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Convolution properties for subclasses of meromorphic
univalent functions of complex order

Teodor Bulboacă, Mohamed K. Aouf, Rabha M. El-Ashwah

Abstract

Using the new linear operator

Lm(λ, l)f(z) =
1

z
+

∞∑
k=1

(
l

l + λk

)m

akz
k−1, f ∈ Σ,

where l > 0, λ ≥ 0, and m ∈ N0 = N ∪ {0}, we introduce two subclasses
of meromorphic analytic functions, and we investigate several convolution
properties, coefficient inequalities, and inclusion relations for these classes.

1 Introduction

Let Σ be the class of functions of the form

f(z) =
1

z
+

∞∑
k=1

akz
k−1, (1)

which are analytic in the punctured unit disc U∗ = U\{0}, where U = {z ∈ C : |z| <

1}. For the functions f ∈ Σ of the form (1) and g ∈ Σ given by g(z) =
1

z
+

∞∑
k=1

bkz
k−1,

the Hadamard (or convolution) product of f and g is defined by

(f ∗ g)(z) =
1

z
+

∞∑
k=1

akbkz
k−1.

For λ ≥ 0, l > 0, and m ∈ N0 = N ∪ {0}, El-Ashwah [6] and El-Ashwah and
Aouf (see [8] and [9]) defined the linear operator Im(λ, l) : Σ→ Σ by

Im(λ, l)f(z) =
1

z
+

∞∑
k=1

(
l + λk

l

)m
akz

k−1,

2010 Mathematics Subject Classifications. Primary 30C45; Secondary 30C80.
Key words and Phrases. Analytic functions, meromorphic functions, convolution product,

differential subordination.
Received: April 28, 2011
Communicated by Hari M. Srivastava



154 T. Bulboacă et al.

where f has the form (1). We note that I0(λ, l)f(z) = f(z) and I1(1, 1)f(z) =(
z2f(z)

)′
/z = 2f(z) + zf ′(z), and by specializing the parameters λ, l, and m, we

obtain the following operators studied by various authors:

(i) Im(1, l)f(z) =: Dm
l f(z), (see Cho et al. [3], [4]);

(ii) Im(λ, 1)f(z) =: Dm
λ f(z), (see Al-Oboudi and Al-Zkeri [1]);

(iii) Im(1, 1)f(z) =: Im f(z), (see Uralegaddi and Somanatha [15]).

Definition 1. For λ ≥ 0, l > 0, and m ∈ N0, we will define the dual operator
Lm(λ, l) : Σ→ Σ,

Lm(λ, l)f(z) =
1

z
+

∞∑
k=1

(
l

l + λk

)m
akz

k−1,

where f is given by (1).

Denoting by Ψm(λ, l)(z) =
1

z
+

∞∑
k=1

(
l

l + λk

)m
zk−1, it is easy to verify that

Lm(λ, l)f(z) = Ψm(λ, l)(z) ∗ f(z), (2)

λz
(
Lm+1(λ, l)f(z)

)′
= lLm(λ, l)f(z)− (l + λ)Lm+1(λ, l)f(z), (3)

and

Lm(λ, l)f(z) = L1(λ, l)
(

1
z(1−z)

)
∗ . . . ∗ L1(λ, l)

(
1

z(1−z)

)
︸ ︷︷ ︸

m times

∗f(z).

We note that Lα(1, β)f(z) =: Pαβ f(z), α > 0, β > 0 (see Lashin [10]).
If f and g are two analytic functions in U, we say that f is subordinate to g,

written symbolically as f(z) ≺ g(z), if there exists a Schwarz function w, which (by
definition) is analytic in U, with w(0) = 0, and |w(z)| < 1 for all z ∈ U, such that
f(z) = g(w(z)). Furthermore, if the function g is univalent in U, then we have the
following equivalence, (cf., e.g., [11], see also [12, p. 4]):

f(z) ≺ g(z)⇔ f(0) = g(0) and f(U) ⊂ g(U).

Definition 2. For −1 ≤ B < A ≤ 1, and b ∈ C∗ = C\{0} we define two subclasses
of the class Σ as follows:

ΣS∗[b;A,B] =

{
f ∈ Σ : 1− 1

b

(
1 +

zf ′(z)

f(z)

)
≺ 1 +Az

1 +Bz

}
(4)

and

ΣK[b;A,B] =

{
f ∈ Σ : 1− 1

b

(
2 +

zf ′′ (z)

f ′ (z)

)
≺ 1 +Az

1 +Bz

}
.
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We emphasize that in the above definitions, both of the functions that appeared
in the left-hand side of the subordinations are regular in the point z0 = 0. Also, it
is easy to check the duality formula

f ∈ ΣK[b;A,B]⇔ −zf ′(z) ∈ ΣS∗[b;A,B], (5)

while some special cases of these classes was studied by different authors:

(i) ΣS∗[b; 1,−1] =: ΣS(b), with b ∈ C∗, (see Aouf [2]);

(ii) ΣK[b; 1,−1] =: ΣK(b), with b ∈ C∗, (see Aouf [2]);

(iii) ΣS∗[1; (1−2α)β,−β] =: ΣS[α, β], with 0 ≤ α < 1, 0 < β ≤ 1, (see El-Ashwah
and Aouf [7]);

(iv) ΣK[1; (1−2α)β,−β] =: ΣK[α, β], with 0 ≤ α < 1, 0 < β ≤ 1, (see El-Ashwah
and Aouf [7]);

(v) ΣS∗
[
(1− α)e−iµ cosµ; 1,−1

]
=: ΣSµ(α), with µ ∈ R, |µ| ≤ π/2, 0 ≤ α < 1,

(see [14] for p = 1);

(vi) ΣK
[
(1− α)e−iµ cosµ; 1,−1

]
=: ΣKµ(α), with µ ∈ R, |µ| ≤ π/2, 0 ≤ α < 1,

(see [14] for p = 1).

Considering µ ∈ R with |µ| ≤ π/2, 0 ≤ α < 1, and 0 < β ≤ 1, for the special
cases b = e−iµ cosµ, A = (1− 2α)β, and B = −β we will use the notations

ΣSµ[α, β] := ΣS∗
[
e−iµ cosµ; (1− 2α)β,−β

]
,

ΣKµ[α, β] := ΣK
[
e−iµ cosµ; (1− 2α)β,−β

]
.

Definition 3. For λ ≥ 0, l > 0, m ∈ N0, and −1 ≤ B < A ≤ 1, using the linear
operator Lm(λ, l) we define two subclasses of the class Σ as follows:

S∗λ,l[m; b;A,B] =
{
f ∈ Σ : Lm(λ, l)f ∈ ΣS∗[b;A,B]

}
(6)

and
Kλ,l[m; b;A,B] =

{
f ∈ Σ : Lm(λ, l)f ∈ ΣK[b;A,B]

}
. (7)

Lemma 1. The following duality formula between the above defined classes holds:

f ∈ Kλ,l[m; b;A,B]⇔ −zf ′(z) ∈ S∗λ,l[m; b;A,B]. (8)

Proof. According to the definition formula (7), we have that f ∈ Kλ,l[m; b;A,B]
if and only if Lm(λ, l)f ∈ ΣK[b;A,B], and from (5) this last relation is equivalent
to −z (Lm(λ, l)f(z))

′ ∈ ΣS∗[b;A,B]. Using the representation (2) we deduce the
equalities

−z (Lm(λ, l)f(z))
′

= −z (Ψm(λ, l)(z) ∗ f(z))
′

=

Ψm(λ, l)(z) ∗ (−zf ′(z)) = Lm(λ, l) (−zf ′(z)) ,

hence Lm(λ, l) (−zf ′(z)) ∈ ΣS∗[b;A,B], so the definition formula (6) yields that
−zf ′(z) ∈ S∗λ,l[m; b;A,B].
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Supposing µ ∈ R with |µ| ≤ π/2, 0 ≤ α < 1, and 0 < β ≤ 1, for the special
cases b = e−iµ cosµ, A = (1 − 2α)β, and B = −β in (6) and (7), we will use the
notations

S∗λ,l(m;µ;α, β) := S∗λ,l
[
m; e−iµ cosµ; (1− 2α)β,−β

]
={

f ∈ Σ : Lm(λ, l)f ∈ ΣSµ[α, β]
}
,

and

Kλ,l(m;µ;α, β) := Kλ,l

[
m; e−iµ cosµ; (1− 2α)β,−β

]
={

f ∈ Σ : Lm(λ, l)f ∈ ΣKµ[α, β]
}
.

Note that many important properties of several subclasses of meromorphic uni-
valent functions were studied by several authors. In this paper we will investigate
convolution properties, coefficient inequalities, and inclusion relations for the sub-
classes we defined above.

2 Main results

We assume throughout this section that 0 ≤ θ < 2π, b ∈ C∗, and −1 ≤ B < A ≤ 1.

Theorem 1. If f ∈ Σ, then f ∈ ΣS∗[b;A,B] if and only if

z

[
f(z) ∗ 1 + (C − 1)z

z(1− z)2

]
6= 0, z ∈ U, (9)

for all C = Cθ =
e−iθ +B

(A−B)b
, θ ∈ [0, 2π), and also for C = 0.

Proof. It is easy to check that the relations

f(z) ∗ 1

z(1− z)
= f(z), f(z) ∗

[
1

z(1− z)2
− 2

(1− z)2

]
= −zf ′(z), (10)

hold for all z ∈ U∗, and for any function f ∈ Σ.
(i) To prove the first implication, if f ∈ ΣS∗[b;A,B] is an arbitrary function,

from (4) we have

−zf
′(z)

f(z)
≺ 1 + [B + (A−B)b] z

1 +Bz
. (11)

Since the function from the left-hand side of the subordination is analytic in U, it
follows that f(z) 6= 0 for all z ∈ U∗, i.e. zf(z) 6= 0, z ∈ U, and using the first
identity of (10), this is equivalent to the fact that (9) holds for C = 0.

From (11), according to the definition of the subordination, there exists a func-
tion w analytic in U, with w(0) = 0, and |w(z)| < 1, z ∈ U, such that

−zf
′(z)

f(z)
=

1 + [B + (A−B)b]w(z)

1 +Bw(z)
, z ∈ U,
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hence it follows

z

[
− zf ′(z)

(
1 +Beiθ

)
− f(z)

[
1 + [B + (A−B)b] eiθ

]]
6= 0, (12)

z ∈ U, θ ∈ [0, 2π).

Using the formulas (10), the relation (12) is equivalent to

z

f(z) ∗
1 +

[
e−iθ +B

(A−B)b
− 1

]
z

z(1− z)2
(A−B)beiθ

 6= 0, z ∈ U, θ ∈ [0, 2π),

which leads to (9), and the first part of the Theorem 1 was proved.
(ii) Reversely, because the assumption (9) holds for C = 0, it follows that

zf(z) 6= 0 for all z ∈ U, hence the function ϕ(z) = −zf
′(z)

f(z)
is analytic in U (i.e. it

is regular in z0 = 0, with ϕ(0) = 1).
Since it was shown in the first part of the proof that the assumption (9) is

equivalent to (12), we obtain that

−zf
′(z)

f(z)
6= 1 + [B + (A−B)b] eiθ

1 +Beiθ
, z ∈ U, θ ∈ [0, 2π), (13)

If we denote

ψ(z) =
1 + [B + (A−B)b] z

1 +Bz
,

the relation (13) shows that ϕ(U)∩ψ(∂U) = ∅. Thus, the simply-connected domain
ϕ(U) is included in a connected component of C \ψ(∂U). From here, using the fact
that ϕ(0) = ψ(0) together with the univalence of the function ψ, it follows that
ϕ(z) ≺ ψ(z), which represents in fact the subordination (11), i.e. f ∈ ΣS∗[b;A,B].

Remark 1. (i) Taking in Theorem 1 the special case b = 1, and eiθ = x, we obtain
the result of Ponnusamy [13, Theorem 2.1];

(ii) Taking in Theorem 1 the special case b = (1 − α)e−iµ cosµ, where µ ∈ R,
|µ| ≤ π/2, 0 ≤ α < 1, and eiθ = x, we obtain the result of Ravichandran et al. [14,
Theorem 1.2 with p = 1].

Theorem 2. If f ∈ Σ, then f ∈ ΣK[b;A,B] if and only if

z

[
f(z) ∗ 1− 3z − 2(C − 1)z2

z(1− z)3

]
6= 0, z ∈ U,

for all C = Cθ =
e−iθ +B

(A−B)b
, θ ∈ [0, 2π), and also for C = 0.
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Proof. If we let g(z) =
1 + (C − 1)z

z(1− z)2
, then

zg′(z) =
−1 + 3z + 2(C − 1)z2

z(1− z)3
.

From the duality formula (5), using the identity

[−zf ′(z)] ∗ g(z) = f(z) ∗ [−zg′(z)] ,

the result follows from Theorem 1.

Remark 2. Putting b = 1 and eiθ = x in Theorem 2, this special case will correct
the result obtained by Ponnusamy [13, Theorem 2.2].

Theorem 3. Let λ ≥ 0, l > 0, and m ∈ N0. If f ∈ Σ is of the form (1), then
f ∈ S∗λ,l[m; b;A,B] if and only if

1 +

∞∑
k=1

(
l

l + λk

)m
akz

k 6= 0, z ∈ U, (14)

and

1 +

∞∑
k=1

ke−iθ + kB+ (A−B) b

(A−B) b

(
l

l + λk

)m
akz

k 6= 0, z ∈ U, (15)

for all θ ∈ [0, 2π).

Proof. If f ∈ Σ, according to Theorem 1 we have f ∈ S∗λ,l[m; b;A,B] if and only if

z

[
Lm(λ, l)f(z) ∗ 1 + (C − 1)z

z(1− z)2

]
6= 0, z ∈ U, (16)

for all C = Cθ =
e−iθ +B

(A−B)b
, θ ∈ [0, 2π), and also for C = 0.

Using the first part of the identities (10), it is easy to see that the above relation
holds for C = 0 if and only if (14) is satisfied.

On the other hand, using the relation

1 + (C − 1)z

z(1− z)2
=

1

z
+

∞∑
k=1

(1 + Ck)zk−1, z ∈ U∗,

we may easily check that (16) is equivalent to (15), which proves our result.

Theorem 4. Let λ ≥ 0, l > 0, and m ∈ N0. If f ∈ Σ is of the form (1), then
f ∈ Kλ,l[m; b;A,B] if and only if

1−
∞∑
k=1

(k − 1)

(
l

l + λk

)m
akz

k 6= 0, z ∈ U, (17)
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and

1−
∞∑
k=1

(k − 1)
ke−iθ +Bk + (A−B)b

(A−B) b

(
l

l + λk

)m
akz

k 6= 0, z ∈ U, (18)

for all θ ∈ [0, 2π).

Proof. If f ∈ Σ, from Theorem 2 we have that f ∈ Kλ,l[m; b;A,B] if and only if

z

[
Lm(λ, l)f(z) ∗ 1− 3z − 2(C − 1)z2

z(1− z)3

]
6= 0, z ∈ U, (19)

for all C = Cθ =
e−iθ +B

(A−B)b
, θ ∈ [0, 2π), and also for C = 0.

Using the relation

1

z(1− z)2
=

1

z
+

∞∑
k=1

(k + 1)zk−1, z ∈ U∗,

it is easy to see that (19) holds for C = 0 if and only if the assumption (17) is
satisfied.

Now, from the formula

1

z(1− z)3
=

1

z
+

∞∑
k=1

(k + 1)(k + 2)

2
zk−1, z ∈ U∗,

we may easily deduce that

1− 3z − 2(C − 1)z2

z(1− z)3
=

1

z
−
∞∑
k=1

(k − 1)(1 + Ck)zk−1, z ∈ U∗,

and a simple computation shows that (19) is equivalent to (18), hence the proof of
the theorem is completed.

Theorem 5. Let λ ≥ 0, l > 0, m ∈ N0, −1 ≤ B < A ≤ 1 and b ∈ C∗. If f ∈ Σ
has the from (1) and satisfies the inequalities

∞∑
k=1

(
l

l + λk

)m
|ak| < 1, (20)

and
∞∑
k=1

[k(1 +B) + (A−B) |b|]
(

l

l + λk

)m
|ak| < (A−B) |b| , (21)

then f ∈ S∗λ,l[m; b;A,B].
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Proof. According to (20), a simple computation shows that∣∣∣∣∣1 +

∞∑
k=1

(
l

l + λk

)m
akz

k

∣∣∣∣∣ ≥ 1−

∣∣∣∣∣
∞∑
k=1

(
l

l + λk

)m
akz

k

∣∣∣∣∣ ≥
1−

∞∑
k=1

(
l

l + λk

)m
|ak|

∣∣zk∣∣ ≥ 1−
∞∑
k=1

(
l

l + λk

)m
|ak| > 0, z ∈ U,

hence the condition (14) is satisfied.
Using the inequality∣∣∣∣ke−iθ +Bk + (A−B)b

(A−B) b

∣∣∣∣ ≤ k(1 +B) + (A−B) |b|
(A−B) |b|

together with the assumption (21), we may easily deduce∣∣∣∣∣1 +

∞∑
k=1

[
ke−iθ +Bk + (A−B)b

(A−B) b

](
l

l + λk

)m
akz

k

∣∣∣∣∣ >
1−

∞∑
k=1

∣∣∣∣ke−iθ +Bk + (A−B)b

b (A−B)

∣∣∣∣ ( l

l + λk

)m
|ak| ≥

1−
∞∑
k=1

k(1 +B) + (A−B) |b|
(A−B) |b|

(
l

l + λk

)m
|ak| > 0, z ∈ U,

which shows that (15) holds, hence our result follows from Theorem 3.

Using Theorem 4, in the same way we may also prove the next result:

Theorem 6. Let λ ≥ 0, l > 0, m ∈ N0, −1 ≤ B < A ≤ 1 and b ∈ C∗. If f ∈ Σ
has the from (1) and satisfies the inequalities

∞∑
k=1

(k − 1)

(
l

l + λk

)m
|ak| < 1,

and
∞∑
k=1

(k − 1) [k(1 +B) + (A−B) |b|]
(

l

l + λk

)m
|ak| < (A−B) |b| ,

then f ∈ Kλ,l[m; b;A,B].

We will discuss two inclusion relations for the classes S∗λ,l[m; b;A,B] and
Kλ,l[m; b;A,B]. To prove these results we shall require the following lemma:

Lemma 2. ([5]) Let h be convex (univalent) in U, with Re[βh(z) + γ] > 0 for all
z ∈ U. If p is analytic in U, with p(0) = h(0), then

p(z) +
zp′(z)

βp(z) + γ
≺ h(z)⇒ p(z) ≺ h(z).
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Theorem 7. Let λ > 0, l > 0, and m ∈ N0. Suppose that b ∈ C∗ and −1 ≤ B <
A ≤ 1, such that

cos(θ + arg b) +B cos(arg b)

1 +B2 + 2B cos θ
≤ l

|b|λ(A−B)
, θ ∈ [0, 2π). (22)

If f ∈ S∗λ,l[m; b;A,B], with Lm+1(λ, l)f(z) 6= 0 for all z ∈ U∗, then
f ∈ S∗λ,l[m+ 1; b;A,B].

Proof. Suppose that f ∈ S∗λ,l[m; b;A,B], and let define the function

p(z) = 1− 1

b

(
1 +

z
(
Lm+1(λ, l)f(z)

)′
Lm+1(λ, l)f(z)

)
. (23)

Then p is analytic in U with p(0) = 1, and using the relation (3), from (23) we
obtain

−bλ
l

(p(z)− 1) + 1 =
Lm(λ, l)f(z)

Lm+1(λ, l)f(z)
. (24)

Differentiating logarithmically (24) and then using (23), we deduce that

p(z) +
zp′(z)

−bp(z) +
(
b+ l

λ

) ≺ 1 +Az

1 +Bz
=: h(z). (25)

A simple calculus shows that the inequality Re
[
−bh(z) +

(
b+ l

λ

)]
> 0, z ∈ U,

may be written as

Re
bz

1 +Bz
<

l

λ(A−B)
, z ∈ U,

which is equivalent to (22). Since the function h is convex (univalent) in U, ac-
cording to Lemma 2 the subordination (25) implies p(z) ≺ h(z), which proves that
f ∈ S∗λ,l[m+ 1; b;A,B].

From the duality formula (8), and using the fact that

Lm+1(λ, l) (−zf ′(z)) = −z
(
Lm+1(λ, l)f(z)

)′
,

the above theorem yields the following inclusion:

Theorem 8. Let λ > 0, l > 0, and m ∈ N0. Suppose that b ∈ C∗ and −1 ≤ B <
A ≤ 1, such that (22) holds.

If f ∈ Kλ,l[m; b;A,B], with
(
Lm+1(λ, l)f(z)

)′ 6= 0 for all z ∈ U∗, then
f ∈ Kλ,l[m+ 1; b;A,B].

Remark 3. (i) Putting in the above results b = e−iµ cosµ, A = (1 − 2α)β and
B = −β, where µ ∈ R with |µ| ≤ π/2, 0 ≤ α < 1, and 0 < β ≤ 1, we obtain
analogous results for the classes ΣSµ[α, β] and ΣKµ[α, β], respectively;

(ii) By specializing the parameters λ, l and m, we obtain various special cases
for different operators defined in the introduction.
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