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Some new classes of (m, n)-hyperrings
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Abstract. The notion of (m, n)-ary hyperring was introduced by Davvaz at the 10th AHA congress [9], as
the strong distributive structure. In this article we generalize it, by introducing the notion of (m,n)-ary
hyperring with inclusive distributivity. We present construction of (m, n)-ary hyperrings associated with
binary relations on semigroup. We also state the condition under which there exists (m, n)-ary hyperring of
multiendomorphisms for a starting m-ary hypergroup (H, f ). Finaly, we analyze connections between the
obtained classes of (m,n)-ary hyperrings.

1. Introduction

The hyperstructure theory was introduced by F. Marty at the 8th Congress of Scandinavian Mathemati-
cians held in 1934. A semihypergroup (H, ◦) is a nonemty set H equipped with a hyperoperation ◦, that
is a map ◦ : H × H → P∗(H), where P∗(H) denotes the family of all nonempty subsets of H, and for all
(x, y, z) ∈ H3 : x ◦ (y ◦ z) = (x ◦ y) ◦ z. A semihypergroup is called a hypergroup in the sense of Marty [16] if
for every a ∈ H : a ◦H = H ◦ a = H. In the above definitions, if A,B ∈ P∗(H), then A ◦ B is given by:

A ◦ B =
∪

a∈A,b∈B

a ◦ b

x ◦ A is used for {x} ◦ A and A ◦ x for A ◦ {x}.
A comprehensive review of the theory of hyperstrucutres appears in Corsini [4], Corsini and Leoreanu

[7] and Vougiouklis [20]. Since 1934, the hyperstructure theory has had applications to several areas of
both pure and applied mathematics. Abouth 70 years later, a suitable generalization of a hypergroup,
called an n-ary hypergroup was introduced and studied by Davvaz and Vougiouklis in [12]. Davvaz et
al. [11] considered a class of algebraic hypersystems which represent a generalization of semigroups,
hypersemiroups and n-ary semigroups. The properties of this class were investigated in [10] and [11].
The notion of (m,n)-ary hyperring was introduced by Davvaz [9] as a triple (R, f , 1) such that (R, f ) is an
m-ary hypergroup, (R, 1) is an n-ary hypersemigroup and 1 is distributive over f in the sense of equality.
In this article, by an (m,n)-ary hyperring we mean more general structure in the following sense: we let
1 to be distributive over f in the sense of inclusion. A subclass of the (m,n)-hyperrings, called Krasner
(m,n)-hyperrings was studied by Mirvakili and Davvaz in [17]. Anvariyeh, Mirvakili and Davvaz [1],
considered (m,n)-ary hypermodules on (m,n)-ary hyperring.
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If (H,⊕) is a commutative binary hypergroup and F(H) the set of multiendomorphisms of H i.e. F(H) =
{h : H→ P∗(H)|(∀x, y ∈ H) h(x ⊕ y) ⊆ h(x) ⊕ h(y)} then for all pairs f , 1 ∈ F(H) we set:

f ⊕F 1 =
{
h ∈ F(H)

∣∣∣ (∀x ∈ H)h(x) ⊆ f (x) ⊕ 1(x)
}

f ⊙F 1 =
{
h ∈ F(H)|(∀x ∈ H)h(x) ⊆ f

(
1(x
)}
.

It is known that the structure
(
F(H),⊕F,⊙F

)
is a binary hyperring (see Corsini [4], Example 422). In

Section 3 of this aritcle, we determine condition under which we can construct the (m,n)-ary hyperring
of multiendomorphisms of m-ary hypergroup (H, f ). We show that we can associate a hyperring of
multiendomorphisms with hypergroup (H, f ) which is not necessary commutative.

The association between hyperstructures and binary relations had been studied by many authors, for
example see Chvalina [2,3], Rosenberg [18], Corsini [5,6], Corsini and Leoreanu [8], and Spartalis [19].
Connections of n-ary hypergroups with binary relations was studied by Leoreanu and Davvaz in [15].
In Section 4 of this article, we obtain a class of strong distributive (m,n)-ary hyperrings associated with
binary relations on semigroup. We investigate their morphisms and we also, establish connection between
the constructed (m,n)-ary hyperring (H, f , 1) and the hyperring of multiendomorphisms of m-hypergroup
(H, f ).

2. Preliminaries

The notion of (m,n)-ary hyperring was introduced by Davvaz [9]. In this section we generalize it, by
introducing the notion of (m,n)-ary hyperring with inclusive distributivity and we give several examples
of these structures.

We recall the following elementary background from [9].
A mapping f : H× · · · ×H→ P∗(H), where H appears n times and P∗(H) denotes the set of all non-empty

subsets of H, is called an n-ary hyperoperation and n is called the arity of this hyperoperation. If f is an
n-ary hyperoperation defined on H, then (H, f ) is called an n-ary hypergroupoid. We shall use the following
abbreviated notation: the sequence xi, xi+1, . . . , x j will be denoted by x j

i . For j < i, x j
i is the empty symbol.

In this convention f (x1, . . . , xi, yi+1, . . . , y j, z j+1, . . . , zn) may be written as f (xi
1, y

j
i+1, z

n
j+1). Similarly, for

non-empty subsets A1, . . . ,An of H we define:

f (An
1) = f (A1, ...,An) = ∪{ f (xn

1)|xi ∈ Ai, i = 1, ..., n}.

An n-ary hyperoperation f is called associative if:

f (xi−1
1 , f (xn+i−1

i ), x2n−1
n+i ) = f (x j−1

1 , f (xn+ j−1
j ), x2n−1

n+ j )

for every i, j ∈ {1, . . . ,n} and all x1, x2, . . . , x2n−1 ∈ H. An n-ary hypergroupoid with the associative hy-
peroperation is called an n-ary hipersemigroup. An n-ary hypersemigroup (H, f ) in which the equation
b ∈ f (ai−1

1 , xi, an
i+1) has a solution xi ∈ H for every ai−1

1 , a
n
i+1, b ∈ H and 1 ≤ i ≤ n, is called an n-ary hypergroup.

This condition can be formulated by:

f (ai−1
1 ,H, a

n
i+1) = H.

An n-ary hypergroupoid (H, f ) is commutative if for all δ ∈ Sn and for every an
1 ∈ H we have f (a1, ..., an) =

f (aδ(1), . . . , aδ(n)).
We introduce the following definition of (m,n)-ary hyperring.

Definition 2.1. An (m,n)-ary hyperring is an algebraic hyperstructure (R, f , 1) which satisfies the following
axioms:

1. (R, f ) is an m-ary hypergroup.
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2. (R, 1) is an n-ary hypersemigroup.
3. The n-ary hyperoperation 1 is distributive with respect to the m-ary hyperoperation f i.e. for every

ai−1
1 , a

n
i+1, x

m
1 ∈ R, 1 ≤ i ≤ n,

1(ai−1
1 , f (xm

1 ), an
i+1) ⊆ f (1(ai−1

1 , x1, an
i+1), ..., 1(ai−1

1 , xm, an
i+1)).

(R, f , 1) is called an n-ary hyperring if n = m.

The above definition contains the class of (m,n)-ary hyperrings in the sense of Davvaz. According to [9]
an (m,n)-ary hyperring is an algebraic hyperstructure (R, f , 1) which satisfies the conditions (1), (2) and

3” for every ai−1
1 , a

n
i+1, x

m
1 ∈ R, 1 ≤ i ≤ n, 1(ai−1

1 , f (xm
1 ), an

i+1) = f (1(ai−1
1 , x1, an

i+1), ..., 1(ai−1
1 , xm, an

i+1)).

The (m,n)-ary hyperring in the sense of Davvaz will be called strong distributive (m,n)-ary hyperring.

Example 2.2. a) Let (R,+, ·) be a ring and ∅ , P ⊆ R such that RP = R and Pz = zP for all z ∈ R. If we define
an m-ary hyperoperation f and an n-ary hyperoperation 1 as follows:

f (xm
1 ) = x1P + x2P + ... + xmP

1(xn
1) = x1Px2Px3...xn−1Pxn

for any xm
1 ∈ R and xn

1 ∈ R, then it can be verified that (H, f , 1) is an (m,n)-ary hyperring. b) It is easy to see
that if (R,+, ·) is a ring with unity 1 and P = {1} then (H, f , 1) is a strong distributive (m,n)-ary hyperring. In
this case, f (xm

1 ) = x1 + ... + xm and 1(xn
1) = x1 · ... · xn.

Example 2.3. Let (R,+, ·) be a ring and I, J be ideals of a ring R. If we set:

f (x1, x2) = x1 + x2 + I
1(x1, x2) = x1 · x2 + J

for all x1, x2 ∈ R, then (R, f , 1) is (2, 2)-hyperring. If I = J, then obviously (R, f , 1) is a strong distributive
hyperring.

The following definition is a generalization of a suitable definition related to binary hyperrings.

Definition 2.4. Let (R1, f1, 11) and (R2, f2, 12) be (m,n)-ary hyperrings. A map φ : R1 → R2 is called an
inclusion homomorphism if the following conditions are satisfied:

1) φ( f1(am
1 )) ⊆ f2(φ(a1), ..., φ(am)) for all am

1 ∈ R1

2) φ(11(an
1)) ⊆ 12(φ(a1), ..., φ(an)) for all an

1 ∈ R1

A map φ is is called a good (or strong) homomorphism if in the conditions 1) and 2) the equality is valid.
We recall the following notion and result from [14], [15].
Let ρ be a binary relation on a non-empty set H. We define a partial n-ary hypergroupoid (H, fp) as

follows:

(∀a ∈ H), fρ(a, ..., a︸︷︷︸
n times

) = {y|(a, y) ∈ ρ}

and

(∀a1, a2, ..., an ∈ H), fρ(a1, a2, ..., an) = fρ(a1, ..., a1︸  ︷︷  ︸
n times

) ∪ fρ(a2, ..., a2︸  ︷︷  ︸
n times

) ∪ ... ∪ fρ(an, ..., an︸   ︷︷   ︸
n times

).



S. Jančić-Rašović, V. Dašić / Filomat 26:3 (2012), 585–596 588

By a partial n-ary hypergroupoid we mean a non-empty set H, endowed with a function from

H × ... ×H︸       ︷︷       ︸
n times

to the set of subsets of H. Notice that (H, fρ) is an n-ary hypergroupoid if the domain of ρ is H.
An element z ∈ H is called an outer element of ρ if there exists y ∈ H such that (y, z) < ρ2.
It is interesting to see when the above n-ary hypergroupoid (H, fρ) is an n-ary hypergroup.

Theorem 2.5. Let ρ be a binary relation with full domain. The n-ary hypergroupoid (H, fρ) is an n-hypergroup if
and only if the following conditions hold:

1. ρ has a full range;
2. ρ ⊆ ρ2;
3. (x, z) ∈ ρ2 ⇒ (x, z) ∈ ρ for any outer element z of ρ.

3. (m, n)-ary hyperring of multiendomorphisms

In this section we determine condition under which we can construct the (m,n)-ary hyperring of multi-
endomorphisms of m-ary hypergroup (H, f ). We show that we can associate a hyperring of multiendomor-
phisms with hypergroup (H, f ) which is not necessary commutative.

Let (H, f ) be an m-ary hypergroup.
Before proving the next theorem we introduce the following notation:

akm
k1 = (ak1, ak2, ..., akm), amk

1k = (a1k, a2k, ..., amk),

for all 1 ≤ k ≤ m.
If hi, hi+1, ..., hm+i−1, is the sequence of multiendomorphsms of hypergroup (H, f ), and x ∈ H, then we put:

f (hm+i−1
i (x)) = f (hi(x), ..., hm+i−1(x))

for all 1 ≤ i ≤ m.
If h1, ..., hn are multiendomorphisms of hypergroup (H, f ) and x ∈ H, then:

(h1...hn)(x) = (h1 ◦ ... ◦ hn)(x) = h1(h2(...(hn−1(hn(x)))

where we take

hi(K) =
∪
k∈K

hi(k)

for any K ⊆ H and 1 ≤ i ≤ n.

Theorem 3.1. Let (H, f ) be an m-ary hypergroup such that for all a1m
11 , a

2m
21 , ..., a

mm
m1 ∈ H it holds:

f ( f (a1m
11 ), f (a2m

21 ), ..., f (amm
m1 )) = f ( f (am1

11 ), f (am2
21 ), ..., f (amm

m1 )). (1)

Let F(H) be the set of multiendomorphisms of hypergroup (H, f ) i.e.

F(H) = {h : H→ P∗(H)|(∀am
1 ∈ H) h( f (am

1 )) ⊆ f (h(a1), ..., h(am))}.

Define an m-ary hyperoperation ⊕ and an n-ary (n ≥ 2) hyperoperation ⊙ on F(H) as follows: For any hm
1 ∈ F(H) set

⊕(hm
1 ) = {h ∈ F(H)|(∀x ∈ H)h(x) ⊆ f (h1(x), ..., hm(x))}.

For any hn
1 ∈ F(H) set

⊙(hn
1) = {h ∈ F(H)|(∀x ∈ H)h(x) ⊆ (h1h2...hn)(x)}.

The structure (F(H),⊕,⊙) is an (m,n)-ary hyperring.
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Proof. For any hm
1 ∈ F(H) it holds ⊕(hm

1 ) , ∅, i.e. ⊕ is an m-ary hyperoperation. Indeed, let h : H → P∗(H) be
a map defined by:

h(x) = f (h1(x), ..., hm(x)), for all x ∈ H.

Then for every am
1 ∈ H it holds:

h( f (am
1 )) = f (h1( f (am

1 )), ..., hm( f (am
1 ))) ⊆ f ( f (h1(a1), ..., h1(am)), ..., f (hm(a1), ..., hm(am))).

In what follows we shall denote the set hi(a j) by Ai j and the sequence Ai1, ...,Aim by Aim
i1 for all i, j ∈

{1, ...,m}. So,

h( f (am
1 )) ⊆ f ( f (A1m

11 ), ..., f (Amm
m1 )) = f ( f (Am1

11 ), ..., f (Amm
1m ))

= f ( f (h1(a1), ..., hm(a1)), ..., f (h1(am), ..., hm(am))) = f (h(a1), ..., h(am)).

Thus, h ∈ ⊕(hm
1 ).

Now, we prove that m-ary hyperoperation ⊕ is associative. Let, i, j ∈ {1, ...,m} and h2m−1
1 ∈ F(H). Set

L =
⊕(

hi−1
1 ,
⊕

(hm+i−1
i ), h2m−1

m+i

)
=
∪{⊕

(hi−1
1 , h

′
, h2m−1

m+i )
∣∣∣ h′ ∈⊕(hm+i−1

i )
}

=
∪{⊕

(hi−1
1 , h

′
, h2m−1

m+i )
∣∣∣ h′ ∈ F(H) ∧ (∀x ∈ H) h

′
(x) ⊆ f (hm+i−1

i (x))
}
.

Thus, if h′′ ∈ L then for all x ∈ H it holds:

h
′′
(x) ⊆ f (hi−1

1 (x), f (hm+i−1
i (x)), h2m−1

m+i (x)).

Conversely, if h′′ is an element of F(H) such that

h
′′
(x) ⊆ f (hi−1

1 (x), f (hm+i−1
i (x)), h2m−1

m+i (x))

for all x ∈ H, and if we choose h′ such that h′ (x) = f (hm+i−1
i (x)), for all x ∈ H, then h′ ∈ ⊕(hm+i−1

i ) and
h′′ ∈ ⊕(hi−1

1 , h
′
, h2m−1

m+i ) i.e. h′′ ∈ L. So,

L = {h′′ ∈ F(H)|(∀x ∈ H)h
′′
(x) ⊆ f (hi−1

1 (x), f (hm+i−1
i (x)), h2m−1

m+i (x))}.

On the other hand set:

D = ⊕(h j−1
1 ,⊕(hm+ j−1

j ), h2m−1
m+ j ).

Then,

D = {h′′ ∈ F(H)|(∀x ∈ H)h
′′
(x) ⊆ f (h j−1

1 (x), f (hm+ j−1
j (x)), h2m−1

m+ j (x))}.

By the associativity of hiperoperation f , we obtain L = D.
Let i ∈ {1, ...,m} and h, hi−1

1 , h
m
i+1 ∈ F(H). We prove that equation

h ∈ ⊕(hi−1
1 , hi, hm

i+1)

has a solution hi ∈ F(H). If we set hi(x) = H for all x ∈ H, then hi ∈ F(H) and for all x ∈ H it holds:

f (hi−1
1 (x), hi(x), hm

i+1(x)) = H ⊇ h(x).

So, h ∈ ⊕(hi−1
1 , hi, hm

i+1). Thus, (F(H),⊕) is an m-ary hypergroup.
Now we prove that (F(H),⊙) is an n-ary hypersemigroup. Let hn

1 ∈ F(H). For all x ∈ H, hn(x) , ∅. Hence,

(h1h2...hn)(x) , ∅.
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Let h : H → P∗(H) be a map defined by h(x) = (h1...hn)(x). We want to prove that h ∈ ⊙(hn
1) i.e. that ⊙ is

an n-ary hyperoperation. For any am
1 ∈ H it holds:

h( f (am
1 )) = (h1h2...hn)( f (am

1 )) = (h1h2...hn−1)(hn( f (am
1 ))) ⊆ (h1h2...hn−1)( f (hn(a1), ..., hn(am)))

⊆ (h1h2...hn−2)( f (hn−1(hn(a1)), ..., hn−1(hn(am))) ⊆ · · · ⊆
⊆ f [(h1h2...hn)(a1), ..., (h1h2...hn)(am)] = f (h(a1), ..., h(am)).

So, h ∈ ⊙(hn
1).

Let us prove that ⊙ is associative. Let i, j ∈ {1, ..., n} and h2n−1
1 ∈ F(H). Set

L =
⊙(

hi−1
1 ,
⊙

(hn+i−1
i ), h2n−1

n+i

)
and

D =
⊙(

h j−1
1 ,
⊙

(hn+ j−1
j ), h2n−1

n+ j

)
.

Then

L =
∪{⊙(

hi−1
1 , h

′
, h2n−1

n+i

) ∣∣∣ h′ ∈ F(H) ∧ (∀x ∈ H) h
′
(x) ⊆ (hi...hn+i−1(x))

}
.

So, if h′′ ∈ L then h′′(x) ⊆ (h1...h2n−1)(x), for all x ∈ H. On the other hand if h′′ ∈ F(H) and h′′(x) ⊆ (h1...h2n−1)(x)
for all x ∈ H, then we choose h′ ∈ F(H) such that h′(x) = (hi...hn+i−1)(x) and consequently we obtain
h′′ ∈ ⊙(hi−1

1 , h
′
, h2n−1

n+i ) where h′ ∈ ⊙(hn+i−1
i ). Thus, h′′ ∈ L. So,

L =
{
h
′′ ∈ F(H)

∣∣∣ (∀x ∈ H)h
′′
(x) ⊆ (h1...h2n−1)(x)

}
.

Similarly,

D =
{
h
′′ ∈ F(H)

∣∣∣ (∀x ∈ H)h
′′
(x) ⊆ (h1...h2n−1)(x)

}
.

Thus, L = D.
Now we prove that the n-ary hyperoperation⊙ is distributive with respect to the m-ary hyperoperation⊕.

Let hi−1
1 , h

n
i+1, 1

m
1 ∈ F(H), 1 ≤ i ≤ n. Set

L =
⊙(

hi−1
1 ,
⊕

(1m
1 ), hn

i+1

)
=
∪{⊙

(hi−1
1 , h

′
, hn

i+1)
∣∣∣ h′ ∈ ⊕(1m

1 )
}

=
∪{⊙

(hi−1
1 , h

′
, hn

i+1)
∣∣∣ h′ ∈ F(H) ∧ (∀x ∈ H)h

′
(x) ⊆ f (11(x), ..., 1m(x))

}
.

So, if k ∈ L then for all x ∈ H, it holds:

k(x) ⊆ (h1...hi−1)( f ((11hi+1...hn)(x), ..., (1mhi+1...hn)(x)))
⊆ (h1...hi−2)( f ((hi−111hi+1...hn)(x), ..., (hi−11mhi+1...hn)(x)))
⊆ · · · ⊆ f ((h1...hi−111hi+1...hn)(x), ..., (h1...hi−11mhi+1...hn)(x)).

On the other hand,

D =
⊕(⊙

(hi−1
1 , 11, hn

i+1), ...,
⊙

(hi−1
1 , 1m, hn

i+1)
)
=
∪{⊕

(k1, ..., km)
∣∣∣ k j ∈ ⊙(hi−1

1 , 1 j, hn
i+1), j ∈ {1, 2, ...,m}

}
.

Let k ∈ L. Choose k1, ..., km ∈ F(H) such that for all j ∈ {1, 2...,m}

k j(x) = (h1...hi−11 jhi+1...hn)(x), for all x ∈ H.

Then k j ∈ ⊙(hi−1
1 , 1 j, hn

i+1) and k ∈ ⊕(k1, ..., km). Thus, k ∈ D. So, L ⊆ D.
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Remark 3.2. If (H, f ) is an m-ary hypergroup that satisfies condition (1) then for any n ≥ 2, there exsits
(m,n)-ary hyperring (F(H),⊕,⊙). The structure (F(H),⊕,⊙) will be called (m,n)-ary hyperring of multien-
domorphisms of m-ary hypergroup (H, f ).

Remark 3.3. If (H, f ) is a commutative binary hypergroup, then (H, f ) satisfies condition (1) of previous
theorem. Thus, the binary hyperring of multiendomorphisms of commutative binary hypergroup (H, f ) is
a special case of (m,n)-ary hyperring constructed in Theorem 3.1. But, the following example shows that
there also exist noncommutative hypergroups, that satisfy condition (1), implying that we can associate a
hyperring of multiendomorphisms with noncommutative hypergroup.

Example 3.4. If H = {x, y, z} and f is defined by the following table:

f x y z
x H H H
y H H {x, y}
z H {z, x} H

then (H, f ) is a noncommutative binary hypergroup which satisfies condition (1).

4. (m, n)-ary hyperrings associated with binary relations

In this section we construct a class of (m,n)-ary hyperrings associated with binary relations on semigroup.
Then, we investigate their morphisms and we also, establish connection between the constructed (m,n)-ary
hyperring (H, f , 1) and the hyperring of multiendomorphisms of m-hypergroup (H, f ).

Theorem 4.1. Let (H, ·) be a semigroup equipped with binary relations ρ1 and ρ2 such that ρ1 ⊆ ρ2. Let ρi (i = 1, 2)
be a reflexive and transitive relation such that for all a, b, x ∈ H,

(a, b) ∈ ρi implies (a · x, b · x) ∈ ρi and (x · a, x · b) ∈ ρi. (2)

We define an m-ary hyperoperation f and an n-ary hyperoperation 1 on H, as follows:

f (am
1 ) =

{
z
∣∣∣ (a1, z) ∈ ρ1 ∨ (a2, z) ∈ ρ1 ∨ ... ∨ (am, z) ∈ ρ1

}
for any am

1 ∈ H, and 1(an
1) =

{
z
∣∣∣ a1 · a2 · ... · an ρ2 z

}
for any an

1 ∈ H. The structure (H, f , 1) is a strong distributive
(m,n)-ary hyperring.

Proof. Since ρ1 is reflexive and transitive relation, then by Theorem 2.5, (H, f ) is an m-ary hypergroup.
Now we prove that (H, 1) is an n-ary hypersemigroup. Since ρ2 is reflexive, then for any an

1 ∈ H it holds
1(an

1) , ∅ i.e. 1 is an n-ary hyperoperation. Let i, j ∈ {1, ..., n} and a2n−1
1 ∈ H.

Set

L = 1
(
ai−1

1 , 1(a
n+i−1
i ), a2n−1

n+i

)
=
∪{
1(ai−1

1 , z, a
2n−1
n+i )

∣∣∣ z ∈ 1(an+i−1
i )

}
and

D = 1
(
a j−1

1 , 1(a
n+ j−1
j ), a2n−1

n+ j

)
=
∪{
1(a j−1

1 , δ, a
2n−1
n+ j )

∣∣∣ δ ∈ 1(an+ j−1
j )

}
.

Suppose w ∈ L. Then there exists z ∈ 1(an+i−1
i ) such that w ∈ 1(ai−1

1 , z, a
2n−1
n+i ). Thus, (ai · ... · an+i−1, z) ∈ ρ2 and

(a1 · ... · ai−1 · z · an+i · ... · a2n−1,w) ∈ ρ2. By the condition (2) we have

(a1 · ... · ai−1 · ai · ... · an+i−1 · an+i · ... · a2n−1, a1 · ... · ai−1 · z · an+i · ... · a2n−1) ∈ ρ2,
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while (a1 · ... · ai−1 · z · an+i · ... · a2n−1,w) ∈ ρ2. Since ρ2 is transitive, then (a1 · ... · a2n−1,w) ∈ ρ2.
Therefore if we set δ = a j · ... · an+ j−1 then δ ∈ 1(an+ j−1

j ) and w ∈ 1(a j−1
1 , δ, a

2n−1
n+ j ), i.e. w ∈ D. So, L ⊆ D.

Similarly, we obtain D ⊆ L.
Now we prove that n-ary hyperoperation 1 is strong distributive with respect to the m-ary hyperopera-

tion f . Let i ∈ {1, ..., n} and ai−1
1 , a

n
i+1, x

m
1 ∈ H. Set

L = 1
(
ai−1

1 , f (xm
1 ), an

i+1

)
=
∪{
1(ai−1

1 ,w, a
n
i+1)
∣∣∣w ∈ f (xm

1 )
}

and

D = f
(
1(ai−1

1 , x1, an
i+1), ..., 1(ai−1

1 , xm, an
i+1)
)
=
∪{

f (δ1, ..., δm)
∣∣∣ δ1 ∈ 1(ai−1

1 , x1, an
i+1), ..., δm ∈ 1(ai−1

1 , xm, an
i+1)
}
.

If y ∈ L, then there exists w ∈ f (xm
1 ) such that y ∈ 1(ai−1

1 ,w, a
n
i+1). Thus, there exists k ∈ {1, ...,m} such that

(xk,w) ∈ ρ1 ⊆ ρ2 and (a1 · ... · ai−1 · w · ai+1 · ... · an, y) ∈ ρ2. By condition (2) we obtain

(a1 · ... · ai−1 · xk, ·ai+1 · ... · an, a1 · ... · ai−1 · w · ai+1 · ... · an) ∈ ρ2,

while (a1 · ... · ai−1 · w · ai+1 · ... · an, y) ∈ ρ2. Since ρ2 is transitive we obtain y ∈ 1(ai−1
1 , xk, an

i+1).
So, if we choose δ1, ..., δm such that δl ∈ 1(ai−1

1 , xl, an
i+1) for l ∈ {1, 2, ...,m}\{k} and δk = y, then y ∈ f (δ1, ..., δm),

i.e., y ∈ D.
Suppose now y ∈ D. Then there exist δ1 ∈ 1(ai−1

1 , x1, an
i+1), ..., δm ∈ 1(ai−1

1 , xm, an
i+1) such that y ∈ f (δ1, ..., δm).

Hence, there exists k ∈ {1, ...,m} such that (δk, y) ∈ ρ1 ⊆ ρ2 while (a1 · ... · ai−1 · xk · ai+1 · ... · an, δk) ∈ ρ2. Since ρ2
is transitive we obtain (a1 · ... · ai−1 · xk · ai+1 · ... · an, y) ∈ ρ2 i.e. y ∈ 1(ai−1

1 , xk, an
i+1). As xk ∈ f (xm

1 ), we have y ∈ L.
Therefore, D = L.

Throughout the following text the quadruple (H, ·, ρ1, ρ2) will denote a semigroup (H, ·) equipped with
binary relationsρ1 andρ2 such thatρ1 andρ2 satisfy the conditions of Theorem 4.1. By an (m,n)-ary hyperring
associated with (H, ·, ρ1, ρ2) we mean an (m,n)- ary hyperring (H, f , 1) constructed in Theorem 4.1.

Theorem 4.2. Let (H, f , 1) be an (m, n)-ary hyperring associated with (H, ·, ρ1, ρ2) and (F(H),⊕,⊙) be an (m,n)-ary
hyperring of multiendomorphisms of the m-ary hypergroup (H, f ).

If we define a mapping φ : (H, f , 1)→ (F(H),⊕,⊙) by φ(a) = ha, for all a ∈ H, where ha : H → P∗(H) is defined
by:

ha(x) = f ( a, ..., a︸︷︷︸
m−1 times

, x), for all x ∈ H,

then the following holds:

1. φ( f (am
1 )) ⊆

⊕
(φ(a1), ..., φ(am)), for all am

1 ∈ H.
2. If

(a · b,w) ∈ ρ2 ⇒ (a,w) ∈ ρ1 ∨ (b,w) ∈ ρ1 (3)

for any triple of elements a, b,w ∈ H, then

φ(1(an
1)) ⊆

⊙
(φ(a1), ..., φ(an))

for any an
1 ∈ H.

3. If ρ1 is an order, then φ is injective.
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Proof. First notice that for any a1m
11 , a

2m
21 , ..., a

mm
m1 ∈ H, it holds:

f
(

f (a1m
11 ), ..., f (amm

m1 )
)
=
{
z
∣∣∣∃k, l ∈ {1, ...,m}, (akl, z) ∈ ρ1

}
= f
(

f (am1
11 ), ..., f (amm

1m )
)
.

Thus, by Theorem 3.1, there exists an (m,n)-ary hyperring (F(H),⊕,⊙).
Now we verify that ha ∈ F(H), for any a ∈ H. Let am

1 ∈ H. Set

L = ha

(
f (a1, ..., am)

)
=
∪{

ha(x)
∣∣∣ x ∈ f (a1, ..., am)

}
= f
(

a, ..., a︸︷︷︸
m−1

, f (a1, ..., am)
)
.

and

D = f
(
ha(a1), ..., ha(am)

)
=
∪{

f (x1, ..., xm)
∣∣∣ x j ∈ f (a, ..., a︸︷︷︸

m−1

, a j), j = 1, ...,m
}
.

Let z ∈ L. We have the following possibilities:

(i) If (a, z) ∈ ρ1, we put x1 = x2 = ... = xm = a and then z ∈ f (x1, ..., xm) and

x j ∈ f (a, ..., a︸︷︷︸
m−1

, a j),

for all j ∈ {1, ...,m}. So, z ∈ D.
(ii) If there exists u ∈ f (a1, ..., am) such that (u, z) ∈ ρ1, then, there exists i ∈ {1, ...,m} such that (ai, u) ∈ ρ1

and (u, z) ∈ ρ1. By transitivity of ρ1, we have (ai, z) ∈ ρ1.If we put xi = z and x1 = ... = xi−1 = xi+1 = ... =
xm = a, then z ∈ f (x1, ..., xi−1, xi, xi+1, ..., xm) and

x j ∈ f (a, ..., a︸︷︷︸
m−1

, a j) for all j ∈ {1, ...,m}.

So, z ∈ D.

Thus, ha ∈ F(H).
(1) Let am

1 ∈ H. Set:

L = φ
(

f (am
1 )
)
=
{
hw

∣∣∣ (a1,w) ∈ ρ1 ∨ ... ∨ (am,w) ∈ ρ1

}
and

D =
⊕(

φ(a1), ..., φ(am)
)
=
{
h ∈ F(H)

∣∣∣ (∀x ∈ H) h(x) ⊆ f
(
ha1 (x), ..., ham (x)

)}
.

Let hw ∈ L and x ∈ H. Then

hw(x) = f (w, ...,w︸  ︷︷  ︸
m−1

, x) =
{

z
∣∣∣ (w, z) ∈ ρ1 ∨ (x, z) ∈ ρ1

}
.

Suppose z ∈ hw(x). We have two possibilities:

(i) If (w, z) ∈ ρ1, since hw ∈ L, then there exists j ∈ {1, ...,m} such that (a j,w) ∈ ρ1, and by the transitivity of
ρ1 we have (a j, z) ∈ ρ1, i.e., z ∈ f (a j, ..., a j, x) = ha j (x).
Since ha j (x) ⊆ f (ha1 (x), ..., ham (x)), then z ∈ f

(
ha1 (x), ..., ham (x)

)
.

(ii) If (x, z) ∈ ρ1, then z ∈ f (x, ..., x). Since x ∈ ha1 (x), ..., x ∈ ham (x), then z ∈ f
(
ha1 (x), ..., ham (x)

)
.
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So, hw(x) ⊆ f
(
ha1 (x), ..., ham (x)

)
, for all x ∈ H i.e. hw ∈ D. Thus L ⊆ D.

(2) Let an
1 ∈ H. First, notice that for any x ∈ H and i ∈ {1, ..., n} it holds hai (x) ⊆ (ha1 ...hai )(x) and

hai (x) ⊆ (hai ...han )(x).
Indeed, since y ∈ ha j (y) for all y ∈ H and 1 ≤ j ≤ n, then hai (x) ⊆ hai−1

(
hai (x)

)
and hai−1

(
hai (x)

)
⊆

hai−2

(
hai−1

(
hai (x)

))
.

Thus, hai (x) ⊆ (hai−2 hai−1 hai )(x). So, after finite number of steps we obtain:

hai (x) ⊆ (ha1 ...hai )(x). (4)

For the second inclusion we proceed in a similar way.
As x ∈ han (x) then han−1 (x) ⊆ han−1

(
han (x)

)
. Thus, x ∈ (han−1 han )(x) implying that han−2 (x) ⊆ (han−2 han−1 han )(x).

After finite number of steps we obtain

hai (x) ⊆ (hai ...han )(x). (5)

From (4) and (5) it follows hai (x) ⊆ ha1

(
...
(
hai (x)

))
⊆ (ha1 ...han )(x).

Now, set

L = φ
(
1(an

1)
)
=
{

hb

∣∣∣ (a1 · ... · an, b) ∈ ρ2

}
and

D =
⊙(

φ(a1), ..., φ(an)
)
=
{

h ∈ F(H)
∣∣∣ (∀x ∈ H) h(x) ⊆ (ha1 ...han )(x)

}
.

Let hb ∈ L and x ∈ H. Then

hb(x) = f (b, ..., b︸︷︷︸
m−1

, x) =
{

z
∣∣∣ (b, z) ∈ ρ1 ∨ (x, z) ∈ ρ1

}
.

If z ∈ hb(x) we have the following possibilities:

(i) If (b, z) ∈ ρ1, since hb ∈ L, then (a1 ·...·an, b) ∈ ρ2. Asρ1 ⊆ ρ2, by transitivity ofρ2 we have (a1 ·...·an, z) ∈ ρ2.
By the condition (3), there exists i ∈ {1, ..., n} such that (ai, z) ∈ ρ1 i.e. z ∈ hai (x) ⊆ (ha1 ...han )(x).

(ii) If (x, z) ∈ ρ1, then z ∈ ha1 (x) ⊆ (ha1 ...han )(x).

Thus, hb(x) ⊆ (ha1 ...han )(x), for all x ∈ H i.e. hb ∈ D.

(3) Let ρ1 be an order on H. Suppose a, b ∈ H and φ(a) = φ(b) i.e. ha = hb.
Then, ha(a) = hb(a) and ha(b) = hb(b). Thus,

f (a, ..., a︸︷︷︸
m

) = f (b, ..., b︸︷︷︸
m−1

, a) and f (a, ..., a︸︷︷︸
m−1

, b) = f ( b, ...b︸︷︷︸
m

).

Since,

f (a, ..., a︸︷︷︸
m−1

, b) = f (b, ..., b︸︷︷︸
m−1

, a),

then f (a, ..., a) = f (b, ..., b).
From a ∈ f (a, ..., a) it follows a ∈ f (b, ..., b), i.e., (b, a) ∈ ρ1. Similarly, it is proved (a, b) ∈ ρ1. As ρ1 is an

order, we obtain a = b.
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Example 4.3. Notice that (N, ·,≤,≤) satisfies the conditions of Theorem 4.1. Thus, there exists an (m,n)-ary
hyperring (N, f , 1) associated with (N, ·,≤,≤).

For all km
1 ∈ N and kn

1 ∈ N we have

f (km
1 ) =

{
k ∈ N

∣∣∣ min{k1, ..., km} ≤ k
}

and 1(kn
1) =

{
k ∈ N

∣∣∣ k1 · ... · kn ≤ k
}
.

It is easy to see that (N, ·,≤,≤) satisfies the conditions of Theorem 4.2. So, there exists an inclusion mono-
morphism of (N, f , 1) into the (F(N),⊕,⊙).

Definition 4.4. Let the triples (H1, ρ1, ρ2) and (H2, δ1, δ2) denote the nonempty set H1 equipped with binary
relations ρ1, ρ2 and nonempty set H2 with binary relations δ1, δ2.

(a) The map α : H1 → H2 is said to be isotone if

xρi y ⇒ α(x) δi α(y),

for all x, y ∈ H1 and i ∈ {1, 2}.
(b) The map α : H1 → H2 is said to be strongly isotone if

α(x) δi y ⇔ (∃x′ ∈ H1) xρi x′ ∧ α(x′) = y,

for all (x, y) ∈ H1 ×H2 and i ∈ {1, 2}.

Theorem 4.5. Let (H1, f1, 11) be an (m,n)-ary hyperring associated with (H1, ·, ρ1, ρ2) and (H2, f2, 12) be an (m,n)-
ary hyperring associated with (H2, ·, δ1, δ2).

(1) If α : (H1, ·) → (H2, ·) is an isotone homomorphism of semigroups (H1, ·) and (H2, ·) then α : (H1, f1, 11) →
(H2, f2, 12) is an inclusion homomorphism.

(2) If α : (H1, ·)→ (H2, ·) is a strongly isotone homomorphism, then α : (H1, f1, 11)→ (H2, f2, 12) is a strong homo-
morphism.

Proof. (1) Let α : (H1, ·) → (H2, ·) be an isotone homomorphism and xm
1 ∈ H. If w ∈ α( f1(xm

1 )), then there
exists z ∈ H1 such that w = α(z) and (xi, z) ∈ ρ1 for some i ∈ {1, ...,m}.

Since, α is isotone then (α(xi), α(z) = w) ∈ δ1 and so w ∈ f2(α(x1), ..., α(xm)). Thus α( f1(xm
1 )) ⊆

f2(α(x1), ..., α(xm)).
Now, let yn

1 ∈ H. To prove that α
(
11(yn

1)
)
⊆ 12

(
α(y1), ..., α(yn)

)
we can proceed similarly as in the proof of

Theorem 3.2. (ii) in [19].
Therefore, α : (H1, f1, 11)→ (H2, f2, 12) ia an inclusion homomorphism.
(2) Let α : (H1, ·)→ (H2, ·) be a stronly isotone homomorphism. Since α is isotone, then by (1) we obtain

that α : (H1, f1, 11)→ (H2, f2, 12) is an inclusion homomorphism.
Thus, for any xm

1 ∈ H1, it holds α
(

f1(xm
1 )
)
⊆ f2
(
α(x1), ..., α(xm)

)
.

Suppose w ∈ f2(α(x1), ..., α(xm)). Then (α(xi),w) ∈ δ1 for some i ∈ {1, ...,m}. Since α is strongly isotone, then
there exists z ∈ H1 such that (xi, z) ∈ ρ1 and α(z) = w. Thus, w = α(z) ∈ α( f1(xm

1 )). Therefore,

f2
(
α(x1), ..., α(xm)

)
⊆ α
(

f1(xm
1 )
)
.

Thus, α( f1(xm
1 )) = f2(α(x1), ..., α(xm)).

Now, let yn
1 ∈ H1. In similar way as in the proof of Theorem 3.3. (i) in [19], we prove that

α(11(yn
1)) = 12(α(y1), ..., α(yn)).

This completes the proof.
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