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Algebraic hyper-structures associated to
convex analysis and applications

Ali Delavar Khalafi, Bijan Davvaz

Abstract

In this paper, we generalize some concepts of convex analysis such as con-
vex functions and linear functions on hyper-structures. Based on new defi-
nitions we obtain some important results in convex programming. A few
suitable examples have been given for better understanding.

1 Introduction and preliminaries

Algebraic hyperstructures are suitable generalizations of classical algebraic struc-
tures. In a classical algebraic structure, the composition of two elements is an
element, while in an algebraic hyperstructure, the composition of two elements is a
set. More exactly, if H is a non-empty set and P∗(H) is the set of all non-empty
subsets of H, then we consider maps of the following type:

fi : H ×H −→ P∗(H),

where i ∈ {1, 2, . . . , n} and n is a positive integer. The maps fi are called (binary)
hyperoperations. For all x, y of H, fi(x, y) is called the (binary) hyperproduct of
x and y. An algebraic system (H, f1, . . . , fn) is called a (binary) hyperstructure.
Usually, n = 1 or n = 2.

Under certain conditions, imposed to the maps fi, we obtain the so-called semi-
hypergroups, hypergroups, hyperrings or hyperfields. Sometimes, external hyper-
operations are considered, which are maps of the following type:

h : R×H −→ P∗(H),

where R 6= H. Usually, R is endowed with a ring or a hyperring structure. Several
books have been written on this topic, see [1, 2, 6, 9]. Also, see [3, 4, 5, 7, 8, 10].
A recent book on hyperstructures [2] points out on their applications in rough set
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theory, cryptography, codes, automata, probability, geometry, lattices, binary re-
lations, graphs and hypergraphs. Another book [6] is devoted especially to the
study of hyperring theory. Several kinds of hyperrings are introduced and ana-
lyzed. The volume ends with an outline of applications in chemistry and physics,
analyzing several special kinds of hyperstructures: e-hyperstructures and transpo-
sition hypergroups. The theory of suitable modified hyperstructures can serve as a
mathematical background in the field of quantum communication systems.

Optimization theory is the study of the extremal values of a function: its min-
ima and maxima. Topics in this theory range from conditions for the existence
of a unique extremal value to methodsboth analytic and numericfor finding the
extremal values and for what values of the independent variables the function at-
tains its extremes. In mathematics, optimization or mathematical programming
refers to choosing the best element from some set of available alternatives. Nonlin-
ear programming deals with the problem of optimizing an objective function in the
presence of some constraints. In this paper, we consider an optimization problem on
algebraic hyperstructures and as special case we obtain the ordinary optimization
problem.

2 Convex analysis

In this paper we address a hyper-structures as follows:

? : H ×H → H ⊗H ⊆ P∗(H), (1)

· : F ×H → H,

+ : H ×H → H,

where H 6= ∅, ? is a commutative hyperoperation such that ?(H ×H) = H ⊗H, ·
and + are commutative binary operations and F is a filed. Henceforth, let F = R.
Convex functions play an important role in almost all branches of mathematics as
well as other areas of science and engineering. Convex functions have many special
and important properties. In this paper we introduce a few important topics of
convex functions and develop some of their properties. Let define P ∗(X) = {x?y ∈
H ⊗ H : x, y ∈ X} for all non-empty subset X in H. At the first, we need the
definition of a convex function.

Definition 2.1. Let f : P ∗(X) → R, where X is non-empty convex subset in H.
The function f is called a convex function on P ∗(X) if

f([λx1 + (1− λ)x2] ? [λy1 + (1− λ)y2]) ≤ λf(x1 ? y1) + (1− λ)f(x2 ? y2)

for each x1, x2, y1, y2 ∈ X, x1 ? y1, x2 ? y2 ∈ P ∗(X) and for all 0 ≤ λ ≤ 1. The
function is called strictly convex on P ∗(X) if the inequality is satisfied as a trict
inequality for each distinct x1 ? y1, x2 ? y2 ∈ P ∗(X) and 0 < λ < 1. The function
f is called concave (strictly concave) on X if −f is convex (strictly convex) on X.
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The following lemma gives a necessary condition for checking the convexity of
functions.

Lemma 2.2. Let f : P ∗(X) → R be a convex function, where X is a non-empty
convex subset in H. the level set X?

α = {x, y ∈ X : f(x ? y) ≤ α} is a convex set,
where α is an arbitrary real number.

Proof. Suppose that x1, y1, x2, y2 ∈ X?
α, such that f(x1 ?y1) ≤ α and f(x2 ?y2) ≤

α. Let xλ = λx1 + (1− λ)x2 and yλ = λy1 + (1− λ)y2 for 0 ≤ λ ≤ 1. Since X is a
convex set, xλ and yλ are in X. By convexity of f , we have

f([λx1 + (1− λ)x2] ? [λy1 + (1− λ)y2]) ≤ λf(x1 ? y1) + (1− λ)f(x2 ? y2) ≤ α.

Hence, xλ, yλ ∈ X?
α, therefore X?

α is a convex set.

Example 1. Suppose that H = [0, π]. Set X = H and define

zmin = min{x, y},
zmax = max{x, y},
x ? y = [zmin, zmax],
f(x ? y) = sin( zmin+zmax

2 ),

for all x, y ∈ X. Let α = 1
2 . Clearly,

X?
1
2

=

{
x1, y1 ∈ X :

zmin + zmax

2
≤ π

6
, or

zmin + zmax

2
≥ 5π

6

}
.

Since π
6 ,

5π
6 ∈ X

?
1
2

, and

f

([
λ
π

6
+ (1− λ)

5π

6

]
?

[
λ
π

6
+ (1− λ)

5π

6

])
>

1

2
,

for all 0 < λ < 1, so λπ6 + (1 − λ) 5π
6 , λ

π
6 + (1 − λ) 5π

6 /∈ X?
1
2

, for all 0 < λ < 1.

Therefore, the function f is not convex.

Definition 2.3. Let f : P ∗(X) → R, where X is a non-empty subset in H. The
epigraph of f denoted by epi?f , is a subset of H ×H × R defined by

epi?f = {(x, y, z) : x, y ∈ X, z ∈ R, f(x ? y) ≤ z}

The following theorem gives a necessary and sufficient condition for checking the
convexity of f .

Theorem 2.4. Let f : P ∗(X) → R, where X is a non-empty convex subset in H.
f is a convex function if and only if epi?f is a convex set.
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Proof. Let epi?f be a convex set, and x1, y1, x2, y2 ∈ X. Suppose that (x1, y1, f(x1?
y1)) and (x2, y2, f(x2 ? y2)) in epi?f . we have:

(λx1 + (1− λ)x2, λy1 + (1− λ)y2, λf(x1 ? y1) + (1− λ)f(x2 ? y2)) ∈ epi?f,

for all 0 ≤ λ ≤ 1. Therefore, by definition, we have

f([λx1 + (1− λ)x2] ? [λy1 + (1− λ)y2]) ≤ λf(x1 ? y1) + (1− λ)f(x2 ? y2),

for all 0 ≤ λ ≤ 1. Conversely, assume that f is convex, (x1, y1, z1) and (x2, y2, z2)
in epi?f . We have

f([λx1+(1−λ)x2]?[λy1+(1−λ)y2]) ≤ λf(x1?y1)+(1−λ)f(x2?y2) ≤ λz1+(1−λ)z2.

Since λx1+(1−λ)x2, λy1+(1−λ)y2 ∈ X, so (λx1+(1−λ)x2, λy1+(1−λ)y2, λz1+
(1− λ)z2) ∈ epi?f , and hence epi?f is a convex set.

Example 2. Let H = R+ × R+. Suppose that

zmin = min{x1, x2, y1, y2},
zmax = max{x1, x2, y1, y2},
(x1, y1) ? (x2, y2) = [zmin, zmax]× [zmin, zmax] ⊆ R+ × R+

and f : H ⊗ H → R is defined by f((x1, y1) ? (x2, y2)) = zmax − zmin, for all
(x1, y1), (x2, y2) ∈ X, where X is any non-empty convex subset in H. Let ((x̄1, ȳ1),
(x̄2, ȳ2), z̄) and ((x̂1, ŷ1), (x̂2, ŷ2), ẑ) in epi?f and x̄λ = λx̄1 + (1− λ)x̄2, ȳλ = λȳ1 +
(1− λ)ȳ2, x̂λ = λx̂1 + (1− λ)x̂2, ŷλ = λŷ1 + (1− λ)ŷ2. One can show that

max{x̄λ, ȳλ, x̂λ, ŷλ} −min{x̄λ, ȳλ, x̂λ, ŷλ} ≤ λz̄ + (1− λ)ẑ.

That is, ((x̄λ, ȳλ), (x̂λ, ŷλ), λz̄ + (1 − λ)ẑ) ∈ epi?f . Therefore, epi?f is a convex
set and by using Theorem 2.4, we conclude that the function f is also a convex
function.

3 Applications

In this section, we consider some applications of convex analysis on hyper-structures.
At first, we formulate Optimization Model (OM) and then present some examples
in this respect. Consider an optimization problem on hyper-structures as follows:

min
x,y∈X

f(x ? y), (2)

where f : H ⊗H → R is a real function and X is any non-empty subset in H.
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3.1 Examples

The three following examples show that, how we can use (OM) in practice. First
of all, we show that the OM is a generalization of usual optimization problem.

Example 3. Suppose that H = Rn, g(x) : Rn → R is a real function and X is any
non-empty subset in H. We define f : H ⊗H → R ∪ {∞} and ?, respectively, as
follows:

f(x) =

{
g(x), x ∈ Rn,
∞, otherwise,

(3)

x ? y = x

Clearly, OM can be reduced to the usual following constrained optimization prob-
lem.

min
x∈X⊆Rn

g(x). (4)

Example 4. Let H be a finite set. Suppose that f : H ⊗ H → R is defined by
f(A) = CardA, for all A ∈ H ⊗H and X is any non-empty subset of H. Now, the
OM gives the minimal elements of P ∗(X). In addition, if P ∗(X) is totally ordered,
so the OM gives the minimum element. Let x∗ ? y∗ = Argmin{f(x ? y)|x, y ∈ X}.
(x∗ ? y∗)−1 is the minimum element of X.

Example 5. Let H be a finite set, B ∈ H ⊗H be an arbitrary element and X be
any non-empty subset in H. We define fB : P ∗(X)→ R as fB(A) = max{Card(A−
B), Card(B −A)} for all A ∈ P ∗(X). Clearly we have

B ∈ P ∗(X)⇔ 0 = min
x,y∈X

fB(x ? y) (5)

3.2 Optimization theory

Optimization theory is an important subject in almost all branches of sciences. We
give some definitions and theorems in this respect.

Definition 3.1. Let f : H ⊗ H → R and consider the problem OM. If x̂ ? ŷ ∈
P ∗(X) and f(x̂ ? ŷ) ≤ f(x ? y) for each x ? y ∈ P ∗(X), then x̂ ? ŷ is called a
global optimal solution. If x̄ ? ȳ ∈ P ∗(X) and there exists an ε−neighborhood
N?
ε (x̄, ȳ) = {x ? y ∈ H ⊗H | x ∈ Nε(x̄), y ∈ Nε(ȳ)} such that f(x̄ ? ȳ) ≤ f(x ? y)

for each x ? y ∈ N?
ε (x̄, ȳ) ∩ P ∗(X), then x̄ ? ȳ is called a local optimal solution.

If we suppose that in (OM) (2), the function f and the set X are convex, then
we have a convex programming.

The following theorem shows that each local minimum of convex programming
is also a global minimum.

Theorem 3.2. Let f : P ∗(X) → R where X is a non-empty convex subset in H
and ?(A,B) = {x ? y ∈ H ⊗H | x ∈ A, y ∈ B} be a convex set in H ⊗H, for all
convex subsets A and B in H. Consider the OM problem and x̄ ? ȳ ∈ P ∗(X) is a
local minimum, so we have
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(1) If f is convex, then x̄ ? ȳ is a global minimum.

(2) If f is strictly convex, then x̄ ? ȳ is the unique global minimum.

Proof. Firstly, we suppose that the function f is convex and x̄ ? ȳ is not a global
minimum. It means that there exists x̂ ? ŷ ∈ P ∗(X), such that f(x̂ ? ŷ) < f(x̄ ? ȳ).
By convexity of f , we have

f([λx̂+ (1− λ)x̄] ? [λŷ + (1− λ)ȳ]) ≤ λf(x̂ ? ŷ) + (1− λ)f(x̄ ? ȳ) < f(x̄ ? ȳ).

Now, for λ > 0 and sufficiently small, [λx̂+ (1− λ)x̄] ? [λŷ+ (1− λ)ȳ] ∈ N?
ε (x̄, ȳ)∩

P ∗(X). Clearly the above inequality contradicts to the definition. Now, suppose
that f is strictly convex. According to part one, we know that x̄ ? ȳ is a global
minimum. Suppose that x̄ ? ȳ is not the unique global minimum, that is there exists
x̃ ? ỹ ∈ P ∗(X), x̃ ? ỹ 6= x̄ ? ȳ, such that f(x̃ ? ỹ) = f(x̄ ? ȳ). By strictly convexity,
we have

f([λx̃+ (1− λ)x̄] ? [λỹ + (1− λ)ȳ]) < λf(x̃ ? ỹ) + (1− λ)f(x̄ ? ȳ) = f(x̄ ? ȳ),

for all 0 < λ < 1. By the convexity of X, [λx̃+ (1− λ)x̄] ? [λỹ+ (1− λ)ȳ] ∈ P ∗(X).
This completes the proof.

Example 6. Once again consider Example 2. Using Theorem 3.2, and by convexity
of f , we conclude that the OM has a global minimum, where X is any non-empty
convex subset in R+ × R+. In order to find the global minimum, we use the below
strategy. Since f((x1, y1) ? (x2, y2)) = zmax − zmin, for all (x1, y1), (x2, y2) ∈ X, we
can use the following optimization problem equivalently:

min
(x1,x2)∈X⊆R+×R+

x1 + x2. (6)

Lemma 3.3. Let f : P ∗(X) → R where X is a non-empty convex subset in H.
The function f is convex if and only if

f

([
n∑
i=1

λixi

]
?

[
n∑
i=1

λiyi

])
≤

n∑
i=1

λif(xi ? yi) (7)

for each xi ? yi, i = 1, . . . , k in P ?(X) and

n∑
i=1

λi = 1, λi ≥ 0.

Proof. If (7) is hold, then the convexity of f is obtained. Now, suppose that the
function f is convex. By induction, we prove that the inequality (7) is true. Using
convex function definition, the inequality (7) is hold for n = 2. We suppose that
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(7) holds for n. we have

f

([
n+1∑
i=1

λixi

]
?

[
n+1∑
i=1

λiyi

])

= f

([
n∑
i=1

λixi + λn+1xn+1

]
?

[
n∑
i=1

λiyi + λn+1yn+1

])

= f

([
(1− λn+1)

n∑
i=1

λi
(1− λn+1)

xi + λn+1xn+1

]

?

[
(1− λn+1)

n∑
i=1

λi
(1− λn+1)

yi + λn+1yn+1

])

≤ (1− λn+1)f

([
n∑
i=1

λi
(1− λn+1)

xi

]
?

[
n∑
i=1

λi
(1− λn+1)

yi

])
+ λn+1f(xn+1 ? yn+1)

≤
n+1∑
i=1

λif(xi ? yi),

where 0 < λn+1 = 1−
n∑
i=1

λi < 1. For the cases λn=1 = 0 and λn+1 = 1, the result

is obvious. The proof is completed.

Note that the similar proof can be used for concave functions. The two following
theorems give a method for solving many OM problems.

Theorem 3.4. Let f : P ∗(X)→ R be concave function, X be a polytope and 0 ∈ X.
the optimal solution of OM will be obtained by

f(θ̄xl ? γ̄xs) = min
1≤i≤k
1≤j≤k
0≤θi≤1
0≤γj≤1

f(θixi ? γjxj). (8)

where xi( i = 1, . . . , k) are extreme points of X.

Proof. Since X is a polytope, then using representation theorem, we can write every
element of X as a convex combination of extreme points of X, that is, for all x, y ∈

X, x =

n∑
i=1

αixi,

n∑
i=1

αi = 1, αi ≥ 0 and y =

n∑
i=1

βixi,

n∑
i=1

βi = 1, βi ≥ 0. let

I = {i : αi > 0} and J = {i : βi > 0}. We know that I∪J = (I∩J)∪(I−J)∪(J−I).
We define λi, ui and vi, i = 1, ..., k, where k ≤ n. Suppose that i ∈ I ∩ J .

(Λ, U, V )I∩J =

{
λi = αi, ui = xi, vi = βi

αi
xi, if βi ≤ αi,

λi = βi, ui = αi

βi
xi, vi = xi, if αi < βi,

(9)
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and i ∈ J − I,
(Λ, U, V )J−I = {(βi, 0, xi); i ∈ J − I},

and i ∈ I − J ,
(Λ, U, V )I−J = {(αi, xi, 0); i ∈ I − J},

where (Λ, U, V ) = {(λi, ui, vi) | i ∈ I ∪ J}. Let A =

k∑
i=1

λi =
∑
i∈I∪J

λi. Clearly, 1 ≤

A ≤ 2, x =

k∑
i=1

λiui and y =

k∑
i=1

λivi. However, since x, y ∈ X, then x
A =

k∑
i=1

λi
A
ui

and y
A =

k∑
i=1

λi
A
vi belong to X. Because of concavity of f , Lemma 3.3 and this fact

that ui = θixi+ (1− θi)0, 0 ≤ θi ≤ 1 and vi = γixi+ (1−γi)0, 0 ≤ γi ≤ 1, we have

f
(
x
A ?

y
A

)
= f

([
k∑
i=1

λi
A
ui

]
?

[
k∑
i=1

λi
A
vi

])

= f

 k∑
i=1

k∑
j=1

λiλj
A2

ui ? vj


≥

k∑
i=1

k∑
j=1

λiλj
A2

f(ui ? vj)

≥ f(θ̄xl ? γ̄xs),

where

k∑
i=1

k∑
j=1

λiλj
A2

= 1,
λiλj
A2
≥ 0 and

f(θ̄xl ? γ̄xs) = min
1≤i≤k
1≤j≤k
0≤θi≤1
0≤γj≤1

f(θixi ? γjxj).

This completes the proof.

Notice that a similar proof can be used for convex function such that instead of
minimization of OM problem, we must maximize the objective function, that is,

max
x,y∈X

f(x ? y) (10)

The following two examples show that how we can use Theorem 3.4, to find
optimal solutions. In the first example, (0, 0) is an extreme point, but in the second
example (0, 0) is not an extreme point.

Example 7. Consider the concave function −f = zmin−zmax was given in Example
2 and the OM, where

X = {(x1, x2) : − x1 + x2 ≤ 1, x1 + x2 ≤ 2, x1, x2 ≥ 0}.
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Since the extreme points of X are (0, 0), (2, 0), (0, 1), ( 1
2 ,

3
2 ), by using Theorem

3.4, we can find optimal solutions as follows:

f(θ̄xl ? γ̄xs) = min
1≤i≤4
1≤j≤4
0≤θi≤1
0≤γj≤1

f(θixi ? γjxj)

where f(θ̄xl ? γ̄xs) = {(2, 0) ? (0, 0), (2, 0) ? (0, 1), (2, 0) ? (2, 0), (2, 0) ? ( 1
2 ,

3
2 )} and

f(θ̄xl ? γ̄xs) = −2.

Example 8. Consider the concave function −f = zmin−zmax was given in Example
2 and the optimization model in (2), where H = R× R,

X = {(x1, x2) : − x1 + x2 ≤ 1, x1 + x2 ≤ 2, x2 ≥ 0}.

Since the extreme points of X are (2, 0), (−1, 0), ( 1
2 ,

3
2 ), by using Theorem 3.4, we

can find optimal solutions as follows:

f(θ̄xl ? γ̄xs) = min
1≤i≤3
1≤j≤3
0≤θi≤1
0≤γj≤1

f(θixi ? γjxj)

where f(θ̄xl ? γ̄xs) = {(2, 0) ? (−1, 0)} and f(θ̄xl ? γ̄xs) = −3.

Definition 3.5. A map f : P ∗(H)→ R is called a linear function if

f([λx1 + (1− λ)x2] ? [λy1 + (1− λ)y2]) = λf(x1 ? y1) + (1− λ)f(x2 ? y2), (11)

where x1 ? y1, x2 ? y2 ∈ P ∗(H) and λ ∈ R.

The next theorem gives a condition for finiteness optimal solution in linear
function and polyhedron.

Theorem 3.6. Let f : P ∗(X) → R be a linear function, X be a polyhedron and
0 ∈ X. the optimal solution of OM will be finite, if

min


min
1≤i≤p
1≤j≤p
0≤ζi≤1
0≤ξj≤1

{f(ζidi ? ξjdj)}, min
1≤i≤k
1≤j≤p
0≤ζi≤1
0≤ξj≤1

{f(ζixi ? ξjdj)}


≥ 0, (12)

then the optimal solution is

f(θ̄xl ? γ̄xs) = min
1≤i≤k
1≤j≤k
0≤θi≤1
0≤γj≤1

f(θixi ? γjxj),

if there exists i, j, such that at least one of these two inequalities f(ζidi ? ξjdj) < 0
or f(ζixi ? ξjdj) < 0 is held, then the optimal value is −∞, where x1, . . . , xk and
d1, . . . , dp, are extreme points and extreme directions, respectively.
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Proof. By representation theorem, we have for every x, y ∈ X,

x =

n∑
i=1

αixi +

m∑
j=1

µjdj and y =

n∑
i=1

βixi +

m∑
j=1

ηjdj ,

where

n∑
i=1

αi = 1, αi ≥ 0,

n∑
i=1

βi = 1, β ≥ 0, µj ≥ 0 and ηj ≥ 0. We consider λi

as previous theorem and let I = {i : µi > 0} and J = {i : ηi > 0}. We know that
I ∪ J = (I ∩ J) ∪ (I − J) ∪ (J − I). We define πi, zi and wi, i = 1, . . . , p, where
p ≤ m. Suppose that i ∈ I ∩ J .

(Π, Z,W )I∩J =

{
πi = µi, zi = di, wi = ηi

µi
di, if ηi ≤ µi,

πi = ηi, zi = µi

ηi
di, wi = di, if µi < ηi,

(13)

and i ∈ J − I,
(Π, Z,W )J−I = {(ηi, 0, di); i ∈ J − I},

and i ∈ I − J ,
(Π, Z,W )I−J = {(µi, di, 0); i ∈ I − J},

where (Π, Z,W ) = {(πi, zi, wi) | i ∈ I ∪ J}. Because of linearity of f , we have

f( xA ?
y
A ) = f

 k∑
i=1

λi
A
ui +

p∑
j=1

πj
A
zj

 ?
 k∑
i=1

λi
A
vi +

p∑
j=1

πj
A
wj


=

k∑
i=1

k∑
j=1

λiλj
A2

f(ui ? vj) +

k∑
i=1

p∑
j=1

λiπj
A2

f(ui ? wj)

+

k∑
i=1

p∑
j=1

λiπj
A2

f(vi ? zj) +

p∑
i=1

p∑
j=1

πiπj
A2

f(zi ? wj).

Now, if (12) is held, we set µj = 0, ηj = 0 and as previous theorem we obtain
optimal solutions. Otherwise we can tend some µj or ηj to infinity and the value
function tends to −∞. This completes the proof.
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