)) =

{0}, and that the assumption G ∈ D′0(L(E)) implies G(ϕ) = 0, ϕ ∈ D(−∞,0].

Proposition 5. ([39])

(i) Let G ∈ D′0(L(E)) and G(ϕ)C = CG(ϕ), ϕ ∈ D. Then G is a pre-(C-

DCF) in E iff G ≡
(

G G−1

G′ − δ ⊗ C G

)
is a pre-(C-DS) in E ⊕ E, where

C ≡
(
C 0
0 C

)
. Moreover, G is a (C-DS) iff G is a pre-(C-DCF) which

satisfies (C −DCF2).

(ii) Let G ∈ D′0(L(E)) and G(ϕ)C = CG(ϕ), ϕ ∈ D. Then G is a (C-DCF) iff
(DCF2) holds and

G−1(ϕ ∗ ψ+)C = G−1(ϕ)G(ψ) + G(ϕ)G−1(ψ), ϕ ∈ D0, ψ ∈ D.

Assume G is a (C −DCF ) and T ∈ E ′0(C). Then the (infinitesimal) generator
A of G is defined by

A := G(δ′′) :=
{

(x, y) ∈ E ⊕ E : G−1(ϕ′′)x = G−1(ϕ)y for all ϕ ∈ D0

}
.

Then A is a closed linear operator and, by the proof of [39, Lemma 3.1.6], we have
C−1AC = A.

Theorem 6. ([39])

(i) Let A be the generator of a (C-DCF) G. Then A ⊆ B, where A ≡
(

0 I
A 0

)
and B is the generator of G. Furthermore, (x, y) ∈ A⇔

((
x
0

)
,
(

0
y

))
∈ B.

(ii) Let G be a (C-DCF) generated by A. Then the following holds:

(a) (G(ψ)x, G(ψ′′)x+ ψ′(0)Cx) ∈ A, ψ ∈ D, x ∈ E.

(b) (G−1(ψ)x,−G(ψ′)x− ψ(0)Cx) ∈ A, ψ ∈ D, x ∈ E.

(c) G(ψ)A ⊆ AG(ψ), ψ ∈ D.

(d) G−1(ψ)A ⊆ AG−1(ψ), ψ ∈ D.

(iii) A closed linear operator A is the generator of a (C-DCF) G iff for every
τ > 0 there exist an integer nτ ∈ N and a local nτ -times integrated C-cosine
function (Cn(t))t∈[0,τ) with the integral generator A. If this is the case, then
the following equality holds:

G(ϕ)x = (−1)n
τ∫

0

ϕ(n)(t)Cn(t)xdt, x ∈ E, ϕ ∈ D(−∞,τ).
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Recall that the exponential region E(a, b) (a, b > 0) is defined in [2] by E(a, b) :=
{λ ∈ C : <λ ≥ b, |=λ| ≤ ea<λ}; set E2(a, b) := {λ2 : λ ∈ E(a, b)}.

Theorem 7. Suppose a > 0, b > 0, α > 0, M > 0, E2(a, b) ⊆ ρC(A), the mapping
λ 7→ (λ2−A)−1C, λ ∈ E(a, b) is continuous and ||(λ2−A)−1C|| ≤M(1+|λ|)α, λ ∈

E(a, b). Put ϕ̃(λ) :=
∞∫
−∞

eλtϕ(t)dt, ϕ ∈ D and

G(ϕ)x :=
1

2πi

∫
Γ

λϕ̃(λ)(λ2 −A)−1Cxdλ, x ∈ E, ϕ ∈ D,

where Γ is the upwards oriented boundary of E(a, b). Then G is a (C-DCF) gene-
rated by C−1AC.

Proof. The prescribed assumptions combined with [39, Proposition 2.1.24] imply
that there exist β ≥ 0 and M1 > 0 such that E(a, b) ⊆ ρC(A), ||(λ − A)−1C|| ≤
M1(1 + |λ|)β , λ ∈ E(a, b) and that the mapping λ 7→ (λ − A)−1C, λ ∈ E(a, b) is
continuous. Put G(ϕ)

(
x
y

)
:= 1

2πi

∫
Γ

ϕ̃(λ)(λ−A)−1C
(
x
y

)
dλ, x, y ∈ E, ϕ ∈ D. By [36,

Theorem 2.1], G is a (C −DS) generated by C−1AC. Using [39, Proposition 2.1.24]

again, one gets that, for every x, y ∈ E and ϕ ∈ D : G(ϕ) =

(
G1(ϕ) G2(ϕ)
G3(ϕ) G1(ϕ)

)
,

where G1(ϕ)x = 1
2πi

∫
Γ

λϕ̃(λ)(λ2−A)−1Cxdλ, G2(ϕ)x = 1
2πi

∫
Γ

ϕ̃(λ)(λ2−A)−1Cxdλ

and G3(ϕ)x = 1
2πi

∫
Γ

ϕ̃(λ)[λ2(λ2 − A)−1C − C]xdλ, x ∈ E, ϕ ∈ D. The proof

of [36, Theorem 2.1] implies suppG ⊆ [0,∞), 1
2πi

∫
Γ

ϕ̃(λ)dλ = ϕ(0), ϕ ∈ D and

λĨ(ϕ)(λ) = −Ĩ(ϕ)′(λ) =
˜

ϕ−
∞∫
−∞

ϕ(t)dtζ(λ) = ϕ̃(λ), λ ∈ C. Therefore, G2 = G−1
1

and G3 = G′1 − δ ⊗ C. By Theorem 6(i), we get that G1 is a (C −DCF ). Denote
by B the generator of G. Then we finally obtain

(x, y) ∈ B ⇔

((
x

0

)
,

(
0

y

))
∈ C−1AC ⇔ (x, y) ∈ C−1AC.

Proposition 8. Assume that ±A generate C-distribution semigroups G± and that
A2 is closed. Then C−1A2C generates a (C-DCF) G, which is given by G(ϕ) :=
1
2 (G+(ϕ) +G−(ϕ)), ϕ ∈ D.

Proof. Since ±A generate C-distribution semigroups, it follows that, for every τ >
0, there exists nτ ∈ N such that±A generate local nτ -times integrated C-semigroups
(Sn,±(t))t∈[0,τ). The closedness of A2 taken together with [39, Proposition 2.1.17]
imply that, for every τ > 0, the operator A2 is a subgenerator of the local nτ -
times integrated C-cosine function ( 1

2 (Sn,−(t) + Sn,−(t)))t∈[0,τ). Keeping in mind
Theorem 6(iii), the above ensures that the operator C−1A2C is the generator of a
(C −DCF ) G.
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Theorem 9.

(i) Let A be the generator of a (C-DCF) G. Then G ∈ D′0(L(E, [D(A)])),

G ∗ P = δ′ ⊗C[D(A)] ∈ D′0(L([D(A)])) and P ∗G = δ′ ⊗C ∈ D′0(L(E)), (1)

where P := δ′′ ⊗ I − δ ⊗ A ∈ D′0(L([D(A)], E)) and I denotes the inclusion
[D(A)] ↪→ E.

(ii) Suppose A is a closed linear operator, G ∈ D′0(L(E, [D(A)])), G(ϕ)C =
CG(ϕ), ϕ ∈ D and (1) holds. Then G is a (C-DCF) generated by C−1AC.

(iii) Let G ∈ D′0(L(E)) and G(ϕ)C = CG(ϕ), ϕ ∈ D. Then G is a (C-DCF) in
E generated by A iff G is a (C-DS) in E ⊕ E generated by A.

Proof. Let X = L(E, [D(A)]), Y = L([D(A)], E), Z = L([D(A)]) and let
b : X × Y → Z be defined by b(B,D) := BD, B ∈ X, D ∈ Y. The definition of
G∗P is given by Proposition 2; the convolution P ∗G can be understood similarly.
Let x ∈ D(A), k ∈ N0 and ϕ ∈ D. Then it is obvious that (G ∗ (δ(k) ⊗ I))(ϕ)x =
(−1)kG(ϕ(k))x, (G ∗ (δ(k) ⊗ A))(ϕ)x = (−1)kG(ϕ(k))Ax, ((δ(k) ⊗ I) ∗G)(ϕ)x =
(−1)kG(ϕ(k))x and ((δ(k)⊗A)∗G)(ϕ)x = (−1)kAG(ϕ(k))x, ϕ ∈ D, x ∈ E, k ∈ N0.
Suppose that G is a (C − DCF ) generated by A and x ∈ E. Then an appli-
cation of Theorem 6(i)(a) gives AG(ϕ)x = G(ϕ′′)x + ϕ′(0)Cx, which implies
G ∈ D′0(L(E, [D(A)])), (P ∗G)(ϕ)x = G(ϕ′′)x−AG(ϕ)x = −ϕ′(0)Cx and P ∗G =
δ′ ⊗ C. We obtain G ∗ P = δ′ ⊗ C[D(A)] along the same lines, which completes
the proof of (i). In order to prove (ii), let us assume G ∈ D′0(L(E, [D(A)])),
G ∗ P = δ′ ⊗ C[D(A)] and P ∗ G = δ′ ⊗ C. Since suppG ⊆ [0,∞), it follows
that suppG−1 ⊆ [0,∞) and suppG ⊆ [0,∞). If x ∈ E, then the assumptions
G ∗P = δ′⊗C[D(A)] and P ∗G = δ′⊗C imply G(ϕ)Ax = G(ψ′′)x+ψ′(0)Cx, ϕ ∈
D, x ∈ D(A), AG−1(ϕ)x = −G(ϕ′)x− ϕ(0)Cx, ϕ ∈ D, x ∈ E and G−1(ϕ)Ax =
−G(ϕ′)x− ϕ(0)Cx, ϕ ∈ D, x ∈ E. It is also clear that G commutes with C. Then
one can repeat literally the proof of [39, Theorem 3.1.7] with a view to obtain
that, for every τ > 0, there exists nτ ∈ N such that A is a subgenerator of a local
(nτ + 1)-times integrated C-semigroup (Snτ+1(t))t∈[0,τ) whose integral generator is

C−1AC and which satisfies G(ϕ)
(
x
y

)
= (−1)nτ+1

τ∫
0

ϕ(nτ+1)(t)Snτ+1(t)
(
x
y

)
dt, x, y ∈ E,

ϕ ∈ D(−∞,τ). By making use of [39, Theorem 2.1.11], we get that, for every τ > 0,
there exists nτ ∈ N such that A is a subgenerator of a local nτ -times integrated C-
cosine function (Cnτ (t))t∈[0,τ) whose integral generator is C−1AC. Furthermore, the

next equality holds Snτ+1(t) =


t∫

0

Cnτ (s)ds
t∫

0

(t− s)Cnτ (s)ds

Cnτ (t)− tnτ

nτ !C
t∫

0

Cnτ (s)ds

 , t ∈ [0, τ).

This implies that C−1AC is the generator of a (C −DCF ) G and the proof of (ii)
is completed. The proof of (iii) can be obtained as in the case of distribution cosine
functions.
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Definition 10. A (C −DCF ) G is said to be an exponential C-distribution cosine
function, (E − CDCF ) in short, if G is an (E − CDS) in E ⊕ E.

Theorem 11. ([34], [39])

(i) Let G be a (C-DCF). Then G is exponential iff there exists ω ∈ R such that
e−ωtG−1 ∈ S ′0(L(E)).

(ii) Let A be a closed operator. Then the following assertions are equivalent:

(a) The operator A is the generator of an (E-CDCF) in E.

(b) The operator A is the generator of an (E-CDS) in E ⊕ E.
(c) There exists n ∈ N such that A is the generator of an exponentially

bounded n-times integrated C-cosine function.

(d) There exist ω > 0, M > 0 and k ∈ N such that Πω = {x + iy : x >

ω2− y2

4ω2 } ⊆ ρ(A), ‖(λ−A)−1C‖ ≤M |λ|k , λ ∈ Πω and that the mapping
λ 7→ (λ−A)−1C, λ ∈ Πω is strongly continuous.

(iii) Let A be a densely defined operator and let R(C) be dense in E. If A is the
generator of an (exponential) (C-DCF) in E, then A∗ is the generator of an
(exponential) (C∗-DCF) in E∗.

(iv) If A is the generator of an (C-EDCF), then for every z ∈ C the operator A+z
is also the generator of an (C-EDCF).

(v) Suppose ±A generate exponential C-distribution semigroups and A2 is closed.
Then C−1A2C is the generator of an (E-CDCF).

Theorem 12. ([39])

(i) Let G be a (C-DCF). Then for all
(
x
y

)
∈ R(G) there exists a unique function

u ∈ C1([0,∞) : E) satisfying u(0) = Cx, u′(0) = Cy and

G(ψ)x+ G−1(ψ)y =

∞∫
0

ψ(t)u(t)dt, ψ ∈ D.

(ii) Let G be a (C-DCF) generated by A. Then for all x, y ∈ D∞(A) there exists
a unique function u ∈ C1([0,∞) : E) satisfying u(0) = Cx, u′(0) = Cy and

G(ϕ)x+ G−1(ϕ)y =

∞∫
0

ϕ(t)u(t)dt, ϕ ∈ D0.

(iii) Let G be a (C-DCF) generated by A. Then C(D∞(A)) ⊆ R(G).

(iv) Let R(C) be dense in E and let G be a (C-DCF) generated by A. Then the
following assertions are equivalent:
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(a) G is dense.

(b) A is densely defined.

(c) G∗ is a (C∗-DCF) in E∗.

(d) G is dense.

(e) A is densely defined.

(f) G∗ is a (C∗-DS) in (E ⊕ E)∗.

In order to complete the structural theory of C-distribution cosine functions
([49], [34]-[35], [39]), one has to consider global integrated C-cosine functions with
corresponding growth order, cosine convolution products and almost C-distribution
cosine functions. The following may be of some independent interest and will not
be further investigated in sections 3-5. Assume that τ0 : [0,∞) → [0,∞) is a
measurable function such that inf

t≥0
τ0(t) > 0 and that there exists C0 > 0 satisfying:

τ0(t+ s) ≤ C0τ0(t)τ0(s), t, s ≥ 0 and τ0(t− s) ≤ C0τ0(t)τ0(s), 0 < s < t.

Then (L1([0,∞) : τ0), || · ||τ0) denotes the Banach space which consists of those

measurable functions f : [0,∞) → C such that ||f ||τ0 :=
∞∫
0

|f(t)|τ0(t)dt < ∞. If

f, g ∈ L1([0,∞) : τ0), define f ◦ g(t) :=
∞∫
t

f(s − t)g(s)ds, t ≥ 0. Clearly, f ∗0 g ∈

L1([0,∞) : τ0) and f ◦ g ∈ L1([0,∞) : τ0). The cosine convolution product f ∗c g
is defined by f ∗c g := 1

2 (f ∗0 g + f ◦ g + g ◦ f); the sine convolution product
by f ∗s g := 1

2 (f ∗0 g − f ◦ g − g ◦ f) and the sine-cosine convolution product by
f∗scg := 1

2 (f∗0g−f◦g+g◦f). It is obvious that f∗cg, f∗sg, f∗scg ∈ L1([0,∞) : τ0),
resp. D+, if f, g ∈ L1([0,∞) : τ0), resp. f, g ∈ D+.

Proposition 13. ([35])

(i) Let G be a (C-DCF) generated by A. Then the following holds:

G(ϕ ∗0 ψ)Cx = G(ϕ)G(ψ)x+AG−1(ϕ)G−1(ψ)x, ϕ, ψ ∈ D, x ∈ E.

(ii) Let G ∈ D′0(L(E)) satisfy G(ϕ)G(ψ) = G(ψ)G(ϕ), ϕ, ψ ∈ D. Then the
following assertions are equivalent:

(a) G is a pre-(C-DCF) and G−1(Λ(f ◦g−g ◦f))C = G(Λ(f))G−1(Λ(g))−
G−1(Λ(f))G(Λ(g)), f, g ∈ D+.

(b) G−1(Λ(f ∗sc g))C = G−1(Λ(f))G(Λ(g)), f, g ∈ D+.

Definition 14. An element G ∈ L(D+ : L(E)) is called an almost C-distribution
cosine function, (A− CDCF ) in short, if G(f)C = CG(f), f ∈ D+,

(i) G(f ∗c g)C = G(f)G(g), f, g ∈ D+, and
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(ii)
⋂
f∈D+

Kern(G(f)) = {0}.

The (infinitesimal) generator A of G is defined by

A :=
{

(x, y) ∈ E ⊕ E : G(f)y = G(f ′′)x+ f ′(0)Cx for all f ∈ D+

}
.

It can be straightforwardly proved that A is a closed linear operator which satisfies
G(f)A ⊆ AG(f), G(f)x ∈ D(A), AG(f)x = G(f ′′)x + f ′(0)Cx, f ∈ D+, x ∈ E
and C−1AC = A.

Theorem 15. ([35])

(i) Let G be a (C-DCF) generated by A. Then GΛ is an (A-CDCF) generated by
A.

(ii) Let G be a (C-DCF) generated by A. Then

G(Λ(f ∗s g))C = AG−1(Λ(f))G−1(Λ(g)), f, g ∈ D+.

(iii) Let G be an (A-CDCF) generated by A. Then A is the generator of a (C-DCF)
G, which is given by G(ϕ) := G(K(ϕ)), ϕ ∈ D.

(iv) Every (almost) C-distribution cosine function is uniquely determined by its
generator.

(v) Let A be a closed linear operator. Then A is the generator of a (C-DCF) iff
A is the generator of an (A-CDCF).

(vi) Let G be a (C-DCF). Then G(ϕ)G(ψ) = G(ψ)G(ϕ), ϕ, ψ ∈ D.

Let f ∈ D+. Then the Weyl fractional integral of order α > 0 is defined by

(W−α+ f)(t) :=
∞∫
t

(s−t)α−1

Γ(α) f(s)ds, f ∈ D+, t ≥ 0. It is well known that, for every

α > 0, the mapping W−α+ : D+ → D+ is bijective. The inverse mapping of W−α+ (·),
denoted by Wα

+(·), is called the Weyl fractional derivative of order α > 0. If α ∈ N,
then Wα

+f = (−1)nf (n), f ∈ D+. Furthermore, Wα
+W

β
+ = Wα+β

+ for all α, β ∈
R, where we put W 0

+ := I. Let us recall ([49]) that the family of Bochner-Riesz

functions (Rθt ), θ > −1, t > 0, is defined by Rθt (s) = (t−s)θ
Γ(θ+1)χ(0,t). The Weyl

functional calculus can be applied to the functions which do not belong to the
space D+; for example, in the case of Bochner-Riesz functions one has Wα

+R
θ
t =

Rθ−αt , θ + 1 > α ≥ 0. Designate by Ωα, α > 0 the set which consists of all
nondecreasing continuous functions τα(·) on (0,∞) such that inf

t>0
t−αu(t) > 0 and

that there exists a constant Cα > 0 satisfying∫
[0,t] ∩ [s,s+t]

uα−1τα(t+ s− u)du ≤ Cατα(t)τα(s), 0 < t ≤ s.
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The typical functions τα(t) = tα; tβ(1 + t)γ (β ∈ [0, α], β + γ ≥ α); tβeτt (β ∈
[0, α], τ > 0) belong to Ωα. Suppose τα ∈ Ωα and ν > α; then the function
τν = tν−ατα, t > 0 belongs to Ων . Designate by Ωhα the subset of Ωα, α > 0 which
consists of all functions of the form τα(t) = tαω0(t), t > 0, where the continuous
nondecreasing function ω0 : [0,∞) → [0,∞) satisfies inf

t>0
ω0(t) > 0 and ω0(t + s) ≤

ω0(t)ω0(s), t, s > 0. Suppose α > 0, τα ∈ Ωα and define

qτα(ϕ) :=

∞∫
0

τα(t)

Γ(α+ 1)

∣∣∣Wα
+ϕ(t)

∣∣∣dt, ϕ ∈ D+.

Then qτα(·) is a norm on D+ and there exists a constant Cα > 0 such that
qτα(ϕ∗cφ) ≤ Cαqτα(ϕ)qτα(φ), ϕ, φ ∈ D+ ([49]). Let Tα+(τα, ∗c) denote the comple-
tion of the normed space (D+, qτα); then Tα+(τα, ∗c) is invariant under the cosine
convolution cosine product ∗c and the following holds (cf. [49, Theorem 3]):

(i) Tα+(τα, ∗c) ↪→ Tα+(tα, ∗c) ↪→ L1([0,∞), ∗c), where ↪→ denotes the dense and
continuous embedding,

(ii) Tβ+(tβ , ∗c) ↪→ Tα+(tα, ∗c), β > α > 0,

(iii) Rν−1
t ∈ Tα+(τα, ∗c), ν > α, t > 0 and there exists Cν,α > 0 such that

qτα(Rν−1
t ) ≤ Cν,αtν−ατα(t), t > 0.

An (A − CDCF ) G is said to be of order α > 0 and growth τα ∈ Ωα if G can be
extended to a continuous linear mapping from Tα+(τα, ∗c) into L(E).

Theorem 16. ([49])

(i) Let A be the generator of an α-times integrated C-cosine function (Cα(t))t≥0

and let ||Cα(t)|| = O(τα(t)), t > 0. Then the mapping G : Tα+(τα, ∗c)→ L(E),
given by

G(f)x :=

∞∫
0

Wα
+f(t)Cα(t)xdt, f ∈ Tα+(τα, ∗c), x ∈ E, (2)

is a continuous algebra homomorphism satisfying:

t∫
0

(t− s)ν−α−1

Γ(ν − α)
Cα(s)xds = G(Rν−1

t )x, ν > α, x ∈ E

and

∞∫
0

Wα
+f(t)Cα(t)xdt =

∞∫
0

W ν
+f(t)

t∫
0

(t− s)ν−α−1

Γ(ν − α)
Cα(s)xdsdt,

for all f ∈ T+
ν(tν−ατα, ∗c), x ∈ E. Furthermore, the restriction of G to D+

is an almost-distribution cosine function of order α > 0 and growth τα with
the generator A.
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(ii) Suppose A is the generator of an (A-CDCF) G of order α > 0 and growth
τα ∈ Ωα. Then, for every ν > α, A generates a ν-times integrated C-cosine
function (Cν(t))t≥0 such that ||Cν(t)|| ≤ Cνtν−ατα(t), t > 0 and that

G(f)x =

∞∫
0

W ν
+f(t)

t∫
0

(t− s)ν−α−1

Γ(ν − α)
Cα(s)xdsdt, f ∈ D+, x ∈ E.

(iii) Let α > 0, τα ∈ Ωhα and let D(A) and R(C) be dense in E. Then the following
assertions are equivalent:

(a) The operator A is the generator of an α-times integrated C-cosine func-
tion (Cα(t))t≥0 such that ||Cα(t)|| = O(τα(t)), t > 0.

(b) The operator A is the generator of an (A-CDCF) G of order α > 0 and
growth τα such that G(D+) is dense in E.

The following theorem will be useful in our further work.

Theorem 17. Assume α ≥ 0 and A is a subgenerator of a global α-times integrated
C-cosine function (Cα(t))t≥0. Then, for every β > α, the operator A is a subgene-
rator of a global β-times integrated C-cosine function (Cβ(t))t≥0, which is given by

Cβ(t)x =
t∫

0

(t−s)β−α−1

Γ(β−α) Cα(s)xds, x ∈ E, t ≥ 0. Define

G(ϕ)x :=

∞∫
0

Wα
+(K(ϕ))(t)Cα(t)xdt, x ∈ E, ϕ ∈ D. (3)

Then G is a (C-DCF) generated by C−1AC and the following equality holds: G(ϕ)x =
∞∫
0

W β
+(K(ϕ))(t)Cβ(t)xdt, x ∈ E, ϕ ∈ D.

A function u(t) is said to be a mild solution of the abstract Cauchy problem

(ACP1) : u′(t) = Au(t), t ≥ 0, u(0) = x, resp.,

(ACP2) : u′′(t) = Au(t), t ≥ 0, u(0) = x, u′(0) = y,

if the mapping t 7→ u(t), t ≥ 0 is continuous,
t∫

0

u(s)ds ∈ D(A) and A
t∫

0

u(s)ds =

u(t)−x, t ≥ 0, resp., if the mapping t 7→ u(t), t ≥ 0 is continuous,
t∫

0

(t−s)u(s)ds ∈

D(A) and A
t∫

0

(t− s)u(s)ds = u(t)−x− ty, t ≥ 0. It can be proved that there exists

at most one mild solution of (ACP1), resp. (ACP2), provided that there exists
α ≥ 0 such that A is a subgenerator of a local α-times integrated C-semigroup,
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resp., a local α-times integrated C-cosine function. If mild solutions of (ACP1) are
unique, then the solution space for A, denoted by Z(A), is defined to be the set of all
x ∈ E for which there exists a unique mild solution of (ACP1). In order not to put
a strain on the exposition, and to stay consistent with previously given definitions
of hypercyclicity and chaos of cosine functions ([11], [31]), we primarily consider
mild solutions of (ACP2) with y = 0. This, however, may not be the optimal choice
and we refer the reader to [15] as well as Theorem 33, Theorem 35, Example 29,
Example 36 and Remark 34 for further information in this direction. Denote by
Z2(A) the set which consists of all x ∈ E for which there exists such a solution. Let
π1 : E⊕E → E and π2 : E⊕E → E be the projections and let G be a (C −DCF )
generated by A. Then G is a (C −DS) generated by A and the solution space Z(A)
can be characterized by means of [37, Lemma 6]: Denote by D(G) the set of all
x ∈

⋂
t≥0

D(G1(δt)) satisfying that the mapping t 7→ G1(δt)x, t ≥ 0 is continuous; here

G1(δt) =
{

(
(
x1

y1

)
,
(
x2

y2

)
) : G1(ϕ(· − t))

(
x1

y1

)
= G1(ϕ)

(
x2

y2

)
, ϕ ∈ D0

}
. Then Z(A) = D(G)

and the mild solution u(·;
(
x
y

)
) of (ACP1) with initial value

(
x
y

)
∈ Z(A) is given

by u(t;
(
x
y

)
) = G1(δt)

(
x
y

)
, t ≥ 0. Assume that, for every τ > 0, A is the integral

generator of a local nτ -times integrated C-cosine function (Cnτ (t))t∈[0,τ). Then it

can be proved that the solution space Z(A) consists of those pairs
(
x
y

)
in E⊕E which

fulfill that, for every τ > 0, Cnτ (t)x+
t∫

0

Cnτ (s)yds ∈ R(C), t ∈ [0, τ) and that the

mapping t 7→ C−1(Cnτ (t)x+
t∫

0

Cnτ (s)yds), t ∈ [0, τ) is (nτ + 1)-times continuously

differentiable. By prior arguments, one yields that x ∈ Z2(A) iff
(

0
x

)
∈ Z(A) iff(

0
x

)
∈ D(G), and u(t;x) = π2(G1(δt)

(
0
x

)
), t ≥ 0, where u(·;x) denotes the mild

solution of (ACP2) with y = 0. Define G(δt)x := π2(G1(δt)
(

0
x

)
), t ≥ 0, x ∈ Z2(A).

Proposition 18. ([37]) Assume that, for every τ > 0, there exists nτ ∈ N such that
A is a subgenerator of a local nτ -times integrated C-cosine function (Cnτ (t))t∈[0,τ).
Then the solution space Z2(A) consists exactly of those vectors x ∈ E such that,
for every τ > 0, Cnτ (t)x ∈ R(C) and that the mapping t 7→ C−1Cnτ (t)x, t ∈ [0, τ)
is nτ -times continuously differentiable. If x ∈ Z2(A) and t ∈ [0, τ), then G(δt)x =
dnτ

dtnτ C
−1Cnτ (t)x.

Proposition 19. Let A be the generator of a (C-DCF) G and let x ∈ Z2(A). Then
G(δt)(Z2(A)) ⊆ Z2(A), t ≥ 0, 2G(δs)G(δt)x = G(δt+s)x + G(δ|t−s|)x, t, s ≥ 0 and

G(ϕ)x =
∞∫
0

ϕ(t)CG(δt)xdt, ϕ ∈ D0.

Proof. We will only prove the d’Alambert formula 2G(δs)G(δt)x = G(δt+s)x +
G(δ|t−s|)x, t, s ≥ 0. Fix a t ≥ 0 and define afterwards

u(s;G(δt)x) :=
1

2

[
G(δt+s)x+G(δ|t−s|)x

]
, s ≥ 0.

Then the mapping s 7→ u(s;G(δt)x), s ≥ 0 is continuous and, for every s ∈ [0, t],
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s∫
0

(s − r)u(r;G(δt)x)dr =
t+s∫
0

(t + s − r)u(r;G(δt)x)dr −
t∫

0

(t − r)u(r;G(δt)x)dr +

t−s∫
0

(t − s − r)u(r;G(δt)x)dr ∈ D(A) and A
s∫
0

(s − r)u(r;G(δt)x)dr = 1
2 [G(δt+s)x −

x]− 1
2 [G(δt)x−x]+ 1

2 [G(δt−s)x−x] = 1
2 [G(δt+s)x−x] = u(s;G(δt)x)−G(δt)x. One

can similarly prove that A
s∫
0

(s − r)u(r;G(δt)x)dr = u(s;G(δt)x) − G(δt)x, s > t,

which completes the proof of theorem.

Assume G is a (C −DCF ) generated by A and x ∈ Z2(A). Then Proposition
19 implies C(Z2(A)) ⊆ R(G) and G(ϕ)x ∈ R(C), ϕ ∈ D0. Further on, C(Z2(A)) ⊆
Z2(A) and G(δt)Cx = CG(δt)x, t ≥ 0.

Proposition 20.

(i) Assume G is a (C-DCF) generated by A. Then R(G) ⊆ Z2(A).

(ii) Assume A is a closed linear operator, x ∈ Z(A) ∩ Z(−A), u1(·;x) and u2(·;x)
are mild solutions of (ACP1) for A and −A, respectively, and u(t;x) :=
1
2 (u1(t;x) + u2(t;x)), t ≥ 0. If A2 is closed, then u(·;x) is a mild solution
of (ACP2) for A2.

Proof. We will prove only (i). Assume x ∈ R(G) and x = G(ϕ)y for some ϕ ∈ D0

and y ∈ E. Put

u(t;x) :=
1

2

[
G(ϕ(· − t))y + G(ϕ(·+ t))y + G(ϕ(t− ·))y

]
, t ≥ 0. (4)

Using the continuity of G, one gets that u(·;x) ∈ C([0,∞) : E). Denote f(t) :=
G(ϕ(· − t))y, g(t) := G(ϕ(· + t))y and h(t) := G(ϕ(t − ·))y, t ≥ 0. Then f, g, h ∈
C2([0,∞) : E), f ′(t) = −G(ϕ′(·− t))y, f ′′(t) = G(ϕ′′(·− t))y, g′(t) = G(ϕ′(·+ t))y,
g′′(t) = G(ϕ′′(· + t))y, h′(t) = −G(ϕ′(t − ·))y and h′′(t) = G(ϕ′′(t − ·))y, t ≥ 0.
The above equalities, the partial integration, the representation formula (4) and
Theorem 6(ii)(a) taken together imply:

A
t∫

0

(t− s)u(s;x)ds

= 1
2

t∫
0

(t− s)[G(ϕ′′(· − s))y+ G(ϕ′′(·+ s))y+ϕ′(s)Cy+ G(ϕ′′(s− ·))y−ϕ′(s)Cy]ds

= 1
2 [−

t∫
0

G(ϕ′(· − s))y +
t∫

0

G(ϕ′(·+ s))y −
t∫

0

G(ϕ′(s− ·))y]

= u(t;x)− x, t ≥ 0.

3 Hypercyclicity and chaos for C-distribution co-
sine functions and integrated C-cosine functions

Henceforth we assume that E is a separable infinite-dimensional complex Banach
space and that S is a non-empty closed subset of C satisfying S \ {0} 6= ∅.
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Let G be a (C − DCF ). A closed linear subspace Ẽ of E is said to be G-

admissible iff G(δt)(Z2(A) ∩ Ẽ) ⊆ Z2(A) ∩ Ẽ, t ≥ 0. Define Gwm(ϕ)
(
x
y

)
:=
(
G(ϕ)x
G(ϕ)y

)
,

x, y ∈ E, ϕ ∈ D. Then Gwm is a (C − DCF ) in E ⊕ E generated by A ⊕ A,
Z2(A ⊕ A) = Z2(A) ⊕ Z2(A), and Ẽ ⊕ Ẽ is Gwm-admissible provided that Ẽ is
G-admissible.

Definition 21. Let G be a (C−DCF ) and let Ẽ be G-admissible. Then it is said
that G is:

(i) Ẽ-hypercyclic, if there exists x ∈ Z2(A) ∩ Ẽ such that the set {G(δt)x : t ≥ 0}
is dense in Ẽ,

(ii) Ẽ-chaotic, if G is Ẽ-hypercyclic and the set of Ẽ-periodic points of G, GẼ,per,

defined by {x ∈ Z2(A) ∩ Ẽ : G(δt0)x = x for some t0 > 0}, is dense in Ẽ,

(iii) Ẽ-topologically transitive, if for every y, z ∈ Ẽ and ε > 0, there exist v ∈
Z2(A) ∩ Ẽ and t ≥ 0 such that ||y − v|| < ε and ||z −G(δt)v|| < ε,

(iv) Ẽ-topologically mixing, if for every y, z ∈ Ẽ and ε > 0, there exists t0 ≥ 0 such
that, for every t ≥ t0, there exists vt ∈ Z2(A) ∩ Ẽ such that ||y − vt|| < ε
and ||z −G(δt)vt|| < ε, t ≥ t0,

(v) Ẽ-weakly mixing, if Gwm is (Ẽ ⊕ Ẽ)-topologically transitive in E ⊕ E,

(vi) Ẽ-supercyclic, if there exists x ∈ Z2(A) ∩ Ẽ such that its projective orbit
{cG(δt)x : c ∈ C, t ≥ 0} is dense in Ẽ,

(vii) Ẽ-positively supercyclic, if there exists x ∈ Z2(A) ∩ Ẽ such that its positive
projective orbit {cG(δt)x : c ≥ 0, t ≥ 0} is dense in Ẽ,

(viii) ẼS-hypercyclic, if there exists x ∈ Z2(A) ∩ Ẽ such that its S-projective orbit

{cG(δt)x : c ∈ S, t ≥ 0} is dense in Ẽ; any element x ∈ Z2(A) ∩ Ẽ which
satisfies the above property is called a ẼS-hypercyclic vector of G,

(ix) ẼS-topologically transitive, if for every y, z ∈ Ẽ and ε > 0, there exist v ∈
Z2(A) ∩ Ẽ, t ≥ 0 and c ∈ S such that ||y − v|| < ε and ||z − cG(δt)v|| < ε,

(x) sub-chaotic, if there exists a G-admissible subset Ê such that G is Ê-chaotic.

In what follows, we use the fact that the notion of Ẽ-periodic points and Ẽ-
topological transitivity (ẼS-topological transitivity) of a (C −DCF ) G (or a (C −
DS) G, cf. [37] for the notion) can be defined even in the case that Ẽ is not
G-admissible.

Assume that there exists α ≥ 0 such that A is the integral generator of an
α-times integrated C-cosine function (Cα(t))t≥0. Put

Gα(ϕ)x :=

∞∫
0

Wα
+(K(ϕ))(t)Cα(t)xdt, x ∈ E, ϕ ∈ D.
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Then Theorem 17 implies that Gα is a (C −DCF ) generated by A.

Definition 22. Let Ẽ be a closed linear subspace of E. Then it is said that Ẽ is
(Cα(t))t≥0-admissible iff Ẽ is Gα-admissible, and that (Cα(t))t≥0 is Ẽ-hypercyclic iff
Gα is; all other dynamical properties of (Cα(t))t≥0 are understood in the same sense.

Let Ẽ be (Cα(t))t≥0-admissible; then a point x ∈ Ẽ is said to be a Ẽ-periodic point

(ẼS-hypercyclic vector) of (Cα(t))t≥0 iff x is a Ẽ-periodic point (ẼS-hypercyclic
vector) of Gα.

It is clear that the notion of ẼS-hypercyclicity generalizes the notions of (posi-

tive) Ẽ-supercyclicity and Ẽ-hypercyclicity. In the case Ẽ = E, it is also said that
G ((Cα(t))t≥0) is hypercyclic, chaotic, ..., S-hypercyclic, S-topologically transitive,
and we write Gper instead of GẼ,per. Using Theorem 17 again, we get that a closed

linear subspace Ẽ of E is (Cα(t))t≥0-admissible iff Ẽ is (Cβ(t))t≥0-admissible, and

that (Cα(t))t≥0 is Ẽ-hypercyclic (Ẽ-chaotic, ..., sub-chaotic) iff (Cβ(t))t≥0 is; this
is why we assume in the sequel that α ∈ N0. Let Gi be a (Ci − DCF ) generated
by A, i = 1, 2. Then a closed linear subspace Ẽ of E is G1-admissible iff Ẽ is
G2-admissible. Furthermore, it follows from Definition 21 that G1 and G2 share
common dynamical properties, which can be simply reformulated in the case of
global integrated C-cosine functions.

It is easily seen that ẼS-hypercyclicity (ẼS-topological transitivity) of G implies

Ẽ ∩ Z2(A) = Ẽ. By Proposition 19, the assumption G(δt0)x = x for some t0 > 0
and x ∈ Z2(A) implies by induction G(δt0)nx = G(δnt0)x = x, n ∈ N, so that the
notion of Ẽ-periodic points of G is meaningful in some sense.

Before going any further, we would like to make a general observation on in-
finitely regular S-hypercyclic vectors of cosine functions. Let (C(t))t≥0 be an S-
topologically transitive cosine function and let HCS(C(·)) denote the set which
consists of all S-hypercyclic vectors of (C(t))t≥0. Then one can prove by means of
[28, Lemma 3.1, Theorem 3.2] that HCS(C(·)) ∩ D∞(A) is a dense subset of E.

Given t > 0 and σ > 0, set

Φt,σ :=
{
ϕ ∈ D0 : suppϕ ⊆ (t− σ, t+ σ), ϕ ≥ 0,

∫
ϕ(s)ds = 1

}
.

The following theorem can be proved by making use of Proposition 19 and the proof
of [19, Theorem 4.6].

Theorem 23. ([19], [37])

(i) Assume n ∈ N0, A is the integral generator of an n-times integrated C-cosine

function (Cn(t))t≥0, C(Ẽ) = Ẽ and Ẽ is Gn-admissible. Then the following
holds:

(a) (Cn(t))t≥0 is ẼS-hypercyclic iff there exists x ∈ Ẽ such that the mapping
t 7→ Cn(t)x, t ≥ 0 is n-times continuously differentiable and that the set
{c d

n

dtnCn(t)x : c ∈ S, t ≥ 0} is dense in Ẽ.
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(b) (Cn(t))t≥0 is ẼS-topologically transitive iff for every y, z ∈ Ẽ and ε > 0,

there exist v ∈ Ẽ, t0 ≥ 0 and c ∈ S such that the mapping t 7→ Cn(t)v,
t ≥ 0 is n-times continuously differentiable and that ||y − v|| < ε as well
as ||z − c( d

n

dtnCn(t)v)t=t0 || < ε.

(c) (Cn(t))t≥0 is Ẽ-chaotic iff (Cn(t))t≥0 is Ẽ-hypercyclic and there exists a

dense subset of Ẽ consisting of those vectors x ∈ Ẽ for which there exists
t0 > 0 such that the mapping t 7→ Cn(t)x, t ≥ 0 is n-times continuously
differentiable and that ( d

n

dtnCn(t)x)t=t0 = Cx.

(ii) Let A be the generator of a (C-DCF) G and let Ẽ be G-admissible. Then:

(a) G is ẼS-hypercyclic iff there exists x0 ∈ Z2(A) ∩ Ẽ such that, for every

x ∈ Ẽ and ε > 0, there exist t0 > 0, c ∈ S and σ > 0 such that

||cC−1G(ϕ)x0 − x|| < ε, ϕ ∈ Φt0,σ.

(b) G is ẼS-topologically transitive iff for every y, z ∈ Ẽ and ε > 0, there

exist t0 > 0, c ∈ S, σ > 0 and v ∈ Z2(A) ∩ Ẽ such that, for every
ϕ ∈ Φt0,σ,

||y − v|| < ε and ||z − cC−1G(ϕ)v|| < ε.

(c) G is Ẽ-chaotic iff G is Ẽ-hypercyclic and if there exists a dense set in
Ẽ of vectors x ∈ Z2(A) ∩ Ẽ for which there exists τ > 0 such that, for
every ε > 0, there exists σ > 0 satisfying

||C−1G(ϕ)x− x|| < ε, ϕ ∈ Φτ,σ.

Corollary 24. Let A be the generator of a (C-DCF) G. Assume Ẽ is G-admissible

and G is ẼS-hypercyclic (ẼS-topologically transitive). Then C(Ẽ) ⊆ R(G) ⊆
D∞(A).

The proof of following theorem follows from Proposition 19 and the fact that
the continuity of a single operator C(t) (t ≥ 0) is not used in the proofs of [11,
Theorem 1.2, Corollary 1.3, Theorem 1.4].

Theorem 25. Let G be a (C-DCF) and let Ẽ be G-admissible.

(i) Assume that there exists a sequence (tn) of non-negative real numbers such
that

X0,Ẽ :=
{
x ∈ Z2(A) ∩ Ẽ : lim

n→∞
G(δtn)x = 0

}
and

X∞,Ẽ :=
{
y ∈ Ẽ : there exists a zero sequence (un) in Z2(A) ∩ Ẽ and

c ∈ S \ {0} such that lim
n→∞

G(δtn)cun = y
}

are dense subsets of Ẽ. Then G is ẼS-topologically transitive.
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(ii) Assume that there exists a sequence (tn) of non-negative real numbers such
that the set

X1,Ẽ :=
{
x ∈ Z2(A) ∩ Ẽ : lim

n→∞
G(δtn)x = lim

n→∞
G(δ2tn)x = 0

}
is dense in Ẽ. Then G is Ẽ-topologically transitive.

(iii) Assume that the set

XẼ :=
{
x ∈ Z2(A) ∩ Ẽ : lim

t→∞
G(δt)x = 0

}
is dense in Ẽ. Then G is Ẽ-topologically mixing.

Remark 26.

(i) Assume x, y ∈ E, λ1, λ2 ∈ C, Ax = λ1x and Ay = λ2y. Then x ∈ Z(A) ∩
Z2(A), the mild solution of (ACP1) is given by u(t;x) = eλ1tx, t ≥ 0 and the

mild solution of (ACP2) is given by u(t;x, y) =
∞∑
n=0

t2n

(2n)!λ
n
1x+

∞∑
n=0

t2n+1

(2n+1)!λ
n
2y,

t ≥ 0. This implies that the condition f(λ) ∈ Z(A), λ ∈ Ω stated in the
formulation of [37, Theorem 11] automatically holds and that the proof of
[37, Theorem 13] can be simplified.

(ii) Let t0 > 0. By the proof of Theorem 27 (cf. also [16]), we obtain that C-
distribution semigroups appearing in the formulation of [37, Theorem 11] are
(subspace) topologically mixing. With a little abuse of notation, we have that
every single operator G1(δt0) in [37, Theorem 11(i)] is topologically mixing
and has a dense set of periodic points in E, resp. the part of the operator
G1(δt0) in the Banach space Ẽ appearing in the formulation of [37, Theorem
11(ii)] is topologically mixing in Ẽ and the set of Ẽ-periodic points of such
an operator is dense in Ẽ.

The following theorem is an important extension of [50, Theorem 2.1], [14,
Proposition 2.1], [15, Theorem 1.1] and [37, Theorem 11(i)].

Theorem 27.

(i) Assume G is a (C-DS) generated by A, ω1, ω2 ∈ R ∪ {−∞,∞}, ω1 < ω2 and
t0 > 0. If σp(A) ∩ iR ⊇ (iω1, iω2) ∩ 2πiQ

t0
, k ∈ N and gj : (ω1, ω2) ∩ 2πQ

t0
→ E

is a function which satisfies that, for every j = 1, · · ·, k, Agj(s) = isgj(s), s ∈
(ω1, ω2)∩ 2πQ

t0
, then every point in span{gj(s) : s ∈ (ω1, ω2)∩ 2πQ

t0
, 1 ≤ j ≤ k}

is a periodic point of G1(δt0). Assume now that fj : (ω1, ω2)→ E is a Bochner
integrable function which satisfies that, for every j = 1, ···, k, Afj(s) = isfj(s)

for a.e. s ∈ (ω1, ω2). Put ψr,j :=
ω2∫
ω1

eirsfj(s)ds, r ∈ R, 1 ≤ j ≤ k.
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(a) Assume span{fj(s) : s ∈ (ω1, ω2) \Ω, 1 ≤ j ≤ k} is dense in E for every
subset Ω of (ω1, ω2) with zero measure. Then G is topologically mixing
and G1(δt0) is topologically mixing.

(b) Put Ẽ := span{ψr,j : r ∈ R, 1 ≤ j ≤ k}. Then G is Ẽ-topologically mix-

ing and the part of G1(δt0) in Ẽ is topologically mixing in the Banach
space Ẽ.

(ii) Assume G is a (C-DS) generated by A, t0 > 0, Ẽ is a closed linear subspace
of E, E0 := span{x ∈ Z(A) : ∃λ ∈ C, <λ < 0, G1(δt)x = eλtx, t ≥ 0},
E∞ := span{x ∈ Z(A) : ∃λ ∈ C, <λ > 0, G1(δt)x = eλtx, t ≥ 0} and
Eper := span{x ∈ Z(A) : ∃λ ∈ Q, G1(δt)x = eπλitx, t ≥ 0}. Then the
following holds:

(a) If E0 ∩ Ẽ is dense in Ẽ and if E∞ is a dense subspace of Ẽ, then G is
Ẽ-topologically mixing; if G1(δt)(E0 ∩ Ẽ) ⊆ Ẽ, t ≥ 0, then the part of
G1(δt0) in Ẽ is topologically mixing in the Banach space Ẽ.

(b) If Eper ∩ Ẽ is dense in Ẽ, then the set of Ẽ-periodic points of G is

dense in Ẽ; if, additionally, Eper is a dense subspace of Ẽ, then the set

of all periodic points of the part of the operator G1(δt0) in Ẽ is dense in
Ẽ.

Proof. We will prove the assertion (i)(a). By Riemann-Lebesgue lemma and the
dominated convergence theorem, we have that lim

|r|→∞
ψr,j = 0 and that the mapping

r 7→ ψr,j , r ∈ R is continuous (1 ≤ j ≤ k). By Remark 26 and [37, Lemma 6(i)],
we obtain G1(δt)fj(s) = eitsfj(s) for a.e. s ∈ (ω1, ω2), G1(δt)ψr,j = ψr+t,j , t ≥ 0,
r ∈ R, 1 ≤ j ≤ k and span{ψr,j : r ∈ R, 1 ≤ j ≤ k} ⊆ D(G). Using the proof
of [50, Theorem 2.1], it can be easily seen that span{ψr,j : r ∈ R, 1 ≤ j ≤ k} is
dense in E. So, it suffices to show that, given y, z ∈ span{ψr,j : r ∈ R, 1 ≤ j ≤ k}
and ε > 0 in advance, there exists t0 ≥ 0 such that, for every t ≥ t0, there exists
xt ∈ Z(A) = D(G) such that:

||y − xt|| < ε and ||z −G1(δt)xt|| < ε. (5)

Let y =
m∑
l=1

αlψrl,il and z =
n∑
l=1

βlψr̃l ,̃il for some αl, βl ∈ C, rl, r̃l ∈ R and

1 ≤ il, ĩl ≤ k. Then there exists t0(ε) > 0 such that ||
n∑
l=1

βlψr̃l−t,̃il || < ε and

G1(δt)
n∑
l=1

βlψr̃l−t,̃il = z, t ≥ t0(ε). Furthermore, there exists t1(ε) > 0 such

that ||G1(δt)y|| = ||
m∑
l=1

αlψrl+t,il || < ε, t ≥ t1(ε). Then (5) holds with t0 =

max(t0(ε), t1(ε)) and xt =
n∑
l=1

βlψr̃l−t,̃il + y, t ≥ t0. The operator G1(δt0) is ob-

viously topologically mixing, which completes the proof.
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Remark 28.

(i) Assume the function fj : (ω1, ω2) → E is weakly continuous for every j =
1, · · ·, k, t0 > 0 and Ω is a subset of (ω1, ω2) with zero measure. Then

span{fj(s) : s ∈ (ω1, ω2) ∩ 2πQ
t0
, 1 ≤ j ≤ k}

= span{fj(s) : s ∈ (ω1, ω2), 1 ≤ j ≤ k}

= span
k⋃
j=1

{fj(s) : s ∈ (ω1, ω2) \ Ω}.

(ii) Let Ω be a subset of (ω1, ω2) with zero measure, let r ∈ R and let 1 ≤ j ≤ k.

Then ψr,j =
ω2∫
ω1

eirsfj(s)ds ∈ span{fj(s) : s ∈ (ω1, ω2) \ Ω}.

(iii) Assume that the mapping r 7→ ψr,j , r ∈ R is an element of the space L1(R : E)
for every j = 1, · · ·, k. Then the inversion theorem for the Fourier transform
implies that there exists a subset Ω of (ω1, ω2) with zero measure such that

span{fj(s) : s ∈ (ω1, ω2) \ Ω, 1 ≤ j ≤ k} = span{ψr,j : r ∈ R, 1 ≤ j ≤ k}.

(iv) By multiplying with an appropriate scalar-valued function, we may assume
that, for every j = 1, · · ·, k, the function fj(·) is strongly measurable (cf. also
[50, Remark 2.4]).

The following example illustrates an application of Theorem 27(i) and can be
formulated in a more general setting.

Example 29. Assume α > 0, τ ∈ iR \ {0} and E :=BUC(R). After the usual
matrix reduction to a first order system, the equation τutt + ut = αuxx becomes

d

dt
~u(t) = P (D)~u(t), t ≥ 0,

where D ≡ −i ddx , P (x) ≡
[ 0 1
−ατ x

2 − 1
τ

]
and P (D) acts on E⊕E with its maximal

distributional domain. The polynomial matrix P (x) is not Petrovskii correct and
[17, Theorem 14.1] implies that there exists an injective operator C ∈ L(E ⊕ E)
such that P (D) generates an entire C-regularized group (T (z))z∈C, with R(C) dense.
Put ω1 = −∞ and ω2 = 0, resp. ω1 = 0 and ω2 = +∞, if =τ > 0, resp. =τ < 0.

Then −τs2+is
α ∈ (−∞, 0), s ∈ (ω1, ω2). Let h1(s) := cos(·( τs

2−is
α )1/2), h2(s) :=

sin(·( τs
2−is
α )1/2), s ∈ (ω1, ω2) and let f ∈ C∞((0,∞)) be such that the mapping

s 7→ fj(s) := (f(s)hj(s), isf(s)hj(s))
T , s > 0 is Bochner integrable and that the

mapping s 7→

{
fj(s), s ∈ (ω1, ω2)
0, s /∈ (ω1, ω2)

belongs to the space H1(R) for j = 1, 2. Put

ψr,j =
ω2∫
ω1

eirsfj(s)ds, r ∈ R, j = 1, 2 and Ẽ = span{ψr,j : r ∈ R, j = 1, 2}. By
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Bernstein lemma [1, Lemma 8.2.1, p. 429], Theorem 27(i)(b) and Remark 28(i)-
(iii), one gets that (T (t))t≥0 is Ẽ-topologically mixing as well as that for each t0 > 0

the part of the operator C−1T (t0) in Ẽ is topologically mixing in Ẽ and that the
set of Ẽ-periodic points of such an operator is dense in Ẽ.

Theorem 30. Let ±A be the generators of C-distribution semigroups G±, let A2 be
closed and let G(ϕ) = 1

2 (G+(ϕ) +G−(ϕ)), ϕ ∈ D. Assume ω1, ω2 ∈ R ∪ {−∞,∞},
ω1 < ω2, t0 > 0, σp(A) ⊇ (iω1, iω2) ∩ 2πiQ

t0
, k ∈ N and fj : (ω1, ω2) ∩ 2πQ

t0
→ E

satisfies Afj(s) = isfj(s), s ∈ (ω1, ω2) ∩ 2πQ
t0

(1 ≤ j ≤ k). Then G is a (C-DCF)

generated by C−1A2C and, for every x ∈ span{fj(s) : s ∈ (ω1, ω2)∩ 2πQ
t0
, 1 ≤ j ≤ k},

there exists n ∈ N such that x is a fixed point of G(δnt0).

Proof. Clearly, Proposition 8 implies that G is a (C − DCF ) generated by
C−1A2C. By Remark 26 and [37, Lemma 6(i)], one has G±,1(δt)fj(s) = e±istfj(s),
t ≥ 0, s ∈ (ω1, ω2) ∩ 2πQ

t0
. Now it is straightforward to see that, for every x ∈

span{fj(s) : s ∈ (ω1, ω2) ∩ 2πQ
t0
, 1 ≤ j ≤ k}, there exists n ∈ N such that

G±,1(δt0)nx = x. Then, by Proposition 20(ii),

G(δnt0)x =
1

2
(G+,1(δnt0)x+G−,1(δnt0)x)

=
1

2
(G+,1(δt0)nx+G−,1(δt0)nx) =

1

2
(x+ x) = x.

Remark 31. Assume Ω is an open connected subset of C, which satisfies σp(A) ⊇
Ω and intersects the imaginary axis, f : Ω → E is an analytic mapping with
f(λ) ∈ Kern(A − λ), λ ∈ Ω, E0 = span{f(λ) : λ ∈ Ω}, k = 1 and f1(s) = f(is),
s ∈ (ω1, ω2) ∩ 2πQ

t0
, where ω1, ω2 ∈ R and (iω1, iω2) ⊆ Ω. Then [5, Lemma 2.4]

implies that span{f1(s) : s ∈ (ω1, ω2) ∩ 2πQ
t0
} is dense in Ẽ.

Lemma 32. Let λ ∈ C. Then λ ∈ σp(A) iff λ2 ∈ σp(A); if f(λ2) an eigenvector
of A with the eigenvalue λ2, then F (λ) = (f(λ2), λf(λ2))T is an eigenvector of A
with the eigenvalue λ.

The proof of the first part of the following theorem follows immediately from
Lemma 32 and Theorem 27 while the proof of the second part of the theorem follows
from Lemma 32, [37, Theorem 11(ii)] and Remark 26.

Theorem 33.

(i) Assume A is the generator of a (C-DCF) G, t0 > 0, ω1, ω2 ∈ R ∪ {−∞,∞},
ω1 < ω2, k ∈ N and Ψ(ω1, ω2, t0) := {−s2 : s ∈ (ω1, ω2) ∩ 2πQ

t0
}. Then the

existence of functions gj : Ψ(ω1, ω2, t0) → E which satisfy that, for every
j = 1, · · ·, k, Agj(−s2) = −s2gj(−s2), s ∈ (ω1, ω2) ∩ 2πQ

t0
, implies that every

x ∈ span{(gj(−s2), isgj(−s2))T : s ∈ (ω1, ω2) ∩ 2πQ
t0
, 1 ≤ j ≤ k} is a periodic

point of G1(δt0). Let fj : (−ω2
2 ,−ω2

1) → E be a measurable function which
satisfies that, for every j = 1, · · ·, k, Afj(−s2) = −s2fj(−s2) for a.e. s ∈
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(ω1, ω2). Put Fj(s) := (fj(−s2), isfj(−s2))T , s ∈ (ω1, ω2), 1 ≤ j ≤ k. Let the
mapping Fj : (ω1, ω2)→ E ⊕E be Bochner integrable provided 1 ≤ j ≤ k and

let ζr,j :=
ω2∫
ω1

eirsFj(s)ds, r ∈ R, 1 ≤ j ≤ k.

(a) Assume span{Fj(s) : s ∈ (ω1, ω2) \ Ω, 1 ≤ j ≤ k} is dense in E ⊕ E
for every subset Ω of (ω1, ω2) with zero measure. Then G is topologically
mixing and G1(δt0) is topologically mixing.

(b) Let Ê = span{ζr,j : r ∈ R, 1 ≤ j ≤ k}. Then G is Ê-topologically mixing

and the part of G1(δt0) in Ê is topologically mixing in the Banach space
Ê.

(ii) Assume A is the generator of a (C-DCF) G, there exists an open connected
subset Ω of C which satisfies σp(A) ⊇ {λ2 : λ ∈ Ω} and Ω ∩ iR 6= ∅.
Let f : {λ2 : λ ∈ Ω} → E be an analytic mapping satisfying f(λ2) ∈
Kern(A − λ2) \ {0}, λ ∈ Ω, let F (λ) := (f(λ2), λf(λ2))T , λ ∈ Ω and let
Ê = span{F (λ) : λ ∈ Ω}. Then G is Ê-topologically mixing, the part of the
operator G1(δt0) in Ê is topologically mixing in the Banach space Ê, the set
GÊ,per is dense in Ê and the set of all Ê-periodic points of the part of the

operator G1(δt0) in Ê is dense in Ê.

Remark 34.

(i) Assume G is a (C − DCF ) generated by A. Then one can prove with the
help of [39, Theorem 2.1.11], Proposition 18 and [37, Lemma 6] that x is a
periodic point of G, resp. a hypercyclic vector of G, if

(
x
0

)
(
(

0
x

)
) is a periodic

point of G, resp. a hypercyclic vector of G. Moreover, the G-admissability of
a closed linear subspace Ẽ of E implies G1(δt)({0} ⊕ Ẽ) ⊆ Ẽ ⊕ Ẽ.

(ii) Assume now Ê is G-admissible and
(
x
y

)
is a ÊS-hypercyclic vector for G. Then

G1(δt)
(
x
y

)
=
(
π1(G1(δt)

(
x
y

)
), ddtπ1(G1(δt)

(
x
y

)
)
)T
, t ≥ 0, and

u(t) = π1

(
G1(δt)

(
x
y

))
, t ≥ 0 is a mild solution of (ACP2). Then {cu(t) : c ∈

S, t ≥ 0} and {cu′(t) : c ∈ S, t ≥ 0} are dense subsets of Ê, which can be
simply reformulated in any of considered hypercyclic properties.

The following theorem can be rearranged by assuming that there exists α ≥
0 such that −A generates an exponentially bounded, analytic α-times integrated
semigroup of angle θ ∈ (0, π2 ) and that σp(−A) strictly lies on the imaginary axis
(cf. Theorem 27).

Theorem 35. Let θ ∈ (0, π2 ) and let −A generate an analytic strongly continuous
semigroup of angle θ. Assume n ∈ N, an > 0, an−i ∈ C, 1 ≤ i ≤ n, D(p(A)) =

D(An), p(A) =
n∑
i=0

aiA
i and n(π2 − θ) <

π
2 . Then there exists ω ∈ R such that, for
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every α ∈ (1, π
nπ−2nθ ), p(A) generates an entire C ≡ e−(p(A)−ω)α-regularized group

(T (t))t∈C. Put C(z) := 1
2 (T (z) + T (−z)), z ∈ C. Then (C(t))t≥0 is a C-regularized

cosine function generated by p2(A) and the mapping z 7→ C(z), z ∈ C is entire.

(i) Assume that there exists an open connected subset Ω of C, which satisfies
σp(−A) ⊇ Ω, p(−Ω) ∩ iR 6= ∅, and let f : Ω → E be an analytic mapping
satisfying f(λ) ∈ Kern(−A− λ) \ {0}, λ ∈ Ω.

(a) Assume that 〈x∗, f(λ)〉 = 0, λ ∈ Ω, for some x∗ ∈ E∗, implies x∗ = 0.
Then there exists a dense subspace Cper of E which satisfies Cper ⊆
Z2(A) and that, for every t0 > 0 and x ∈ Cper, there exists n0 ∈ N such
that C−1C(nn0t0)x = x, n ∈ N. In particular, the set of all periodic
points of (C(t))t≥0 is dense in E.

(b) Assume that the supposition 〈x∗, f(λ)〉+ 〈y∗, p(−λ)f(λ)〉 = 0, λ ∈ Ω, for
some x∗, y∗ ∈ E∗, implies x∗ = y∗ = 0. Let

S0(z) :=

 C(z)
z∫
0

C(s)ds

d
dzC(z) C(z)

 , z ∈ C.

Then (S0(z))z∈C is an entire C-regularized group generated by the oper-

ator

(
0 I

p2(A) 0

)
, (S0(t))t≥0 is both topologically mixing and chaotic,

and for every t > 0, the operator C−1S0(t) ⊕ C−1S0(t) is chaotic and
topologically mixing.

(ii) Assume that there exists an open connected subset Ω of C, which satisfies
σp(−A) ⊇ Ω and p(−Ω) ∩ iR 6= ∅. Let f : Ω → E be an analytic mapping
satisfying f(λ) ∈ Kern(−A− λ) \ {0}, λ ∈ Ω. Set

Ê := span{(f(λ), p(−λ)f(λ))T : λ ∈ Ω} and Ẽ := {f(λ) : λ ∈ Ω}.

(a) Then there exists a dense subspace Cper of Ẽ which satisfies Cper ⊆
Z2(A) and that, for every t0 > 0 and x ∈ Cper, there exists n0 ∈ N such

that C−1C(nn0t0)x = x, n ∈ N. In particular, the set of all Ẽ-periodic
points of (C(t))t≥0 is dense in Ẽ.

(b) Let (S0(z))z∈C be as in (i). Then (S0(z))z∈C is an entire C-regularized

group generated by

(
0 I

p2(A) 0

)
, (S0(t))t≥0 is Ê-topologically mixing,

the set of Ê-periodic points of (S0(t))t≥0 is dense in Ê, and R(CÊ) is

dense in the Banach space Ê. Let t > 0 be fixed and let T0(t) be the part
of C−1S0(t) in Ê. Then the operator T (t) := T0(t)⊕T0(t) is chaotic and
topologically mixing in the Banach space Ê ⊕ Ê.

Proof. We will only prove the part (b) of (ii). Notice that the mapping z 7→ p(z),
z ∈ C is open and that the set p(−Ω) is open and connected. Put S1(s) :=
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s∫
0

C(r)dr
s∫
0

(s− r)C(r)dr

C(s)− C
s∫
0

C(r)dr

 , s ≥ 0. By [39, Theorem 2.1.11], (S1(s))s≥0 is

a once integrated C-semigroup generated by

(
0 I

p2(A) 0

)
. On the other hand, it

is clear that the mapping s 7→ S1(s), s ≥ 0 can be analytically extended to the whole
complex plane, which simply implies that (S0(z))z∈C is an entire C-regularized group

generated by

(
0 I

p2(A) 0

)
. In order to prove that (S0(s))s≥0 is Ê-topologically

mixing and that the set of Ê-periodic points of (S0(s))s≥0 is dense in Ê, one can

use the equalities p2(A)f(λ) = p2(−λ)f(λ), λ ∈ Ω,

(
0 I

p2(A) 0

)(
f(λ)

p(−λ)f(λ)

)
=

p(−λ)
(

f(λ)
p(−λ)f(λ)

)
, λ ∈ Ω as well as Remark 26 and [37, Theorem 11(ii)]. Moreover,

the same argumentation shows that the single operator T (t), considered as an un-
bounded linear operator in the Banach space Ê ⊕ Ê, is topologically mixing and
that the set of Ê ⊕ Ê-periodic points of T (t) is dense in Ê ⊕ Ê. By [37, Remark
14(ii)], R(CÊ) is dense in Ê. Therefore, it remains to be shown that the opera-

tor T (t) is hypercyclic in the Banach space Ê ⊕ Ê. Towards this end, put X0 :=
span{(f(λ), p(−λ)f(λ))T : λ ∈ Ω,<p(−λ) < 0}, X∞ := span{(f(λ), p(−λ)f(λ))T :
λ ∈ Ω,<p(−λ) > 0}, Y1 := X0 ⊕X0, Y2 := X∞ ⊕X∞,

S

(
k∑
i=1

αi
(

f(λi)
p(−λi)f(λi)

)
,
l∑
i=1

βi
(

f(zi)
p(−zi)f(zi)

))

:=

(
k∑
i=1

αie
−p(−λi)

(
f(λi)

p(−λi)f(λi)

)
,
l∑
i=1

βie
−p(−zi)

(
f(zi)

p(−zi)f(zi)

))
, k, l ∈ N, αi ∈ C,

<(p(−λi)) < 0, 1 ≤ i ≤ k, βi ∈ C, <(p(−zi)) < 0, 1 ≤ i ≤ l. Then it follows
from [19, Theorem 2.3] (with CÊ) that the operator T (t) is hypercyclic in Ê ⊕ Ê,
as required.

In the following instructive example, we consider a class of abstract second order
differential equations which cannot be treated by integrated cosine functions.

Example 36.

(i) ([21, Example 4.12], [20, Example 2.4], [37, Example 15]) Let a, b, c > 0 and

c < b2

2a < 1. Consider the equation
ut = auxx + bux + cu := −Au,
u(0, t) = 0, t ≥ 0,

u(x, 0) = u0(x), x ≥ 0.

Then the operator −A, with domain D(−A) = {f ∈W 2,2([0,∞)) : f(0) = 0},
generates an analytic strongly continuous semigroup of angle π

2 in the space
E = L2([0,∞)); the same assertion holds in the case when the operator −A
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acts on E = L1([0,∞)) with domain D(−A) = {f ∈W 2,1([0,∞)) : f(0) = 0}.
Put

Ω :=

{
λ ∈ C : |λ− (c− b2

4a
)| ≤ b2

4a
, =(λ) 6= 0 if <(λ) ≤ c− b2

4a

}

and assume that p(x) =
n∑
i=0

aix
i is a nonconstant polynomial such that

an > 0 and that p(−Ω) ∩ iR 6= ∅ (this, in particular, holds if a0 ∈ iR).
An application of Theorem 35(i) gives that there exists an injective opera-
tor C ∈ L(E) such that p2(A) generates a global C-regularized cosine func-
tion (C(t))t≥0 satisfying that the set of periodic points of (C(t))t≥0 is dense

in E. Let Ê := {(fλ(·), p(−λ)fλ(·))T : λ ∈ Ω}, where the function fλ is de-
fined in [21, Example 4.12]. By Theorem 35(ii), we get that the induced

entire C-regularized semigroup (S0(t))t≥0 generated by

(
0 I

p2(A) 0

)
is Ê-

topologically mixing and that the set of all Ê-periodic points of (S0(t))t≥0

is dense in Ê. Herein it is worth noting that every single operator T (t)
(cf. the formulation of Theorem 35) is chaotic and topologically mixing in
the Banach space Ê ⊕ Ê. Using the composition property of regularized
semigroups, it simply follows that there exist x, y ∈ Ê such that the set
{C−1S0(nt)

(
x
y

)
: n ∈ N0} is a dense subset of Ê. Since R(CÊ) is dense in Ê,

one gets that {S0(nt)
(
x
y

)
: n ∈ N0} is also a dense subset of Ê. This implies

that (S0(t))t≥0 is Ê-hypercyclic in the sense of [37, Remark 14(i)], which
remains true in examples given in (ii) and (iv).

(ii) ([18]-[19]) Assume that ω1, ω2, Vω2,ω1
, Q, Q(B), N, hµ and E possess the

same meaning as in [19, Section 5] and that Q(int(Vω2,ω1
)) ∩ iR 6= ∅.

Then ±Q(B)hµ = ±Q(µ)hµ, e
−(−B2)Nhµ = e−(−µ2)Nhµ, µ ∈ int(Vω2,ω1

) and
hµ ∈ (Kern(Q(B)) \ {0}), provided <µ ∈ (ω2, ω1). Let

Ê = span{(hµ, Q(µ)hµ)T : µ ∈ int(Vω2,ω1)}.

By Theorem 30, one yields that Q2(B) is the integral generator of a global

(e−(−z2)N )(B)-regularized cosine function ((cosh(tQ(z))e−(−z2)N )(B))t≥0

which has dense set of periodic points and satisfies that the mapping

t 7→ (cosh(tQ(z))e−(−z2)N )(B), t ≥ 0 can be analytically extended to the
whole complex plane. It is readily seen that the mapping µ 7→ hµ, µ ∈
int(Vω2,ω1

) is analytic. Owing to [37, Theorem 11(ii)], the induced entire(
(e−(−z2)N )(B) 0

0 (e−(−z2)N )(B)

)
-regularized semigroup (S0(t))t≥0 gener-

ated by

(
0 I

Q2(B) 0

)
is Ê-topologically mixing and the set of all Ê-periodic

points of (S0(t))t≥0 is dense in Ê. Furthermore, the analysis given in [19,
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Theorem 5.8] can serve one to construct important examples of regular ultra-
distribution semigroups of Beurling class ([39]).

(iii) In this example we deal with the space Lpρ(Ω,C), where Ω is an open non-
empty subset of Rn, ρ : Ω→ (0,∞) is a locally integrable function, mn is the
Lebesgue measure in Rn and the norm of an element f ∈ Lpρ(Ω,C) is given by

||f ||p :=
(∫

Ω

|f(·)|pρ(·)dmn

)1/p

(cf. also Section 4). In the sequel, we use the

Euclidean norm |x| = (x2
1 + · · ·+x2

n)1/2, x = (x1, · · ·, xn) ∈ Rn. Let 1 ≤ p <∞,
ϕ(t, x) := etx, t ∈ R, x ∈ Rn, α > 0, ρ(x) := e−|x|

α

, x ∈ Rn, E := Lpρ(Rn,C),
and (Tϕ(t)f)(x) := f(ϕ(t, x)), t ∈ R, x ∈ Rn, f ∈ E. Owing to [29, Theorem
3.2], (Tϕ(t))t≥0 is not a strongly continuous semigroup. Put now

(T (t)f)(x) := e−(|etx|2α+1)f(etx), t ∈ R, x ∈ Rn

and C(t) := 1
2 (T (t) + T (−t)), t ≥ 0. Then it is straightforward to see that

(T (t))t∈R is an exponentially bounded T (0)-regularized group generated by

the closure A of the operator f 7→
n∑
i=1

xi
∂f
∂xi

, f ∈ C1
c (Rn : E) ([28]) and that

(C(t))t≥0 is an exponentially bounded C(0)-regularized cosine function gen-
erated by A2. Denote by G the induced (C −DCF ) generated by A2. Then
(G(δt)ψ)(x) = 1

2 (ψ(ϕ(t, x))+ψ(ϕ(−t, x))), t ≥ 0, ψ ∈ D, limt→+∞ ψ(ϕ(t, ·)) =
0, ψ ∈ Cc(Rn) and, by the dominated convergence theorem, one has
limt→−∞ ψ(ϕ(t, ·)) = 0, ψ ∈ Cc(Rn). By Theorem 25(iii), we get that (C(t))t≥0

is topologically mixing. In order to prove that (C(t))t≥0 has a dense set of
periodic points, one can assume without loss of generality that n = 1. Let
a > 0, ψ ∈ Cc(R), suppψ ⊆ [−a, a] and ε > 0. Since R(C(0)) is dense in
E, it is enough to prove that there exists a sufficiently large P > 0 such
that the sequence vP (·) :=

∑
n∈Z

ψ(·enP ) is absolutely convergent in E and

that ||ψ − vP || < ε. Towards this end, notice that an elementary computa-
tion shows that there exists P0 > 0 such that, for every P ≥ P0 and n ∈ N,
a∫
−a
|ψ(x)|penp+nP−|x|αe−nαP dx < εp. This implies

||ψ − vP ||

≤
∑
n∈N

[
(
a∫
−a
|ψ(x)|pe−|x|αe−nαP−nP dx)1/p + (

a∫
−a
|ψ(x)|pe−|x|αenαP+nP dx)1/p

]
≤ (

a∫
−a
|ψ(x)|pdx)1/p

∑
n∈N

e−nP/p +
∑
n∈N

ε
en

≤ (
a∫
−a
|ψ(x)|pdx)1/p/(eP/p − 1) + ε

e−ε < ε, P → +∞.

By Proposition 37 given below, we have that (C(t))t≥0 is hypercyclic and that
the set HC(C(·)) is dense in E. Proceeding in a similar way, we are in a position
to consider topologically mixing properties of perturbed wave equation utt =
uxx+2aux+a2u (a ∈ R) in the space E = Lpρ(R,C), where ρ(t) = e−|t|

α

, t ∈ R
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and α > 1 (cf. also [31, Example]). Put (Cf)(x) := e−|x|
α/p

f(x), f ∈ E, x ∈
R. Then the operator A ≡ d

dx + a, considered with its maximal distributional
domain, is the integral generator of an exponentially bounded C-regularized

group (T (t))t∈R, which is given by (T (t)f)(x) := eate−|x+t|bf(x + t), f ∈
E, t, x ∈ R. It can be simply proved that the induced C-regularized cosine
function (C(t))t≥0 is both topologically mixing and hypercyclic, and that the
set of periodic points of (C(t))t≥0 is dense in E.

(iv) ([27]) It is clear that Theorem 30, Theorem 33 and Theorem 35 can be applied
to the operators considered by L. Ji and A. Weber in [27, Theorem 3.1(a),
Theorem 3.2, Corollary 3.3]. For example, if X is a symmetric space of non-
compact type (of rank one) and p > 2, then there exist a closed linear subspace
X̃ of X (X, if the rank of X is one), a number cp > 0 and an injective

operator C ∈ L(Lp\ (X)) such that for any c > cp the operator (−∆\
X,p + c)2

generates a global C-regularized cosine function (C(t))t≥0 in Lp\ (X) which

satisfies that the set of X̃-periodic points of (C(t))t≥0 is dense in X̃. By

Theorem 35(ii), we infer that there exists a closed linear subspace X̂ of X⊕X
such that the induced entire C-regularized semigroup (S0(t))t≥0 generated by(

0 I

(−∆\
X,p + c)2 0

)
is X̂-topologically mixing and that the set of all X̂-

periodic points of (S0(t))t≥0 is dense in X̂.

Let (On)n∈N be an open base of the topology of E and let On 6= ∅ for every
n ∈ N. We need the following simple proposition.

Proposition 37. Suppose A is the integral generator of a global C-regularized
cosine function (C(t))t≥0 and R(C) is dense in E. Put

T :=
⋂
n∈N

⋃
t≥0

C(t)−1(On).

Then
T =

{
x ∈ E : the set {C(t)x : t ≥ 0} is dense in E

}
(6)

and the following holds:

(i) Let (C(t))t≥0 be topologically transitive. Then T is a dense Gδ-subset of E
and C(T ) ⊆ HC(C(·)). In particular, (C(t))t≥0 is hypercyclic and the set
HC(C(·)) is dense in E.

(ii) Let (C(t))t≥0 be hypercyclic and x ∈ HC(C(·)). Then x ∈ T .

Proof. The proof of (6) is trivial and the proof of (ii) follows from the definition of
hypercyclic vectors of (C(t))t≥0, the denseness of R(C) in E and (6). Assume now
that (C(t))t≥0 is topologically transitive. Let U and V be arbitrary open subsets
of E and let y, z ∈ E and ε > 0 be such that {x ∈ E : ||x− y|| ≤ ε} =: B(y, ε) ⊆ U
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and that B(Cz, ε) ⊆ V. Then there exists x ∈ Z2(A) such that ||y − x|| < ε and
||z − C−1C(t)x|| < ε/||C||, which implies ||y − x|| < ε, ||Cz − C(t)x|| < ε, and
C(t)U ∩V 6= ∅. Consequently,

⋃
t≥0

C(t)−1(On) is a dense open subset of E for every

n ∈ N and T is a dense Gδ-subset of E. The inclusion C(T ) ⊆ HC(C(·)) is trivial,
which completes the proof of (i).

The next example is a continuation of [37, Example 4].

Example 38. Let n ∈ N, ρ(t) := 1
t2n+1 , t ∈ R, Af := f ′, D(A) := {f ∈ C0,ρ(R) :

f ′ ∈ C0,ρ(R)}, En := (C0,ρ(R))n+1, D(An) := D(A)n+1 and An(f1, · · ·, fn+1) :=
(Af1 + Af2, Af2 + Af3, · · ·, Afn + Afn+1, Afn+1), (f1, · · ·, fn+1) ∈ D(An). By the
proof of [51, Proposition 2.4] (cf. also [45, Example 8.1, 8.2]) we have that ±An
generate global polynomially bounded n-times integrated semigroups (Sn,±(t))t≥0

and that neither An nor −An generates a local (n− 1)-times integrated semigroup.
Denote by G± distribution semigroups generated by ±A. Then it can be easily
proved that for every ϕ1, · · ·, ϕn+1 ∈ D :

G±(δt)(ϕ1, · · ·, ϕn+1)T = (ψ1, · · ·, ψn+1)T ,

where ψi(·) =
n+1−i∑
j=0

(±t)j
j! ϕ

(j)
i+j(· ± t), 1 ≤ i ≤ n + 1. This immediately implies

the concrete representation formula for (Sn,±(t))t≥0. Denote by Gn and (Cn(t))t≥0

the (DCF ) and global polynomially bounded n-times integrated cosine function
generated by A2

n. By Proposition 20(ii), we get that Gn(δt)(ϕ1, · · ·, ϕn+1)T =
1
2 [G+(δt)(ϕ1, · · ·, ϕn+1)T + G−(δt)(ϕ1, · · ·, ϕn+1)T ], t ≥ 0, ϕ1, · · ·, ϕn+1 ∈ D.
It is clear that the assumptions 0 ≤ i ≤ n, ϕ ∈ D and suppϕ ⊆ [a, b] im-
ply ti supx∈R |ϕ(x ± t)|ρ(x) ≤ ti supx∈[a∓t,b∓t]

1
x2n+1 ≤ ti( 1

(a−t)2n+1 + 1
(a+t)2n+1 +

1
(b−t)2n+1 + 1

(b+t)2n+1 ) → 0, |t| → ∞. Keeping this and Theorem 25(iii) in mind,

it follows that Gn and (Cn(t))t≥0 are topologically mixing. Arguing in the same
way, we infer that Gn ⊕Gn is also topologically mixing, which clearly implies that
Gn and (Cn(t))t≥0 are weakly mixing. Herein it is worthwhile to note that, for

every t > 0, the operators G±(δt)⊕G±(δt) are hypercyclic in Ên ≡ En ⊕En ([19],
[37]). Before proceeding further, we would like to observe that, for every τ > 0,
the mapping t 7→ Cn(t), t ∈ [0, τ) is not strongly differentiable and that A2

n cannot
be the generator of any local (n − 1)-times integrated cosine function. The exis-
tence of a positive real number λ0 which belongs to the set ρ(An) ∩ ρ(−An) is
obvious and the use of [39, Proposition 2.3.13] gives that ±An are the integral
generators of global exponentially bounded (λ0 ∓ An)−n-regularized semigroups

(S0,±(t))t≥0 which fulfill the equalities Sn,±(t)x = (λ0∓An)n
t∫

0

(t−s)n−1

(n−1)! S0,±(s)xds,

t ≥ 0, x ∈ En. This implies that A2
n is the integral generator of a topologically

mixing ((λ0 − An)−n(λ0 + An)−n)-regularized cosine function (C0(t))t≥0, where
C0(t) = 1

2 (S0,+(t)(λ0 +An)−n + S0,−(t)(λ0 −An)−n), t ≥ 0. Using Proposition 37,
one yields that Gn and (Cn(t))t≥0 are hypercyclic. Put Cn := I⊕(λ0−An)−n(λ0 +
An)−n. Then dn

dtnSn,±(t)(ϕ1, · · ·, ϕn+1)T = (λ0∓An)nS0,±(t)(ϕ1, · · ·, ϕn+1)T , t ≥ 0,
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ϕ1, · · ·, ϕn+1 ∈ D, and an application of Theorem 25(iii) yields that A2
n ⊕A2

n is the
generator of a global topologically mixing n-times integrated Cn-cosine function(
Cn(t) := Cn(t) ⊕

t∫
0

(t−s)n−1

(n−1)! C0(s)ds
)
t≥0

. By [39, Proposition 2.3.12] and Propo-

sition 37, (Cn(t))t≥0 is also hypercyclic. Finally, A2
n ⊕ A2

n cannot be the generator

of any local (n− 1)-times integrated Cn-cosine function in Ên.

4 Hypercyclic and chaotic properties of cosine
functions

Henceforth we consider hypercyclic and chaotic properties of various types of cosine
functions in the space Lp(Ω, µ,C), resp. C0,ρ(Ω,C), where Ω is an open non-empty
subset of Rd, p ∈ [1,∞) and µ is a locally finite Borel measure on Ω, resp. ρ :
Ω → (0,∞) is an upper semicontinuous function ([28]). Recall that the space
Lp(Ω, µ,C) consists of those measurable functions f : Ω → C for which ||f ||p :=(∫

Ω

fdµ
)1/p

<∞. The space C0,ρ(Ω,C) consists of all continuous functions f : Ω→

C satisfying that, for every ε > 0, {x ∈ Ω : |f(x)|ρ(x) ≥ ε} is a compact subset
of Ω; equipped with the norm ||f || := sup

x∈Ω
|f(x)|ρ(x), C0,ρ(Ω,C) becomes a Banach

space. The space Cc(Ω,C) which consists of all continuous functions f : Ω → C
whose support is a compact subset of Ω is dense in Lp(Ω, µ,C) and C0,ρ(Ω,C).
Since no confusion seems likely, the above spaces are also denoted by Lp(Ω, µ),
C0,ρ(Ω) and Cc(Ω). A continuous mapping ϕ : R × Ω → Ω is called a semiflow
([28]-[29]) iff ϕ(0, x) = x, x ∈ Ω, ϕ(t + s, x) = ϕ(t, ϕ(s, x)), t, s ∈ R, x ∈ Ω and
the mapping x 7→ ϕ(t, x), x ∈ Ω is injective for all t ∈ R. Denote by ϕ(t, ·)−1 the
inverse mapping of ϕ(t, ·), i.e., y = ϕ(t, x)−1 iff x = ϕ(t, y), t ∈ R. In the sequel we
assume that, for every t ∈ R, the mapping x 7→ ϕ(t, x), x ∈ Ω is a homeomorphism
of Ω.

Let h : Ω→ R be a continuous function. A locally finite Borel measure µ on Ω is

said to be p-admissible for ϕ and h iff T (t)f := e

t∫
0

h(ϕ(r,x))dr
f(ϕ(t, x)), t ∈ R, x ∈ Ω

defines a strongly continuous group on Lp(Ω, µ). The C0-admissibility of (T (t))t∈R
and the integral generator of cosine function (C(t))t≥0, where C(t) := 1

2 (T (t) +
T (−t)), t ≥ 0, are precisely characterized in [31, Theorem 4(d)-(e)]. Using [25,
Theorem 1, Proposition 1] and the proof of [31, Corollary 2], one gets that (C(t))t≥0

is S-topologically transitive iff (C(t))t≥0 is S-hypercyclic. Given a number t ∈ R, we

define ht(x) := e

t∫
0

h(ϕ(r,x))dr
and the Borel measures νp,t(B) :=

∫
ϕ(−t,B)

hpt dµ, t ∈ R,

B ⊆ Ω measurable.
The following theorem slightly improves [31, Theorem 5, Theorem 9].
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Theorem 39.

(i) Let E = Lp(Ω, µ) and let µ be p-admissible for ϕ and h. Then (a) ⇒ (b) ⇒
(c) ⇒ (d) ⇒ (e) ⇒ (f), where:

(a) For every compact set K ⊆ Ω there exist sequences (L+
n ) and (L−n ) of

Borel measurable subsets of K and a sequence of positive real numbers
(tn) such that for Ln := L+

n ∪ L−n one has

lim
n→∞

µ(K \ Ln) = lim
n→∞

vp,tn(Ln) = lim
n→∞

vp,−tn(Ln) = 0 (7)

and

lim
n→∞

vp,2tn(L+
n ) = lim

n→∞
vp,−2tn(L−n ) = 0. (8)

(b) (C(t))t≥0 is weakly mixing.

(c) (C(t))t≥0 is hypercyclic.

(d) (C(t))t≥0 is S-hypercyclic for every closed subset S of C which satisfies
S \ {0} 6= ∅.

(e) (C(t))t≥0 is S-hypercyclic for every (some) bounded closed subset S of
[0,∞) which satisfies inf S > 0.

Furthermore, if for every compact subset K of Ω one has lim
|t|→∞

ϕ(K ∩ϕ(t,K)) =

0, the above are equivalent.

(ii) Let ρ be C0-admissible for ϕ and h. Then (a) ⇒ (b) ⇒ (c) ⇒ (d) ⇒ (e) ⇒
(f), where:

(a) For every compact set K ⊆ Ω there exist sequences of positive real num-
bers (tn) and open subsets (U+

n ) and (U−n ) of Ω such that K ⊆ U+
n ∪U−n ,

lim
n→∞

sup
x∈K

ρ(ϕ(−tn, x))

h−tn(x)
= lim
n→∞

sup
x∈K

ρ(ϕ(tn, x))

htn(x)
= 0 (9)

and

lim
n→∞

sup
K∩U−n

ρ(ϕ(−2tn, x))

h−2tn(x)
= lim
n→∞

sup
K∩U+

n

ρ(ϕ(2tn, x))

h2tn(x)
= 0. (10)

(b) (C(t))t≥0 is weakly mixing on C0,ρ(Ω).

(c) (C(t))t≥0 is hypercyclic on C0,ρ(Ω).

(d) (C(t))t≥0 is S-hypercyclic on C0,ρ(Ω) for every closed subset S of C which
satisfies S \ {0} 6= ∅.

(e) (C(t))t≥0 is S-hypercyclic on C0,ρ(Ω) for every (some) bounded closed
subset S of [0,∞) which satisfies inf S > 0.
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Furthermore, if for every compact subset K of Ω one has

lim
|t|→∞

sup
x∈ϕ(K∩ϕ(t,K))

ρ(x) = 0 and inf
x∈K

ρ(x) > 0,

the above are equivalent.

Proof. The implications (a) ⇒ (b) ⇒ (c) in (i) are consequences of [31, Theorem
5] and the implications (c) ⇒ (d) ⇒ (e) are trivial. Therefore, it suffices to show
that the preassumption (e) combined with the additional condition lim

|t|→∞
ϕ(K ∩

ϕ(t,K)) = 0 for each compact subset K of Ω implies (7)-(8). This can be obtained
by an insignificant modification of the proof of the aforementioned theorem. Let
Ω ⊇ K be compact and let S be a bounded subset of [0,∞) which satisfies that
inf S > 0 and that (C(t))t≥0 is S-hypercyclic. In what follows, we consider only the
non-trivial case

∫
K

dµ > 0. If the previous inequality holds, then there do not exist c ∈

S and t ≥ 0 such that −χK = cC(t)χK , which implies by the proof of [38, Lemma 3]
that for given ε ∈ (0, 1) in advance, there exist cε ∈ S\{0}, tε > 0 and vε ∈ Lp(Ω, µ)
such that ||vε−χK || < ε2/p, ||cεC(tε)vε +χK || < ε2/p, µ(K ∩ ϕ(2tε,K)) < ε2 and
µ(K ∩ ϕ(−2tε,K)) < ε2. Set Lε := K ∩ {|1− vε|p ≤ ε} ∩ {|1 + cεC(tε)vε|p ≤ ε},
L−ε := {x ∈ L : (cεT (tε)vε)(x) ≤ ε1/p − 1} and L+

ε := Lε \ L−ε . Then it is obvious
that µ(K \ Lε) < 2ε, v|Lε ≥ 1 − ε1/p, (cεC(t)vε)|Lε ≤ ε1/p − 1. Employing the
same notation as in [31], it follows that for every measurable subsets A,B of Ω :
||v−ε χB || < ε2/p and

||cε(C(tε)(v
+
ε χB))χA|| ≤ ||cε(C(tε)vε − c−1

ε (−χK) + c−1
ε (−χK))+||

≤ ||cε(C(tε)vε + c−1
ε χK)|| ≤ ||cεC(tε)vε + χK || < ε2/p.

This yields ε2 ≥ 2−pcpε(νp,tε(Lε) + νp,−tε(Lε)), which by arbitrariness of ε implies

(7). Furthermore, |cε| v
−
ε (x)

h−tε (x) ≥ 1 − ε1/p, x ∈ ϕ(tε, L
−
ε ), |cε| v

−
ε (x)
htε (x) ≥ 1 − ε1/p,

x ∈ ϕ(−tε, L+
ε ), and the following holds:

(1− ε1/p)pνp,2tε(L
+
ε )

≤ 2p+1
∫

ϕ(−2tε,L
+
ε )

(cεC(t−ε ))p(x)dµ(x)

= 2p+1||cε(C(tε)v
+
ε )χϕ(−2tε,L

+
ε ) − (cεC(tε)v + χK)χϕ(−2tε,L

+
ε ) + χK∩ϕ(−2tε,L

+
ε )||

≤ 23p+1(2ε2 + µ(K ∩ ϕ(−2tε, L
+
ε ))) ≤ 23(p+1)ε2.

The estimate (1− ε1/p)pνp,−2tε(L
−
ε ) ≤ 23(p+1)ε2 can be proved analogously, which

completes the proof of (i). The proof of (ii) is similar and therefore omitted.

Remark 40.

(i) The careful examination of the proof of [31, Theorem 5] implies that the
condition lim

|t|→∞
µ(K ∩ ϕ(t,K)) = 0, for every compact subset K of Ω, can be

neglected from the formulation of [31, Corollary 8]. Assume now that, for ev-
ery compact subset K of Ω, one has inf

x∈K
ρ(x) > 0; then we get by means of the
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proofs of [31, Theorem 9] and [29, Theorem 4.11] that the hypercyclicity of
cosine function (Cϕ(t))t≥0 in C0,ρ(Ω) implies the hypercyclicity of (Tϕ(t))t≥0

in C0,ρ(Ω).

(ii) It is well known that there exists a non-hypercyclic strongly continuous semi-
group (Tϕ(t))t≥0 induced by semiflow which additionally satisfies that
(Tϕ(t))t≥0 is positively supercyclic (cf. [29] and [40] for further information).
Therefore, Theorem 39 might be surprising.

The characterizations of hypercyclicity and mixing can be simplified in the case
that Ω ⊆ R. More precisely, for every x0 ∈ Ω, the semiflow ϕ(·, x0) can be given as
the unique solution of the initial value problem ẋ = F (x), x(0) = x0, where F is
locally Lipschitz continuous vector field on Ω. For the sake of simplicity, we focus
our attention to the case when F is continuously differentiable, which implies that
the mapping x 7→ ϕ(t, x), x ∈ Ω is continuously differentiable for every fixed t ∈ R.
By the proofs of [31, Theorem 12, Theorem 15], we have the following.

Theorem 41. Let Ω ⊆ R, let F be continuously differentiable and let the lo-
cally finite p-admissible measure µ has a positive Lebesgue density ρ, resp., let ρ be
a positive function C0-admissible for F and h. Then the following assertions are
equivalent:

(a) (C(t))t≥0 is hypercyclic on Lp(Ω, µ), resp. C0,ρ(Ω).

(b) (C(t))t≥0 is S-hypercyclic on Lp(Ω, µ), resp. C0,ρ(Ω), for every closed subset
S of C which satisfies S \ {0} 6= ∅.

(c) (C(t))t≥0 is S-hypercyclic on Lp(Ω, µ), resp. C0,ρ(Ω), for every (some) bounded
closed subset S of [0,∞) which satisfies inf S > 0.

In the subsequent theorems we analyze chaoticity of cosine functions on weighted
function spaces.

Theorem 42. Assume Ω ⊆ Rd is open and ρ is a positive function on Ω that is
C0-admissible for ϕ and h. Assume further that, for every compact set K of Ω, there
exists tK > 0 such that ϕ(t,K) ∩ K = ∅, t ≥ tK and inf

x∈K
ρ(x) > 0. Then, the

following are equivalent:

(a) (C(t))t≥0 is chaotic on C0,ρ(Ω).

(b) The set of periodic points of (C(t))t≥0 is dense in C0,ρ(Ω).

(c) For every every compact set K there exists P > 0 such that

lim
n→∞

sup
x∈ϕ(nP,K)

ρ(x)

hnP (ϕ(−nP, x))
= lim
n→∞

sup
x∈ϕ(−nP,K)

hnP (x)ρ(x) = 0.

(d) (T (t))t≥0 is chaotic on C0,ρ(Ω).
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(e) (T (−t))t≥0 is chaotic on C0,ρ(Ω).

Proof. The equivalence relation (d)⇔ (e) follows from [21, Theorem 2.5] and the
fact that (T (t))t≥0 and (T (−t))t≥0 have the same set of periodic points, while the
equivalence of (c), (d) and (e) follows from [29, Theorem 5.7]; notice also that (c)
implies the hypercyclicity of (C(t))t≥0 in (a) since the assertion (i) of [31, Theorem
9] holds with tn = nP and U+

n = U−n = Ω. Since every periodic point of (T (t))t≥0

is also a periodic point of (C(t))t≥0, we obtain that (c) and (d) together imply (a).
The implication (a)⇒ (b) is trivial and it remains to be proved the implication (b)
⇒ (c). Towards this end, assume K is a compact subset of Ω, UK is a relatively
compact, open neighborhood of K, t > 0 and, for every s ≥ t, ϕ(s, UK) ∩ UK = ∅.
Let f ∈ Cc(Ω) be such that f(x) = 1, x ∈ K, f(x) ≥ 0, x ∈ Ω and f(x) = 0,
x ∈ Ω \ UK . Let ε ∈ (0, inf

x∈K
ρ(x)/2) and let v be a real-valued P -periodic point

of (C(t))t≥0 with ε > ||f − v||. Then v(x) ≥ 1/2, x ∈ K. Using induction and the
composition property of cosine functions, one gets that C(nP )v = v, n ∈ N so that
one can assume P > t. Taking into account the equalities

2v(x) = hnP (x)v(ϕ(nP, x)) + h−nP (x)v(ϕ(−nP, x)), n ∈ N, x ∈ Ω (11)

and ht(x)hs(ϕ(t, x)) = ht+s(x), x ∈ Ω, t, s ∈ R, it follows inductively that, for every
x ∈ Ω and n ∈ Z :

hnP (x)v(ϕ(nP, x)) = nhP (x)v(ϕ(P, x))− (n− 1)v(x), (12)

h−nP (x)v(ϕ(−nP, x)) = −nhP (x)v(ϕ(P, x)) + (n+ 1)v(x), (13)

and
h−nP (x)v(ϕ(−nP, x)) = nh−P (x)v(ϕ(−P, x))− (n− 1)v(x). (14)

Put an := sup
x∈K

hnP (x)|v(ϕ(nP, x))|, n ∈ Z. Without loss of generality, we may

assume that max(a1, a−1) = a1. Clearly, (11) implies a1 ≥ a0. By taking supremum
on both sides of (12), we get

an ≥ na1 − (n− 1)a0 ≥ a1 ≥ a0 ≥
1

2
, n ∈ N. (15)

There exist two possibilities. The first one is a1 = a0, which implies by (14):
a−n ≥ na−1 − (n − 1)a0 ≥ a−1 ≥ a0 ≥ 1

2 , n ∈ N; then sup
x∈ϕ(−nP,UK)

|v(x)|ρ(x) ≥

sup
x∈ϕ(−nP,K)

|v(x)|ρ(x) ≥ 1
2 sup
x∈K

ρ(ϕ(−nP,x))
h−nP (x) = 1

2 sup
x∈K

hnP (ϕ(−nP, x))ρ(ϕ(−nP, x)),

sup
x∈ϕ(nP,UK)

|v(x)|ρ(x) ≥ sup
x∈K
|v(ϕ(nP, x))|ρ(ϕ(nP, x)) ≥ 1

2 sup
x∈K

ρ(ϕ(nP,x))
hnP (x) and the

proof in this case completes an application of [29, Lemma 5.6]. The second one is
a1 > a0 and the proof in this case is quite similar; as a matter of fact, (15) implies
an ≥ 1

2 , n ∈ N and we obtain from (13) that a−n ≥ na1− (n+ 1)a0 → +∞, n→∞
and that there exists n0(K) ∈ N such that a−n ≥ 1

2 , n ≥ n0(K). This completes
the proof.
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Concerning the chaoticity of (C(t))t≥0 in Lp(Ω, µ), we have the following simple
observation. Assume that there exists a closed µ-zero subset N of Ω such that
ϕ(t,N) = N, t > 0 and that for every compact subset K of Ω \N and sufficiently
large t, one has ϕ(t,K) ∩ K = ∅. By [29, Theorem 5.3, Remark 5.4] and the proof
of [31, Theorem 5], it follows that the chaoticity of (T (t))t≥0 implies the chaoticity
of (C(t))t≥0. It is not clear whether the converse statement holds.

Let the spaces Lpρ(R) and C0,ρ(R) possess the same meaning as in [21]. Arguing
in a similar way, we get that the condition lim

|t|→∞
ρ(t) = 0 is equivalent to say

that the cosine function (C(t))t≥0, given by (C(t)f)(x) := 1
2 (f(x + t) + f(x − t)),

f ∈ C0,ρ(R), t ≥ 0, x ∈ R, is chaotic in C0,ρ(R). This enables one to simply construct
an example of hypercyclic cosine function (C(t))t≥0 that is not chaotic. Put, for
example, ρ(t) := e−(|t|+1) cos(ln(|t|+1))+1, t ∈ R and notice that ρ is an admissible
weight function which satisfies lim

|t|→∞
ρ(t) 6= 0 ([53]). Hence, (C(t))t≥0 is not chaotic

in C0,ρ(R). The hypercyclicity of (C(t))t≥0 follows from the fact that there exists a
sequence (tn) of positive real numbers which satisfies

lim
n→∞

ρ(tn) = lim
n→∞

ρ(−tn) = lim
n→∞

ρ(2tn) = lim
n→∞

ρ(−2tn) = 0.

In the following theorem we consider necessary and sufficient conditions for the
chaoticity of cosine function (C(t))t≥0, (C(t)f)(x) = 1

2 (f(x+ t) + f(x− t)), t ≥ 0,
x ∈ R, in the space Lpρ(R).

Theorem 43. Assume that ρ : R → (0,∞) is measurable and that there exist
M ≥ 1 and ω ∈ R such that ρ(x) ≤ Meω|t|ρ(x + t), x, t ∈ R. Then (T (t))t∈R is a
C0-group in Lpρ(R) and the following assertions are equivalent.

(a) (C(t))t≥0 is chaotic on Lpρ(R).

(b) The set of periodic points of (C(t))t≥0 is dense in Lpρ(R).

(c) For every ε > 0 there exists P > 0 such that∑
n∈Z\{0}

ρ(nP ) < ε. (16)

(d) (T (t))t≥0 is chaotic on Lpρ(R).

(e) (T (−t))t≥0 is chaotic on Lpρ(R).

Proof. The implication (a) ⇒ (b) is trivial, the equivalence of (c) and (d) follows
from [39, Theorem 2], and the equivalence of (d) and (e) follows from [21, Theorem
2.5] and the fact that (T (t))t≥0 and (T (−t))t≥0 have the same set of periodic points.
Since every periodic point of (T (t))t≥0 is also a periodic point of (C(t))t≥0, (c) and
(d) taken together imply (a) by [11, Theorem 1.1, 2.2]. Therefore, it remains to be
proved the implication (b) ⇒ (c). Let ε > 0 be fixed, let θ > 0 and let z ∈ Cc(R)
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be such that ||z|| = (
∞∫
−∞
|z(x)|pρ(x)dx)1/p = 1, z ≥ 0 and supp(z) ⊆ [−θ, θ]. Then

there exist P > 0 and a real-valued P -periodic point v of (C(t))t≥0 such that

||z − v|| < ε. Denote an :=
θ+nP∫
−θ+nP

|2v(x)|pdx, n ∈ Z. By the proof of Theorem 42,

we have C(nP )v = v and 2v(x+ nP ) = v(x+ (n+ 1)P ) + v(x+ (n− 1)P ), x ∈ R,
n ∈ Z, which implies

2

θ∫
−θ

|2v(x+ nP )|pdx ≤
θ∫
−θ

|2v(x+ (n+ 1)P )|pdx+

θ∫
−θ

|2v(x+ (n− 1)P )|pdx, n ∈ Z,

i.e.,
2an ≤ an+1 + an−1, n ∈ Z. (17)

We may assume without loss of generality that P > 2θ and a1 = max(a1, a−1).
Then a1 ≥ a0 and an induction argument combined with (17) shows that:

an+1 ≥ (n+ 1)a1 − na0, an − a0 ≥ n(a1 − a0) and an+1 ≥ an, n ∈ N0. (18)

We first consider the case a1 = a0. Then a−1 ≥ a0 and, by (17), a−(n+1) ≥ a−n ≥

a−1, n ∈ N. Since
θ∫
−θ

[21−p|2z(x)|p − |2v(x)|p]ρ(x)dx ≤
θ∫
−θ
|2z(x)− 2v(x)|pρ(x)dx <

(2ε)p, we get from [21, Lemma 4.2] that there exist m1 > 0 and M1 > 0 such that,

for every σ ∈ R, m1ρ(σ − θ) ≤ ρ(t) ≤ M1ρ(σ + θ), and that a0 =
θ∫
−θ
|2v(x)|pdx ≥

1
M1ρ(θ)

θ∫
−θ
|2v(x)|pρ(x)dx ≥ 1

M1ρ(θ)
2(1− εp). Therefore, we have the following:

(2ε)p >
∑

n∈Z\{0}

θ+nP∫
−θ+nP

|2v(x)|pρ(x)dx ≥
∑

n∈Z\{0}
m1ρ(−θ + nP )an

≥
∑

n∈Z\{0}
m1ρ(−θ + nP )a0 ≥

∑
n∈Z\{0}

m1ρ(−θ + nP ) 1
M1ρ(θ)

2(1− εp),

which immediately implies by a straightforward computation (16). Assume now
a1 > a0. Then (18) implies lim

n→+∞
an = +∞ and the existence of an integer n0 ∈ N

such that 21−pan0 > a0. Using again the proof of Theorem 42, we obtain v(x −
nn0P ) + (n+ 1)v(x) = nv(x+ n0P ), x ∈ R, n ∈ Z,

2p−1(|2v(x− nn0P )|p + (n+ 1)p|2v(x)|p) ≥ np|2v(x+ n0P )|p

and after integration

a−nn0 ≥ 21−pnpan0 − (n+ 1)pa0 → +∞, n→ +∞.

This enables one to conclude that there exists n1 ∈ N such that a−nn0
≥ a0 ≥

1
M1ρ(θ)

2(1− εp), n ≥ n1. Hence,
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(2ε)p >
∑

n∈Z\{0}

θ+nn0n1P∫
−θ+nn0n1P

|2v(x)|pρ(x)dx ≥
∑

n∈Z\{0}
m1ρ(−θ + nn0n1P )ann0n1

≥
∑

n∈Z\{0}
m1ρ(−θ + nn0n1P )a0 ≥

∑
n∈Z\{0}

m1ρ(−θ + nn0n1P ) 1
M1ρ(θ)

2(1− εp).

By choosing appropriate constants, the above estimate yields (16) with n0n1P,
which complets the proof of theorem.

Let h : R → C be bounded and continuous. Then it is well known that the
semigroup solution of the equation ut = ux + h(x)u, u(0, x) = f(x), t ≥ 0 is given

by (T (t)f)(x) := e

x+t∫
x

h(s)ds
f(x + t), t ≥ 0, x ∈ R. If the solution can be extended

to the whole real axis, then one can consider hypercyclic properties of the equation
utt = uxx + h(x)ux + ∂

∂x (h(x)u) + h2(x)u, u(0, x) = f1(x), ut(0, x) = f2(x), t ≥ 0,
x ∈ R. Assume, more generally, g : R × R → C is continuous, there exist M ≥ 1
and ω ∈ R such that |g(x, t)| ≤Meω|t|, x, t ∈ R and the following conditions hold:

(H1) g(x, t+ s) = g(x, t)g(x+ t, s), x, t, s ∈ R,

(H2) g(x, 0) = 1, x ∈ R,

(H3) g(x, t) 6= 0, x, t ∈ R and

(H4) g(x, t) = g(0,x+t)
g(0,x) , x, t ∈ R.

Put ρ(t) := 1
|g(0,t)| , t ∈ R, ρi(t) := ρi(t), t ∈ R, i ∈ N0 and gj(x, t) := gj(x, t), x, t ∈

R, j ∈ N0. Let Ei be either Lpρi(R) or C0,ρi(R) and let (Tj(t)f)(x) := gj(x, t)f(x+t),
x, t ∈ R, f ∈ Ei. By [38, Lemma 21, Theorem 23] we have that, for every i ∈ N0, ρi
is an admissible weight function and that (Tj(t))t≥0 is a strongly continuous group
in Ei. By the proof of [38, Theorem 23], the cosine function (Cj(t))t≥0, given by
(Cj(t)f)(x) := 1

2 (gj(x, t)f(x+ t) + gj(x,−t)f(x− t)), x, t ∈ R, f ∈ Ei is chaotic in

Ei iff the cosine function (C̃j(t))t≥0, given by (C̃j(t)f)(x) := 1
2 (f(x+ t) + f(x− t)),

x, t ∈ R, f ∈ Ei+j is chaotic in Ei+j . Assume i+j > 0; then Theorem 42-Theorem 43
imply that the chaoticity of (Cj(t))t≥0 in C0,ρi(R) is equivalent with lim

|t|→∞
|g(0, t)| =

∞ and that the chaoticity of (Cj(t))t≥0 in Lpρi(R) is equivalent to say that for every

ε > 0 there exists P > 0 such that
∑

n∈Z\{0}
|g(0, nP )|−i−j < ε.

5 Disjoint hypercyclicity of C-distribution cosine
functions

In the following definition we intend to limit ourselves specifically to the analysis of
disjoint hypercyclicity and disjoint topological transitivity of C-distribution cosine
functions ([8], [10], [40]).

Definition 44. Let n ∈ N, n ≥ 2 and let Gi be a (Ci −DCF ) generated by Ai,
i = 1, 2, · · ·, n. Then it is said that Gi, i = 1, 2, · · ·, n are:
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(i) disjoint hypercyclic, in short d-hypercyclic, if there exists x ∈ Z2(A1) ∩ · · · ∩
Z2(An) such that {(G1(δt)x, · · ·, Gn(δt)x) : t ≥ 0} = En. An element x ∈ E
which satisfies the above equality is called a d-hypercyclic vector associated
to G1, G2, · · ·, Gn;

(ii) disjoint topologically transitive, in short d-topologically transitive, if for any
open non-empty subsets V0, V1, ···, Vn of E, there exist t ≥ 0 and x ∈ Z2(A1)∩
· · · ∩ Z2(An) such that x ∈ V0 ∩G1(δt)

−1(V1) ∩ · · · ∩Gn(δt)
−1(Vn).

It is clear that the preceding definition can be reformulated in the case of frac-
tionally integrated C-cosine functions in Banach spaces and that d-hypercyclicity
(d-topological transitivity) of (Ci − DCF )’s Gi, i = 1, 2, · · ·, n implies that, for
every i, j ∈ {1, 2, · · ·, n} with i 6= j, there exists t > 0 such that Gi(δt) 6= Gj(δt). If
(Ci(t))t≥0, i = 1, 2, · · ·, n are cosine functions, then the proof of [10, Proposition
2.3] yields that d-topological transitivity of (Ci(t))t≥0, i = 1, 2, · · ·, n implies d-
hypercyclicity of (Ci(t))t≥0, 1 ≤ i ≤ n and that the set of all d-hypercyclic vectors
associated to (Ci(t))t≥0, 1 ≤ i ≤ n is a dense Gδ-subset of E.

The main objective in the subsequent theorem is to clarify sufficient condi-
tions for d-topological transitivity of cosine functions on a class of weighted func-
tion spaces. An alternative proof of this theorem can be obtained by using d-
Hypercyclicity Criterion from [10].

Theorem 45. Suppose Ω ⊆ Rd is open, p ∈ [1,∞), n ∈ N\{1}, ϕi : [0,∞)×Ω→ Ω
is a semiflow for all i = 1, 2, · · ·, n, ρ : Ω → (0,∞) is an upper semicontinuous
function and µ is a locally finite Borel measure on Ω.

(i) Suppose E = C0,ρ(Ω), ρ is C0-admissible for ϕi and h·,i, 1 ≤ i ≤ n and

(Cϕi(t)f)(·) =
1

2

(
ht,i(·)f(ϕi(t, ·)) + h−t,i(·)f(ϕi(−t, ·))

)
for any t ≥ 0, f ∈ E and 1 ≤ i ≤ n. If for every compact subset K ⊆ Ω
there exist a sequence (tk) of non-negative real numbers and sequences (U+

k,i)

and (U−k,i) of open subsets of Ω such that, for every i ∈ {1, · · ·, n} and k ∈ N,
K ⊆ U+

k,i ∪ U−k,i and:

(a)

lim
k→∞

sup
x∈K

ρ(ϕi(−tk, x))

h−tk,i(x)
= lim
k→∞

sup
x∈K

ρ(ϕi(tk, x))

htk,i(x)
= 0,

(b)

lim
k→∞

sup
x∈K∩U−k,i

ρ(ϕi(−2tk, x))

h−2tk,i(x)
= lim
k→∞

sup
x∈K∩U+

k,i

ρ(ϕi(2tk, x))

h2tk,i(x)
= 0,

(c) For every i, j ∈ {1, · · ·, n} with i 6= j :

lim
k→∞

(Aijk +Bijk + Cijk +Dijk) = 0,



38 M. Kostić

where:
Aijk := sup

x∈K∩U−k,j

htk,i(ϕi(−tk,ϕj(−tk,x)))ρ(ϕi(−tk,ϕj(−tk,x)))

h−tk,j(x) ,

Bijk := sup
x∈K∩U−k,j

h−tk,i(ϕi(tk,ϕj(−tk,x)))ρ(ϕi(tk,ϕj(−tk,x)))

h−tk,j(x) ,

Cijk := sup
x∈K∩U+

k,j

htk,i(ϕi(−tk,ϕj(tk,x)))ρ(ϕi(−tk,ϕj(tk,x)))

htk,j(x)

Dijk := sup
x∈K∩U+

k,j

h−tk,i(ϕi(tk,ϕj(tk,x)))ρ(ϕi(tk,ϕj(tk,x)))

htk,j(x) ,

then the cosine functions (Cϕi(t))t≥0, i = 1, 2, · · ·, n are d-topologically tran-
sitive.

(ii) Suppose X = Lp(Ω, µ) and µ is p-admissible for ϕi and h·,i, 1 ≤ i ≤ n. If
for every compact subset K ⊆ Ω there exist a sequence (tk) od non-negative
real numbers and sequences of Borel measurable subsets (L+

k,i) and (L−k,i) of

K such that for Lk,i := L+
k,i ∪ L

−
k,i the following holds:

(a) lim
k→∞

µ(K \ Lk,i) = lim
k→∞

νp,tk(Lk,i) = lim
k→∞

νp,−tk(Lk,i) = 0, 1 ≤ i ≤ n,

(b) lim
k→∞

νp,2tk(L+
k,i) = lim

k→∞
νp,−2tk(L−k,i) = 0, 1 ≤ i ≤ n, and

(c) For every i, j ∈ {1, · · ·, n} with i 6= j :
lim
k→∞

∫
ϕi(−tk,ϕj(−tk,L+

k,j))

hptk,i(x)hptk,j(ϕi(tk, x))dµ = 0,

lim
k→∞

∫
ϕi(−tk,ϕj(tk,L−k,j))

hptk,i(x)hp−tk,j(ϕi(tk, x))dµ = 0,

lim
k→∞

∫
ϕi(tk,ϕj(−tk,L+

k,j))

hp−tk,i(x)hptk,j(ϕi(−tk, x))dµ = 0,

lim
k→∞

∫
ϕi(tk,ϕj(tk,L

−
k,j))

hp−tk,i(x)hp−tk,j(ϕi(−tk, x))dµ = 0,

then the cosine functions (Cϕi(t))t≥0, i = 1, 2, · · ·, n are d-topologically tran-
sitive.

Proof. We will prove only the first part of theorem. Let ε > 0, u, v1, ···, vn ∈ Cc(Ω)
and K = suppu ∪ suppv1 ∪ · · · ∪ suppvn. Then there exist a sequence (tk) of non-
negative real numbers and sequences (U+

k,i) and (U−k,i) of open subsets of Ω satisfying

that, for every i ∈ {1, · · ·, n}, K ⊆ U+
k,i ∪ U−k,i and that (a)-(c) hold. Further on,

for every i ∈ {1, · · ·, n} and k ∈ N, there exist non-negative C∞-functions ψ±k,i such

that suppψ+
k,i ⊆ U

+
k,i, suppψ−k,i ⊆ U

−
k,i and ψ−k,i(x) + ψ−k,i(x) = 2, x ∈ K. Define, for

every k ∈ N, a function ωk : Ω→ C by setting

ωk := u

+

n∑
i=1

[
htk,i(·)vi(ϕi(tk, ·))ψ

−
k,i(ϕi(tk, ·)) + h−tk,i(·)vi(ϕi(−tk, ·))ψ

+
k,i(ϕi(−tk, ·))

]
.
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Clearly, ωk ∈ Cc(Ω), k ∈ N and it is enough to prove that there exists k ∈ N such
that:

max(||ωk − u||, ||Cϕ1
(tk)ωk − v1||, · · ·, ||Cϕn(tk)ωk − vn||) < ε. (19)

By definition of ωk, we easily infer that:

||ωk − u|| ≤
n∑
i=1

2||vi||∞

[
sup

x∈ϕi(−tk,K)

htk,i(x)ρ(x) + sup
x∈ϕi(tk,K)

h−tk,i(x)ρ(x)

]

=

n∑
i=1

2||vi||∞

[
sup
x∈K

ρ(ϕi(−tk, x))

h−tk,i(x)
+ sup
x∈K

ρ(ϕi(tk, x))

htk,i(x)

]
, k ∈ N. (20)

Set, for every x ∈ Ω, k ∈ N and 1 ≤ i, j ≤ n :
aijk(x) := ϕj(tk, ϕi(tk, x)),
bijk(x) := ϕj(tk, ϕi(−tk, x)),
cijk(x) := ϕj(−tk, ϕi(tk, x))
dijk(x) := ϕj(−tk, ϕi(−tk, x)),
Aik(x) :=

∑
1≤j≤n
j 6=i

[htk,i(x)htk,j(ϕi(tk, x))vj(aijk(x))ψ−j,i(aijk(x))],

Bik(x) :=
∑

1≤j≤n
j 6=i

[h−tk,i(x)htk,j(ϕi(−tk, x))vj(bijk(x))ψ−j,i(bijk(x))],

Cik(x) :=
∑

1≤j≤n
j 6=i

[htk,i(x)h−tk,j(ϕi(tk, x))vj(cijk(x))ψ+
j,i(cijk(x))] and

Dik(x) :=
∑

1≤j≤n
j 6=i

[h−tk,i(x)h−tk,j(ϕi(−tk, x))vj(dijk(x))ψ+
j,i(dijk(x))].

A straightforward computation shows that, for every x ∈ Ω, k ∈ N and 1 ≤ i ≤ n :
2(Cϕi(tk)ωk − vi)(x)
= [htk,i(x)u(ϕi(tk, x)) + h−tk,i(x)u(ϕi(−tk, x))]
+[h2tk,i(x)vi(ϕi(2tk, x))ψ−k,i(ϕi(2tk, x))

+h−2tk,i(x)vi(ϕi(−2tk, x))ψ+
k,i(ϕi(−2tk, x))]

+Aik(x) +Bik(x) + Cik(x) +Dik(x).
By virtue of (a)-(b), we get the following estimates:

sup
x∈Ω

∣∣∣htk,i(x)u(ϕi(tk, x)) + h−tk,i(x)u(ϕi(−tk, x))
∣∣∣ρ(x)

≤ ||u||∞
[

sup
x∈K

ρ(ϕi(−tk, x))

h−tk,i(x)
+ sup
x∈K

ρ(ϕi(−tk, x))

h−tk,i(x)

]
, k ∈ N, (21)

and∣∣∣h2tk,i(y)vi(ϕi(2tk, y))ψ−k,i(ϕi(2tk, y)) + h−2tk,i(y)vi(ϕi(−2tk, y))ψ+
k,i(ϕi(−2tk, y))

∣∣∣
≤ 2||vi||∞

ρ(y)

[
sup

x∈K∩U−k,i

ρ(ϕi(−2tk, x))

h−2tk,i(x)
+ sup
x∈K∩U+

k,i

ρ(ϕi(2tk, x))

h2tk,i(x)

]
, k ∈ N, y ∈ Ω. (22)

Since 0 ≤ ψ±k,i ≤ 2 on K we obtain that for every x ∈ Ω, k ∈ N and 1 ≤ i ≤ n :

|Aik(x)|+ |Bik(x)|+ |Cik(x)|+ |Dik(x)| ≤
∑

1≤j≤n
j 6=i

2||vj ||∞
ρ(x)

(
Aijk+Bijk+Cijk+Dijk

)
.

(23)
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Taking into account (23) and (c), we get that for 1 ≤ i ≤ n :

lim
k→∞

sup
x∈Ω

(
|Aik(x)|+ |Bik(x)|+ |Cik(x)|+ |Dik(x)|

)
ρ(x) = 0. (24)

The proof of theorem now follows from (20)-(22) and (24).

Example 46. ([40]) Suppose aij > 0, 1 ≤ i ≤ n, 1 ≤ j ≤ m, and for every
i, j ∈ {1, 2, · · ·, n} with i 6= j there exists l ∈ {1, · · ·,m} such that ail 6= ajl. Let
p ≥ 1, q > m

2 , Ω = (0,∞)m, resp. Ω = Rm, and ht(x) = 1, t ∈ R, x ∈ Ω. Define
ϕi : R× Ω→ Ω, i = 1, 2, · · ·, n and ρ : Ω→ (0,∞) by:

ϕi(t, x1, · · ·, xm) := (eai1tx1, · · ·, eaimtxm) and

ρ(x1, · · ·, xm) :=
1

(1 + |x|2)q
, t ∈ R, x = (x1, · · ·, xm) ∈ Ω.

Let µ be the measure on Ω with Lebesgue density ρ. Then one can simply verify
with the help of [31, Theorem 4] that (Tϕi(t))t∈R is a strongly continuous group
in Lp(Ω, µ) (C0,ρ(Ω)), 1 ≤ i ≤ n. Suppose first Ω = (0,∞)m. Let K = [a1, b1] ×
· · · × [am, bm] be a compact subset of Ω, let L+

k,i = L−k,i = K, k ∈ N and let
(tk) be a sequence of positive real numbers such that lim

k→∞
tk = ∞. Proceeding as

in [40, Example 3(iii)], one can simply check that the conditions (a)-(c) stated
in the formulation of Theorem 45(ii) hold, which implies that the induced cosine
functions (Cϕ1

(t))t≥0, (Cϕ2
(t))t≥0, · · ·, (Cϕn(t))t≥0, are d-topologically transitive in

Lp(Ω, µ). The above assertion remains true in the case that Ω = Rm, which follows
from Theorem 45(ii) by choosing an appropriate sequence (L+

k,i = L−k,i = Lk) of
measurable subsets of K satisfying 0 /∈ L◦k, k ∈ N. By [29, Theorem 3.7], we have
that, for every i = 1, 2, · · ·, n, (Tϕi(t))t≥0 is a non-hypercyclic strongly continuous
semigroup in C0,ρ(Ω). With Remark 40(i) in view, we obtain that (Cϕi(t))t≥0 is a
non-hypercyclic cosine function in C0,ρ(Ω), which implies that (Cϕi(t))t≥0, 1 ≤ i ≤
n, cannot be d-hypercyclic in C0,ρ(Ω).

We conclude the paper with the observation that the analysis given in Example
36(iii) and [40, Example 3(i)] may be applied in construction of d-topologically
transitive C-regularized semigroups and C-regularized cosine functions.
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