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On the ratio of directed lengths on the

plane with generalized absolute

value metric and related properties

Gökhan Soydan1, Yusuf Doğru2, N.Umut Arslandoğan3

Abstract

In this paper, we show that a point of division divides a related line segment
in the same ratio on the plane with generalized absolute value metric and
Euclidean plane. Then the coordinates of the division point can be determined
by the same formula as in the Euclidean plane. In the latter parts of the work,
we give Ceva’s and Menelaus’es theorems and the theorem of directed lines
on the plane with generalized absolute value metric.

1 Introduction

H. Minkowski [22] published a whole family of metrics providing new insight into
the study of plane geometry at the beginning of last century. Later, taxicab plane
geometry was introduced by Menger, and developed by Krause, using the met-
ric dT (K,L) = |x1 − x2| + |y1 − y2| instead of the well-known Euclidean metric
dE(K,L) = ((x1 − x2)2 + (y1 − y2)2)1/2 for the distance between any two points
K = (x1, y1) and L = (x2, y2) in the Cartesian coordinate plane (see [20], [17]).
Recently, the plane geometry with the generalized absolute value metric dG was
introduced by Kaya et al. [13] and Akca et al. [3]. In R2, the dG-distances between
K and L are defined by

dG(K,L) = dG((x1, y1), (x2, y2)) (1)

= k1 max{|x1 − x2|, |y1 − y2|}+ k2 min{|x1 − x2|, |y1 − y2|}

for all k1, k2 ∈ R, k1 ≥ k2 ≥ 0, k1 6= 0. According to the definition of dG-distances,
the shortest way between two points K and L is the union of a vertical or a hori-
zontal line segment and a line segment with the slope ±2k1k2/(k

2
1−k22). The family
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of distances, dG, which includes Chinese checkers, taxicab distance and maximum
distance as special cases.

A metric geometry consists of a set P whose elements are called points, together
with a collection L of non-empty subsets of P , called lines, and a distance function
d, such that

1) Every two distinct points in P lie on a unique line,

2) There exist three points in P , which do not lie all on one line,

3) There exists a bijective function f : l → R for all lines in L such that
|f(P )− f(Q)| = d(P,Q) for each pair of points P and Q on l.

A metric geometry defined above is denoted by {P,L, d}. However, if a metric
geometry satisfies the plane separation axiom below, and it has an angle measure
function m, then it is called protractor geometry and denoted by {P,L, d,m}.

4) For every l in L, there are two subsets H1 and H2 of P (called half planes
determined by l ) such that

(i) H1∪ H2 = P −l (P with l removed),

(ii) H1 and H2 are disjoint and each is convex,

(iii) If A ∈ H1 and B ∈ H2, then [AB] ∩ l = ∅.

If LE is the set of all lines in the Cartesian coordinate plane, and mE is the
standard angle measure function in the Euclidean plane, then {R2, LE , dC , mE},
called the plane with the generalized absolute value metric is a model of protractor
geometry (This can be shown easily: the proof is similar to that of taxicab plane;
refer to [21] or [8] to see that the taxicab plane is a model of protractor geome-
try). The plane with the generalized absolute value metric is also in the class of
non-Euclidean geometries since it fails to satisfy the side-angle-side axiom. How-
ever, the plane with the generalized absolute value metric is almost the same as
Euclidean plane {R2, LE , dC , mE} since the points are the same, the lines are
the same and the angles are measured in the same way. Since the plane with the
generalized absolute value metric has distance function different from that in the
Euclidean plane, it is interesting to study on the plane with the generalized absolute
value metric of topics that include the distance concept in the Euclidean plane.([1],
[2], [4], [5], [6], [7], [9], [12], [10], [11], [13], [14], [16], [23], [24], [25], [19], [26],
[27], [28], [29]) These topics are division point, directed lengths, ratio of directed
lengths, Menelaus’es Theorem, Ceva’s Theorem and the theorem of directed lines.
In this paper, GAM is the abbreviation for the plane geometry with the generalized
absolute value metric.
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2 On the ratio of directed lengths on the plane
with generalized absolute value metric

Let A and B be any two points on a directed straight line l. We define directed
GAM length of the line segment AB as follows:

dG[AB] =

{
dG(A,B), if AB and l have the same direction
−dG(A,B), if AB and l have the opposite direction.

Thus, dG [AB] = −dG [BA]. Clearly, directed length in the Euclidean plane can be
defined in a similar way. That is

dE [AB] =

{
dE(A,B), if AB and l have the same direction
−dE(A,B), if AB and l have the opposite direction.

If P,Q,R are points on a same directed line and R is between points P and Q,
we denote this by PRQ. If PRQ, then R divides the line segment PQ internally
and the ratio of the directed GAM lengths is a positive real number, that is

dG[PR]

dG[RQ]
= δ > 0.

If PQR or RPQ then R divides the line segments PQ externally, dG[PR]/dG[RQ] =
δ < 0, that is, the line segments PR and RQ have opposite directions. In both cases
R called the division point which divides the line segment PQ in ratio δ. It’s obvious,
R 6= Q. R = P ⇔ δ = 0 and (R is at infinity ⇔ δ = −1).

Let R and R′ be two points such that R divides a given line segment PQ inter-
nally and R′ divides PQ externally in the same proportion though with opposite
signs. Thus, the ratio of the directed lengths, dG[PR]/dG[RQ] = −dG[PR′]/dG[R′Q]
is the same positive number δ.

Lemma 1. For any two points K and L in the Cartesian plane that do not lie on
a vertical line, if m is the slope of the line through K and L, then

δ (m) =

√
1 +m2

k1 max {1, |m|}+ k2 min {1, |m|}
. (2)

If K and L lie on a vertical line, then by definition, dE(K,L) = δ (m) dG(K,L).

Proof. For any two points K = (x1, y1) and L = (x2, y2) with x1 6= x2; then
m = (y2 − y1) / (x2 − x1) . Equation (2) is derived by a straightforward calculation
with m and the coordinate definitions of dE(K,L) and dG(K,L) given in section
1.
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Theorem 1. For any two distinct points K1 = (x1, y1) and K2 = (x2, y2) in the
analytical plane, if L = (x, y) is a point on the line passing through K1 and K2,
then

dG[K1L]/dG[LK2] = dE [K1L]/dE [LK2].

That is, the ratios of the Euclidean and GAM directed lengths are the same.

Proof. If L = K1 then both ratios are equal to 0. If L is at infinity then both ratios
are equal to −1. Therefore without loss of generality, let K1 6= L 6= K2. Then
it’s enough to show dG (K1, L) /dG (L,K2) = dE (K1, L) /dE (L,K2). It’s clear by
Lemma 1. This completes proof.

The following corollary shows how one can find the coordinates of the division
point which divides the line segment joining two given points in a given ratio.

Corollary 1. For any two distinct points K1 = (x1, y1) and K2 = (x2, y2) in the
GAM plane, if L = (x, y) divides the line segment K1K2, in ratio δ then,

x =
x1 + δx2

1 + δ
, y =

y1 + δy2
1 + δ

; δ ∈ R, δ 6= −1

as in the Euclidean plane.

Proof. We would rather give a direct proof even though the Corollary follows from
Theorem 1. The given formula is obvious when δ = 0 or δ = −1. If δ 6= 0, −1 and
L divides the line segment K1K2 in ratio δ, we have |dG[K1L1]/dG[L1K2]| = |δ| .
That is

k1 max {|x1 − x| , |y1 − y|}+ k2 max {|x1 − x| , |y1 − y|}
k1 max {|x− x2| , |y − y2|}+ k2 max {|x− x2| , |y − y2|}

= |δ| . (3)

Since K1 6= K2,

Case (i) If |x1 − x| ≥ |y1 − y| then using the definition of dGdistance we get

|δ| = |δ|
(
k1 |x1 − x2|+ k2 |y1 − y2|
k1 |x1 − x2|+ k2 |y1 − y2|

)
=
k1 |δx1 − δx2|+ k2 |δy1 − δy2|
k1 |x1 − x2|+ k2 |y1 − y2|

.

Adding x1−x1 and y1−y1 to the first and second summands in the numerator and
similarly δx2 − δx2 and δy2 − δy2 in the denominator respectively, one obtains

|δ| = k1 |δx1 + x1 − x1 − δx2|+ k2 |δy1 + y1 − y1 − δy2|
k1 |x1 + δx2 − δx2 − x2|+ k2 |y1 + δy2 − δy2 − y2|

.

Multiplying the numerator and the denominator of the right side of the last state-
ment by 1/ |1 + δ|, one gets
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|δ| =
k1

∣∣∣ δx1+x1−x1−δx2

1+δ

∣∣∣+ k2

∣∣∣ δy1+y1−y1−δy21+δ

∣∣∣
k1

∣∣∣x1+δx2−δx2−x2

1+δ

∣∣∣+ k2

∣∣∣y1+δy2−δy2−y21+δ

∣∣∣
=

k1

∣∣∣ (1+δ)x1

1+δ − x1+δx2

1+δ

∣∣∣+ k2

∣∣∣ (1+δ)y11+δ − y1+δy2
1+δ

∣∣∣
k1

∣∣∣x1+δx2

1+δ −
(1+δ)x2

1+δ

∣∣∣+ k2

∣∣∣y1+δy21+δ −
(1+δ)y2

1+δ

∣∣∣
=

k1

∣∣∣x1 − x1+δx2

1+δ

∣∣∣+ k2

∣∣∣y1 − y1+δy2
1+δ

∣∣∣
k1

∣∣∣x1+δx2

1+δ − x2
∣∣∣+ k2

∣∣∣y1+δy21+δ − y2
∣∣∣ =

k1 |x1 − x|+ k2 |y1 − y|
k1 |x2 − x|+ k2 |y2 − y|

.

Comparing this result with equation (2) we obtain

x =
x1 + δx2

1 + δ
, y =

y1 + δy2
1 + δ

.

Case (ii) If |y1 − y| < |x1 − x| then it can be proved similarly case (i).

3 Theorems of Menelaus and Ceva in the GAM
plane

In this section, we study the GAM version of the Theorems of Menelaus and Ceva.
Indeed, the validity of these theorems is obvious from the Theorem 1, but we prefer
to state and give partial proofs for them.

Theorem 2. (Menelaus’es Theorem.) Let {K1,K2,K3} be a triangle and L1, L2, L3

be on the lines that contain the sides K1K2,K2K3,K3K1 respectively, in the GAM
plane. If L1, L2, L3 are collinear, then

dG[K1L1]

dG[L1K2]
.
dG[K2L2]

dG[L2K3]
.
dG[K3L3]

dG[L3K1]
= −1

where none of L1, L2, L3 coincide with any of K1,K2,K3.

Proof. According to the positions of points K1,K2,K3 and L1, L2, L3, there are
several possible cases. We give a proof of the theorem only in the following special
case.

Let Ki = (xi, yi), i = 1, 2, 3 and xi 6= yi+1 and let L1, L2, L3 be on a line l given
by y = mx + k such that Li = l ∧ KiKi+1(mod3) and l is not parallel to the line
KiKi+1, for i = 1, 2, 3 (see Figure 1). Clearly mxi − yi + k 6= 0 since Ki 6= Lj for

i, j = 1, 2, 3 and m 6= (yi+1 − yi) (xi+1 − xi)−1 . The equation of the line KiKi+1

is given by

y =
(yi+1 − yi)
(xi+1 − xi)

x− (xiyi+1 − xi+1yi)

(xi+1 − xi)
.
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It follows from a simple calculation that

Li =

(
xiyi+1 − xi+1yi − kxi + kxi+1

mxi −mxi+1 − yi + yi+1
,
mxiyi+1 −mxi+1yi − kyi + kyi+1

mxi −mxi+1 − yi + yi+1

)
= (u, v).

Now let us find dG[KiLi]
dG[LiKi+1]

. dG[K1L1]
dG[L1K2]

= −dG(K1,L1)
dG(L1,K2)

. SinceK1,K2 and L1 are collinear,

 
3P  

1P  
2P  

1Q  

2Q  3Q  �  

 
Figure 1:

Case (i) If |x1− u| ≥ |y1− v| then using the definition of dG- distance one gets

= −
k1

∣∣∣x1 − x1y2−x2y1−kx1+kx2

mx1−mx2−y1+y2

∣∣∣+ k2

∣∣∣y1 − mx1y2−mx2y1−ky1+ky2
mx1−mx2−y1+y2

∣∣∣
k1

∣∣∣x1y2−x2y1−kx1+kx2

mx1−mx2−y1+y2 − x2
∣∣∣+ k2

∣∣∣y1mx1y2−mx2y1−ky1+ky2
mx1−mx2−y1+y2 − y2

∣∣∣
= −k1 |x1 (mx1 − y1 + k)− x2 (mx1 − y1 + k)|+ k2 |y1 (mx1 − y1 + k)− y2 (mx1 − y1 + k)|

k1 |x2 (mx2 − y2 + k)− x1 (mx2 − y2 + k)|+ k2 |y2 (mx2 − y2 + k)− y1 (mx2 − y2 + k)|

= −|mx1 − y1 + k| (k1 |x1 − x2|+ k2 |y1 − y2|)
|mx2 − y2 + k| (k1 |x2 − x1|+ k2 |y2 − y1|)

= −|mx1 − y1 + k|
|mx2 − y2 + k|

.

Similarly,
dG[K2L2]

dG[L2K3]
=
|mx2 − y2 + k|
|mx3 − y3 + k|

and
dG[K3L3]

dG[L3PK1]
=
|mx3 − y3 + k|
|mx1 − y1 + k|

and consequently,

dG[KiLi]

dG[LiKi+1]
= s

|mxi − yi + k|
|mxi+1 − yi+1 + k|

, s =

{
−1, if i = 1
1, if i = 2, 3.
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Now , it can be easily computed that

3∏
i=1

(dG[KiLi]/dG[LiKi+1]) = −1.

Case (ii) If |x1 − u| < |y1 − v| then it can be proved similarly case (i).

Theorem 3. (Converse of Menelaus’es Theorem.) Let {K1,K2,K3} be a triangle
and L1, L2, L3 be three points on the lines that contain the sides K1K2,K2K3,K3K1

respectively, in the GAM plane. If

dG[K1L1]

dG[L1K2]
.
dG[K2L2]

dG[L2K3]
.
dG[K3L3]

dG[L3K1]
= −1,

then L1, L2, L3 are collinear. Note that none of L1, L2, L3 coincide with any of
K1,K2,K3.

Theorem 4. (Ceva’s Theorem.) Let {K1,K2,K3} be a triangle and lines l1, l2, l3
pass through the vertices K1,K2,K3, respectively and intersect lines containing the
opposite sides at points L1, L2, L3. The lines l1, l2, l3 are concurrent (or parallel) if
and only if

dG[K1L3]

dG[L3K2]
.
dG[K2L1]

dG[L1K3]
.
dG[K3L2]

dG[L2K1]
= 1.

Note that none of L1, L2, L3 are K1,K2,K3.

4 Theorems of directed lines (Strahlensätze)

In general, the axiom congruence and consequently properties of similarity for
tringles are not valid in the GAM plane. But, it follows from Theorem 1 that
the following directed line theorem [18] is valid in it.

Theorem 5. Let a pencil of lines be intersected by a family of parallel lines in the
GAM plane (see Figure 2)
(i) The ratios of directed lengths of the corresponding segments on the lines belonging
to the pencil are the same. For example

dG[SP ] : dG[SQ] : dG[SR] = dG[SP1] : dG[SQ1] : dG[SR1]

= dG[SP2] : dG[SQ2] : dG[SR2]

or

dG[SP1] : dG[SQ1] = dG[P1P2] : dG[Q1Q2].
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(ii) The ratios of directed lengths of line segments on the parallel lines and corre-
sponding segments on the lines belonging to the pencil, which are measured from the
vertex, are the same. For example

dG[RQ] : dG[R1Q1] : dG[R2Q2] = dG[SR] : dG[SR1] : dG[SR2]

= dG[SQ] : dG[SQ1] : dG[SQ2]

or

dg[PQ] : dg[P1Q1] : dg[P2Q2] = dg[SP ] : dg[SP1] : dg[SP2]

= dg[SQ] : dg[SQ1] : dg[SQ2].

(iii) The ratios of directed lengths of the corresponding segments on the parallel
lines are the same. That is

dG[PQ] : dG[QR] = dG[P1Q1] : dG[Q1R1] = dG[P2Q2] : dG[Q2R2].

Notice that here p : q : r = p1 : q1 : r1 if and only if p/p1 = q/q1 = r/r1.
 

Q  R 

S 

P1 Q1 

R1 

R2 Q2 P2 

P 

 
 

Figure 2:
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