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Abstract. In this paper, we construct a new iterative method for computing the Drazin inverse and deduce
the necessary and sufficient condition for its convergence to Ad. Moreover, we present the error bounds of
the iterative methods for approximating Ad.

1. Introduction

The Drazin inverse has been applied to various fields, for instance, finite Markov chains, singular
differential and difference equations, multibody system dynamics and so on (see, [1, 7, 9, 14] and references
therein). It is well known that iteration algorithms are undoubtedly adopted to solve large sparse linear
systems. So the iterative methods for computing the Drazin inverse have been widely researched (see, for
example, [2, 4–6, 11–13, 15, 16]).

The paper is organized as follows: In the remainder of this section, we will introduce some notions and
lemmas. In Section 2, we will construct a new iterative method for computing the Drazin inverse, present
two iterations, and give the necessary and sufficient conditions for their convergence to the Drazin inverse
and the error bounds. In Section 3, we will compare our iteration with (2). In Section 4, we will give an
example for computing the Drazin inverse by exploiting our iterative method.

Throughout this paper, the symbol Cn×n denotes the set of all n × n complex matrices, the symbol Cn

denotes the n-dimensinal complex vector space, and the symbol L ⊂ Cn denotes that L is a subspace of
Cn. Let L,M ⊂ Cn with L ⊕M = Cn. Then the symbol PL,M stands for the projector on L along M, i.e.,
PL,Mx = x, x ∈ L and PL,My = 0, y ∈M.

For A ∈ Cn×n, the symbols R(A), N(A), rank(A), σ(A), ρ(A) and ∥A∥ denote its range, null space, rank,
spectrum, spectral radius and norm, respectively. And recall that the index of A, denoted by Ind(A), is the
smallest nonnegative integer k such that rank(Ak) = rank(Ak+1), and that a matrix X ∈ Cn×n is called the
Drazin inverse of A, denoted by Ad, if the following hold:

Ak+1X = Ak, XAX = X, AX = XA,
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where k = Ind(A) (see [1, 3, 10]).
In this section we denote any nonzero eigenvalue of A by λi(A). Let A ∈ Cn×n, and Ind(A) = k ≥ 1. Write

T = R(Ak), S = N(Ak).
Recently, in [2], in light of the Neumann-type expansions, Chen constructed the two iterations (1) and

(2) for computing Ad:

Xk = Xk−1(I − αAY) + X0, X0 = αY, (1)

X̃k = X̃k−1

p−1∑
i=0

(I − AX̃k−1)i, X0 = αY, (2)

where Y satisfies R(Y) = T andN(Y) = S and λi(AY) > 0. Take e > 0 such that q = ρ(PT − αYA) + e < 1. It is
known that there is a Q−norm ∥ ∥Q satisfying ∥PT − αYA∥Q ≤ q < 1. And the error bounds for Xk and X̃k,
respectively, are

∥Ad − Xk∥Q ≤ αqk+1(1 − q)−1∥Y∥Q, (3)

∥Ad − X̃k∥Q ≤ αqpk
(1 − q)−1∥Y∥Q. (4)

Obviously, the error bound of the iteration (2) is very small, but it requires to compute a large amount of
matrix multiplications at each step. In practice, the iterative process (2) is very expensive. It motivates us
to construct a new iteration whose quantity of matrix multiplications at each step is less than that of (2) and
whose error bound is between (3) and (4). In addition, the restriction of the initial value is relaxed.

Lemma 1.1. ([10]) Let A ∈ Cn×n . Then k = Ind(A) if and only if R(Ak) and N(Ak) are complementary subspaces,
i.e. R(Ak) ⊕N(Ak) = Cn.

Lemma 1.2. ([10]) Let A ∈ Cn×n with k = Ind(A). Then, for any nonnegative integer l ≥ k,

R(Al) = R(Ak) = R(Ad), N(Al) = N(Ak) = N(Ad),
AAd = AdA = PR(Al),N(Al), I − AAd = I − AdA = PN(Al),R(Al).

By the lemmas above, we can easily obtain the following results.

Lemma 1.3. Let A ∈ Cn×n with k = Ind(A), and let nonnegative integer l ≥ k. Then
(i) PR(Al),N(Al)X = X if and only if R(X) ⊂ R(Al).
(ii) XPR(Al),N(Al) = X if and only ifN(X) ⊃ N(Al).

2. Computational methods

In this section, we discuss the iterative methods for computing the Drazin inverse Ad and deduce the
necessary and sufficient conditions for their convergence to Ad.

Theorem 2.1. Let A ∈ Cn×n with Ind(A) = k, and let p, l be positive integers with l ≥ k. Suppose Y ∈ Cn×n with
R(Y) ⊂ R(Al) and N(Y) ⊃ N(Al). For any initial approximation X0 ∈ Cn×n satisfying N(X0) ⊃ N(Al), define the
sequence {Xk} in the following way:

Xk = αY
p−1∑
i=0

(I − αAY)i + Xk−1(I − αAY)p, k = 1, 2, . . . , (5)

where α is a nonzero real parameter. Then the iteration (5) converges to Ad if and only if ρ(PR(Al),N(Al) − αAY) < 1.
In this case, when q = ∥PR(Al),N(Al) − αAY∥ < 1, we have

∥Xk − Xk−1∥ ≤
|α|∥Y∥ + ∥X0∥(1 − q)

1 − q
(1 + qp)q(k−1)p, (6)

∥Ad − Xk∥ ≤
|α|∥Y∥ + ∥X0∥(1 − q)

1 − q
qkp. (7)
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Proof. Write P = PR(Al),N(Al). So, by Lemma 1.2, P = AAd. First, we will prove the following equation by
induction on p:

Ad(I − αAY)p = Ad − αY
p−1∑
i=0

(I − αAY)i, p ≥ 1. (8)

When p = 1, the equation obviously holds. Suppose that (8) is true for p = k, namely,

Ad(I − αAY)k = Ad − αY
k−1∑
i=0

(I − αAY)i. (9)

Consider the case p = k + 1. By (9) and R(Y) ⊂ R(Al),

Ad(I − αAY)k+1 = [Ad − αY
k−1∑
i=0

(I − αAY)i](I − αAY)

= Ad(I − αAY) − αY
k∑

i=1

(I − αAY)i

= Ad − αY
k∑

i=0

(I − αAY)i.

Thus (8) holds.
Now we will investigate Ad − Xk. By (5) and (8),

Ad − Xk = (Ad − Xk−1)(I − αAY)p = (Ad − Xk−2)(I − αAY)2p = · · · = (Ad − X0)(I − αAY)kp. (10)

FromN(Y) ⊃ N(Al) and R(Y) ⊂ R(Al), it follows that AAdY = Y = YAAd. Thus

P(P − αAY) = P(I − αAY) = P − αAY = (I − αAY)P = (P − αAY)P. (11)

SinceN(Al) ⊂ N(X0), X0 = PX0 and then, by Lemma 1.2, (10) and (11), we have

Ad − Xk = (Ad − X0)P(I − αAY)kp = (Ad − X0)Pkp(I − αAY)kp = (Ad − X0)(P − αAY)kp. (12)

If ρ(P − αAY) < 1, then from (12) we have obviously Xk → Ad as k → ∞ for any X0 satisfying
N(X0) ⊃ N(Al).

Conversely, suppose that Xk → Ad for any X0 satisfyingN(X0) ⊃ N(Al). Take X0 = (A− I)Ad. Obviously,
N(X0) ⊃ N(Ad) = N(Al). From (11) and (12),

(P − αAY)kp = AAd(P − αAY)kp = Ad − Xk → 0,

and then ρ(P − αAY) < 1.
Finally, we will show (6) and (7). Since X0P = X0, by (5) and (11),

XkP = Xk,

by induction on k.
Since ρ(P − αAY) ≤ q < 1, I − (P − αAY) and I − (P − αAY)p are invertible. So

X1 − X0 = αY
p−1∑
i=0

(I − αAY)i + X0(I − αAY)p − X0

= αY
p−1∑
i=0

(P − αAY)i + X0(P − αAY)p − X0

=
[
αY[I − (P − αAY)]−1 − X0

]
[I − (P − αAY)p].
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Then, by (5),

Xk − Xk−1 = (Xk−1 − Xk−2)(P − αAY)p

= (X1 − X0)(P − αAY)(k−1)p

=
[
αY[I − (P − αAY)]−1 − X0

]
[I − (P − αAY)p](P − αAY)(k−1)p.

Hence,

∥Xk − Xk−1∥ ≤ ∥αY(I − (P − αAY))−1 − X0∥ ∥I − (P − αAY)p∥ ∥(P − αAY)(k−1)p∥

≤ |α|∥Y∥ + ∥X0∥(1 − q)
1 − q

(1 + qp)q(k−1)p.

Since I − (P − αAY)p is invertible, by (8),

Ad[I − (P − αAY)p] = αY[I − (P − αAY)]−1[I − (P − αAY)p],

and then Ad = αY[I − (P − αAY)]−1.
By (12) and the equation above,

Ad − Xk =
[
αY[I − (P − αAY)]−1 − X0

]
(P − αAY)kp.

Hence

∥Ad − Xk∥ ≤ ∥αY(I − (P − αAY))−1 − X0∥ ∥(P − αAY)kp∥
= ∥αY(I − (P − αAY))−1 − X0∥qkp

≤ |α|∥Y∥ + ∥X0∥(1 − q)
1 − q

qkp.

From the proof of Theorem 2.1, we have the following result.

Corollary 2.2. Let A ∈ Cn×n with Ind(A) = k. Suppose that Y ∈ Cn×n with R(Y) ⊂ R(Al) and N(Y) ⊃ N(Al),
where positive integer l ≥ k, and that α is a nonzero real number. If ρ(PR(Al),N(Al) − αAY) < 1, then

Ad = αY[I − (PR(Al),N(Al) − αAY)]−1 = αY(PN(Al),R(Al) + αAY)−1.

In Theorem 2.1, taking p = 1, we have the following result.

Corollary 2.3. Let A ∈ Cn×n with Ind(A) = k, and let Y ∈ Cn×n with R(Y) ⊂ R(Al) and N(Y) ⊃ N(Al), where
positive integer l ≥ k. For any initial approximation Z0 ∈ Cn×n satisfying N(Z0) ⊃ N(Al), define the sequence {Zk}
in the following way:

Zk = αY + Zk−1(I − αAY), k = 1, 2, . . . , (13)

where α is a nonzero real parameter. Then the iteration (13) converges to Ad if and only if ρ(PR(Al),N(Al) − αAY) < 1.
In this case, when q = ∥PR(Al),N(Al) − αAY∥ < 1, we have

∥Zk − Zk−1∥ ≤
|α|∥Y∥ + ∥Z0∥(1 − q)

1 − q
(1 + q)qk−1,

∥Ad − Zk∥ ≤
|α|∥Y∥ + ∥Z0∥(1 − q)

1 − q
qk. (14)

Proof. (Remark 2.1.) (i) By (12), we can get Ad − Zk = [Ad − Z0](I − αAY)k. If taking X0 = Z0 in Theorem 2.1
and Corollary 2.3, we easily obtain that Xk = Zkp. So {Xk} in Theorem 2.1 is regarded as a subsequence of
{Zk} in Corollary 2.3. Therefore, the iteration (5) converges faster than the iteration (13) when p > 1.

(ii) Obviously, the iteration (3.2.7a2) in [2] is a special case of (13).
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When Y = Ak in Theorem 2.1, we have the following result.

Corollary 2.4. Let A ∈ Cn×n with Ind(A) = k, and let p, l be positive integers with l ≥ k. For any initial
approximation X0 ∈ Cn×n satisfyingN(X0) ⊃ N(Al), define the sequence {Xk} in the following way:

Xk = αAl
p−1∑
i=0

(I − αAl+1)i + Xk−1(I − αAl+1)p, k = 1, 2, . . . , (15)

where α is a nonzero real parameter. Then the iteration (15) converges to Ad if and only if ρ(PR(Al),N(Al) −αAl+1) < 1.

Dually, we can give the following iterative method for computing the Drazin inverse Ad, whose proof
is analogous to that of Theorem 2.1, and then omit it.

Theorem 2.5. Let A ∈ Cn×n with Ind(A) = k, and let p, l be positive integers with l ≥ k. Suppose Y ∈ Cn×n with
R(Y) ⊂ R(Al) and N(Y) ⊃ N(Al). For any initial approximation X0 ∈ Cn×n satisfying R(X0) ⊂ R(Al), define the
sequence {Xk} in the following way:

Xk = α

p−1∑
i=0

(I − αYA)iY + (I − αYA)pXk−1, k = 1, 2, . . . , (16)

where α is a nonzero real parameter. Then the iteration (16) converges to Ad if and only if ρ(PR(Al),N(Al) − αYA) < 1.
In this case, when q = ∥PR(Al),N(Al) − αYA∥ < 1, we have

∥Xk − Xk−1∥ ≤
|α|∥Y∥ + ∥X0∥(1 − q)

1 − q
(1 + qp)q(k−1)p,

∥Ad − Xk∥ ≤
|α|∥Y∥ + ∥X0∥(1 − q)

1 − q
qkp.

Similarly, we can obtain the corollaries below.

Corollary 2.6. Let A ∈ Cn×n with Ind(A) = k, and let Y ∈ Cn×n with R(Y) ⊂ R(Al) and N(Y) ⊃ N(Al), where
positive integer l ≥ k. For any initial approximation X0 ∈ Cn×n satisfying R(X0) ⊂ R(Al), define the sequence {Xk}
in the following way:

Xk = αY + (I − αYA)Xk−1, k = 1, 2, . . . , (17)

where α is a nonzero real parameter. Then the iteration (17) converges to Ad if and only if ρ(PR(Al),N(Al) − αYA) < 1.
In this case, when q = ∥PR(Al),N(Al) − αYA∥ < 1, we have

∥Xk − Xk−1∥ ≤
|α|∥Y∥ + ∥X0∥(1 − q)

1 − q
(1 + q)qk−1,

∥Ad − Xk∥ ≤
|α|∥Y∥ + ∥X0∥(1 − q)

1 − q
qk.

Proof. (Remark 2.2) When Y = Ak, from the iteration (17), we can obtain the iteration (11) in [12].

Corollary 2.7. Let A ∈ Cn×n with Ind(A) = k, and let p, l be positive integers with l ≥ k. For any initial
approximation X0 ∈ Cn×n satisfying R(X0) ⊂ R(Al), define the sequence {Xk} in the following way:

Xk = α

p−1∑
i=0

(I − αAl+1)iAl + (I − αAl+1)pXk−1, k = 1, 2, . . . , (18)

where α is a nonzero real parameter. Then the iteration (18) converges to Ad if and only if ρ(PR(Al),N(Al) −αAl+1) < 1.
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In the remainder of this section, we will consider how to choose the scalar α in the iteration (5).
As we know, the Drazin inverse has a classical representation [1, Theorem 7.2.1]: If A ∈ Cn×n and

Ind(A) = k, then there exists a nonsingular matrix W such that A = W
(

C 0
0 N

)
W−1, where C is an r × r

nonsingular matrix and N is nilpotent of index k, and so Ad =W
(

C−1 0
0 0

)
W−1, AAd =W

(
Ir 0
0 0

)
W−1.

Now partition W−1YW in conformity with W−1AADW as follows W−1YW =
(

Y11 Y12
Y21 Y22

)
. From AAdY =

Y = YAAd, it follows that Y12 = 0,Y21 = 0 and Y22 = 0. Then

PR(Al),N(Al) − αAY =W
(

Ir − αCY11 0
0 0

)
W−1,

where α is a nonzero real parameter. Thus σ(PR(Al),N(Al) − αAY) = σ(Ir − αCY11) ∪ {0}. Since

AY =W
(

CY11 0
0 0

)
W−1,

ρ(AY) = ρ(CY11) and then ρ(PR(Al),N(Al) − αAY) = ρ(Ir − αCY11) = |1 − αλ0|, where λ0 ∈ σ(AY). Write λ0 =

|λ0|(cosφ+ i sinφ), where φ = arg(λ0). Then ρ(P−αAY) = (|αλ0|2 + 1− 2α|λ0| cosφ)1/2. Thus ρ(P−αAY) < 1
if and only if |αλ0|2 < 2α|λ0| cosφ, namely, the sign of α is the same as that of Re(λ0). Therefore, when

0 < α <
2 cosφ
ρ(AY)

or 0 > α >
2 cosφ
ρ(AY)

, (19)

ρ(P − αAY) < 1.
If σ(AY) is a subset of R, then it follows from ρ(P − αAY) < 1 that each elements in σ(AY) \ {0} has the

same sign. Indeed, let λmin = min{λ : λ ∈ σ(AY)}\{0} and λmax = max{λ : λ ∈ σ(AY)}\{0}. If λmin < 0 and
λmax > 0, then max{1 − αλmin, 1 − αλmax} > 1, which contradicts the condition ρ(P − αAY) < 1.

So, by [8, Example 4.1], the best value αopt for the parameter α is

αopt =
2

λmin + λmax
. (20)

In the iterations (16), since ρ(AY) = ρ(YA), we likewise take scalar α satisfying (19) (or (20)).

3. Example

Here is an example for computing Ad by exploiting the iteration (5), where the symbol ∥ · ∥ denotes the
Frobenius norm.
Example 3.1. Consider the matrix

A =



2.0000 −1.6000 5.6000 −5.6000 0 5.6000
0 1.0000 6.0000 −6.0000 0 6.0000
0 0 4.0000 −4.0000 0.1000 3.9000
0 0 0 0 0.1000 −0.1000
0 0 0 0 0 0.1000
0 0 0 0 0 0


.

with Ind(A) = 3. Let

Y =



0.975 2.0000 2.0000 −2.0000 0 2.0000
0 2.0500 2.0000 −2.0000 0 2.0000
0 0 0.5000 −0.5000 0 0.5000
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


.
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Then

AY =



1.9500 0.7200 3.6000 −3.6000 0 3.6000
0 2.0500 5.0000 −5.0000 0 5.0000
0 0 2.0000 −2.0000 0 2.0000
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


,

Ad =



0.5000 0.8000 −1.9000 1.9000 0 −1.9000
0 1.0000 −1.5000 1.5000 0 −1.5000
0 0 0.2500 −0.2500 0 0.2500
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


.

Apparently, R(Y) ⊂ R(Al),N(Y) ⊃ N(Al).
If

X0 =



1.0000 2.0000 2.0000 −2.0000 0 2.0000
0 1.0000 2.0000 −2.0000 0 2.0000
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


,

then N(Al) ⊂ N(X0) clearly hold. In order to satisfy ρ(P − αAY) < 1, take α satisfying 0 < α < 2/ρ(AY).
Hence, those conditions in Theorem 2.1 are satisfied. Using iteration format (5) to Example 3.1, we have
the following four tables.

Table 3.1: Results for Example 3.1 using the iteration (5) for p = 1, 2
p = 1 p = 2

α Step ∥Ad − Xk∥ ∥Xk − Xk−1∥ ∥Ad − Xk∥ ∥Xk − Xk−1∥
0.4 k = 13 6.2504e-007 1.8749e-006 3.7521e-015 6.6921e-014

k = 14 1.5329e-007 4.7175e-007 5.6814e-016 3.4613e-015
k = 15 3.7017e-008 1.1627e-007 5.2296e-016 3.8459e-016
k = 16 8.8276e-009 2.8190e-008 5.2296e-016 0
k = 27 1.0053e-015 3.0767e-015 5.2296e-016 0
k = 28 4.7103e-016 7.6919e-016 5.2296e-016 0
k = 29 4.7103e-016 0 5.2296e-016 0

0.5 k = 6 3.3998e-007 2.9798e-006 3.8459e-016 1.3268e-013
k = 7 1.6500e-009 3.4163e-007 3.8459e-016 0
k = 12 3.8459e-016 7.6919e-016 3.8459e-016 0
k = 13 3.8459e-016 0 3.8459e-016 0

0.6 k = 14 7.4623e-007 3.8571e-006 1.7631e-015 2.0000e-014
k = 15 1.7788e-007 9.2411e-007 1.0660e-015 1.5384e-015
k = 16 4.2178e-008 2.2005e-007 1.0660e-015 0
k = 28 1.7200e-015 4.6151e-015 1.0660e-015 0
k = 29 1.4729e-015 7.6919e-016 1.0660e-015 0
k = 30 1.4729e-015 0 1.0660e-015 0
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Table 3.2: Results for Example 3.1 using the iteration (5) for p = 3, 4
p = 3 p = 4

α Step ∥Ad − Xk∥ ∥Xk − Xk−1∥ ∥Ad − Xk∥ ∥Xk − Xk−1∥
0.4 k = 6 4.8738e-010 3.6530e-008 7.0643e-014 2.6047e-011

k = 7 5.9943e-012 4.8139e-010 6.0809e-016 7.0384e-014
k = 8 7.0899e-014 5.9234e-012 6.0809e-016 0
k = 9 1.0175e-015 6.9998e-014 6.0809e-016 0
k = 10 4.9651e-016 7.6919e-016 6.0809e-016 0
k = 11 4.9651e-016 0 6.0809e-016 0

0.5 k = 4 3.8459e-016 1.0312e-012 3.8459e-016 3.8459e-016
k = 5 3.8459e-016 0 3.8459e-016 0

0.6 k = 7 2.9949e-011 2.3717e-009 1.8578e-015 3.7498e-013
k = 8 3.7627e-013 3.0325e-011 1.2363e-015 1.1538e-015
k = 9 4.9101e-015 3.8101e-013 1.2363e-015 0
k = 10 1.2755e-015 4.6151e-015 1.2363e-015 0
k = 11 1.2755e-015 0 1.2363e-015 0

Table 3.3: Results for Example 3.1 using the iteration (5) for p = 5, 6
p = 5 p = 6

α Step ∥Ad − Xk∥ ∥Xk − Xk−1∥ ∥Ad − Xk∥ ∥Xk − Xk−1∥
0.4 k = 3 3.7017e-008 3.6804e-005 4.8738e-010 2.4995e-006

k = 4 2.6117e-011 3.6991e-008 7.0901e-014 4.8731e-010
k = 5 1.6157e-014 2.6101e-011 5.0877e-016 7.0768e-014
k = 6 3.3307e-016 1.6153e-014 5.0877e-016 0
k = 7 3.3307e-016 0 5.0877e-016 0

0.5 k = 2 1.3230e-013 2.6400e-006 4.0030e-016 3.3998e-007
k = 3 3.8459e-016 1.3268e-013 4.0030e-016 0
k = 4 3.8459e-016 0 4.0030e-016 0

0.6 k = 4 1.2838e-010 1.7801e-007 3.7627e-013 2.3414e-009
k = 5 8.7188e-014 1.2847e-010 1.4771e-015 3.7614e-013
k = 6 1.4771e-015 8.7304e-014 1.4771e-015 0
k = 7 1.4771e-015 0 1.4771e-015 0

Table 3.4: Results for Example 3.1 using the iteration (5) for p = 7, 10
p = 7 p = 10

α Step ∥Ad − Xk∥ ∥Xk − Xk−1∥ ∥Ad − Xk∥ ∥Xk − Xk−1∥
0.4 k = 2 1.5329e-007 0.0014 2.6118e-011 3.6841e-005

k = 3 5.9940e-012 1.5328e-007 5.6610e-016 2.6117e-011
k = 4 5.6610e-016 5.9938e-012 5.6610e-016 0
k = 5 5.6610e-016 0 5.6610e-016 0

0.5 k = 2 3.8459e-016 1.6500e-009 3.8459e-016 1.3268e-013
k = 3 3.8459e-016 0 3.8459e-016 0

0.6 k = 2 7.4623e-007 0.0129 1.2838e-010 2.1383e-004
k = 3 2.9949e-011 7.4626e-007 1.3911e-015 1.2838e-010
k = 4 1.8584e-015 2.9950e-011 1.3911e-015 0
k = 5 1.2372e-015 1.1538e-015 1.3911e-015 0
k = 6 1.2372e-015 0 1.3911e-015 0

From the above four tables, we can see that the larger is p, the better is results of iteration, since Xk = Skp
is an increasing function of p.

The above tables illustrate that α = 0.5 is the best value for which the iteration (5) fastest converges to
Ad. The reason is that α is calculated by using (20). Thus, for an appropriate α, the iteration is better.
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In practice, we generally consider the quantity ||Xk − Xk−1|| in order to abort iteration since there exist
such cases as α = 0.5. For example, for ||Xk − Xk−1|| < µXk, where µ is the machine precision, the iteration
for α = 0.5 and p = 5 only needs 4 steps, and the iteration for α = 0.5 and p = 6 only needs 3 steps (see Table
3.3).

Comparing (7) with (14), it is not difficult to see that in order to obtain the same error, if the iteration (13)
in Corollary 2.3 requires N steps, then the iteration (5) in Theorem 2.1 requires ⌈N/p⌉ steps, where p > 1 and
the symbol ⌈β⌉ stands for a largest integer less than β+1. To this end, the iteration (5) requires to operate
⌈N/p⌉ + p + 1 matrix multiplications in all.

Hence, when p = ⌈
√

N⌉ or p = ⌈
√

N⌉ − 1, the value of ⌈N/p⌉+ p+ 1 reaches the minimum. The following
tables illustrate that an appropriate p lessens the number of iterative steps and matrix multiplications in
iteration processes.

Table 3.5: α = 0.4, εk ≤ 6.09e-016
p 1 2 3 4 5 6 7 10
k N=28 14 10 7 6 5 4 3
η 29 17 14 12 12 12 12 14

Table 3.6: α = 0.6, εk ≤ 1.48e-015
p 1 2 3 4 5 6 7 10
k N=29 15 10 8 6 5 5 3
η 30 18 14 13 12 12 13 14

where η is the number of required matrix multiplication and εk = ||Ad − Xk||.

4. Comparison

In this section, first, we will compare the iteration (5) with the iteration (2).
The two iterations (5) (if X0 = αY) and (2) stem from the series

∞∑
j=0

αY(I − αAY) j. (21)

Let Sn denote the partial sum to n of (21). Then X̃k = Spk−1 in (2) and Xk = Skp in (5). Thus, it is obvious that
there exist positive integers ki, i=1,2, which would make the two iterations obtain the same results after k1
and k2 steps, respectively.

For example, in Example 3.1, let the initial approximation X0 = αY(α = 0.4). Then, obviously, N(Al) ⊂
N(X0) and 0 < α < 2/ρ(AY) hold. Hence, those conditions in Theorem 2.1 are satisfied. Using the iteration
(5) for Example 3.1, we have the following table,where the symbol ∥ · ∥ denotes the Frobenius norm.

Table 4.1: Results for Example 3.1 with α = 0.4 and X0 = αY, using (5)
step k = 3 k = 4 k=5 k = 6

∥Ad − Xk∥ 9.1800e-009 6.1105e-012 3.7370e-015 2.0260e-015

Taking p = 5 and k1 = 2, we have ∥Ad − X̃k1∥=1.633e-014 by the iteration (2). From Table 4.1, ∥Ad −Xk2∥=
3.7370e-015 < 1.633e-014 where k2 = 5.

If k > 1, note that the stopping criterion of iterations generally is based on the quantity of ||Xk − Xk−1||.
So, in contrast with (5), (2) often lavishes more operations from Xk−1 to Xk when Xk is close to Ad. Indeed,
computing X̃k requires p times of the multiplications and additions of matrix. So, it would take kp times
operations from X0 to Xk in all. Whereas computing Xk requires only one matrix multiplication and two
matrix additions. So it would take k+ p+ 1 times operations from X0 to Xk in all. Next, we consider elapsed
time in calculating process. In Example 3.1, if p = 5 and X0 = αY, then the two iterations (5) and (2) elapsed
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0.009231 seconds and 0.009993 seconds, respectively, where we exploited the Mathematic functions “tic”
and “toc” in Matlab 7.8.0(R2009a), which return the CPU time consumed seconds, and the two tests run on
a Lenovo QiTian M550E desktop with AMD Athlon(tm) 64 X2 Dual Core CPU 5000+@2.6GHz and 768 MB
of memory, using Windows XP Professional(SP3).

Now, we consider the choice of p in (5). Evidently, the p’s size just affects the operation quantity of
computing X1. Because matrices αY

∑p−1
i=0 (I − αAY)i and (I − αAY)p have been defined before computing

Xk, k > 1. In spite of that, oversize p is expensive. If Xk = Skp is an ideal approximate solution, then k and
p are reciprocal. In practice, k is often less than theoretical iterative number to reach the ideal approximate
solution when p becomes small. For example, in Table 3.5, when p = 5 or p = 6, it would take the least work
of calculations.
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