Root product of lattices

Vera Lazarevića ${ }^{\text {, }}$ Mališa Žižović ${ }^{\text {b }}$, Nada Damljanović ${ }^{\text {a }}$
${ }^{a}$ Technical faculty in Čačak, Svetog Save 65, 32000 Čačak, Serbia
${ }^{b}$ Universit Singidunum, Danijelova 32, Belgrade, Serbia

Abstract

In this paper a new product of lattices, the root product, is defined, and here are given some basic properties of this product. By multiplying two lattices a new lattice L is obtained. The lattice L posses better properties in terms of dimension and determinant.

1. Notions and notations

Let us recall some notions and notations. Let H be an ordered set. Let \leq denote the ordering relation on H. If they exist, the least and the greatest element of H will be denoted by 0 and 1 , respectively. As usual, if H is a lattice, then the corresponding meet and join operations on H will be denoted by \wedge and \vee, respectively. Since this paper deals with more than one ordered set, usually the notation \leq_{H} will be used to indicate that it is ordering relation on H. Similarly, the notations $0_{H}, 1_{H}, \wedge_{H}$ and \vee_{H} will be used.

Let H and K be ordered sets. The linear sum of H and K, in notation $H+K$, is the set $H \cup K$ with the ordering relation preserving the orders in H and K, with addition that $h \leq k$, for all $h \in H$ and $k \in K$. Also, let us recall that ordering relation on the direct product $H \times K$ is defined by $\left(h_{1}, k_{1}\right) \leq\left(h_{2}, k_{2}\right)$ if and only if $h_{1} \leq h_{2}$ and $k_{1} \leq k_{2}$.

A filter of a lattice L is a subset $F \neq \varnothing$ of L such that $x \in F$ and $x \leq y$ imply $y \in F$ for all $x, y \in L$, and for all $x, y \in F, x \wedge y \in F$. For $a \in L$, the set $[a)=\{x \in L \mid a \leq x\}$ is the principal filter generated by a. If L is a finite lattice than every filter of L is principal filter.

An element a of a lattice L covers $b \in L$, which will be denoted by $b<a$, if $b<a$ and $c \in L$ such that $b \leq c \leq a$ implies $c=b$ or $c=a$.

For all non-defined notions and notations we refer to books [1]-[6], [8] and [11].

2. Root of the lattice

Let L be a lattice with greatest element 1 . An element $a \in L, a \neq 1$ is meet-irreducible if any $b, c \in L$ such that $a=b \wedge c$ implies $a=b$ or $a=c$. The set of all meet-irreducible elements of L will be denoted by $\mathscr{I}(L)$. It is well-known fact that in a finite lattice L every element can be represented as meet of meet-irreducible elements of L. More information about that can be found in [15].

[^0]Let L be a finite lattice with identity 1 and let $\mathscr{I}(L)=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ be a set of all meet-irreducible elements of L. Let $\mathscr{R}(L)$ be a subset of L consisting of identity 1 and all $a_{k} \in \mathscr{I}(L)$ such that $\left[a_{k}\right)$ is a chain.
Theorem 2.1. Let L be a finite lattice. Then $(\mathscr{R}(L), \vee)$ is a subsemilattice of the semilattice (L, V).
Proof. Let $r_{1}, r_{2} \in \mathcal{R}(L)$ be arbitrary elements. If $r_{1}=1_{L}$ or $r_{2}=1_{L}$, then we have that $r_{1} \vee r_{L}=1_{L} \in \mathcal{R}(L)$. Otherwise, if $r_{1} \neq 1_{L}$ and $r_{2} \neq 1_{L}$, then $\left[r_{1}\right.$) and $\left[r_{2}\right.$) are chains, and $r_{1} \vee_{L} r_{2} \in\left[r_{1}\right) \cap\left[r_{2}\right)$, so $\left[r_{1} \vee_{L} r_{2}\right)$ is also a chain.

Let $b, c \in L$ be such that $r_{1} \vee_{L} r_{2}=b \wedge c$. Then $r_{1} \vee_{L} r_{2} \leqslant b, c$, and since $\left[r_{1} \vee_{L} r_{2}\right.$) is a chain, we have that $b \leqslant c$ or $c \leqslant b$, and thus we have that $r_{1} \vee_{L} r_{2}=b$ or $r_{1} \vee_{L} r_{2}=c$. So, $r_{1} \vee_{L} r_{2}$ is a meet-irreducible element of L, and therefore $r_{1} \vee_{L} r_{2} \in \mathcal{R}(L)$.

For an arbitrary finite lattice L, the semilattice $(\mathscr{R}(L), \vee)$ will be called the root of the lattice L. Clearly, the following holds:

$$
\begin{equation*}
|\mathscr{R}(L)| \leq|\mathscr{I}(L)|+1 . \tag{1}
\end{equation*}
$$

If L is a lattice such that its every meet-irreducible element is an element of a root of L, then in (1) the equality holds. For example, this is true if L is a chain, Boolean lattice, or a lattice whose every meet-irreducible element is covered by either its greatest element or some other of its meet-irreducible elements (see L_{3} in Fig. 1).
Example 2.2. Let us observe lattices $L_{i}, i \in\{1,2,3\}$ in Fig. 1 and their corresponding roots $\mathscr{R}\left(L_{i}\right), i \in\{1,2,3\}$. For $i \in\{1,2,3\}$ the elements of a $\operatorname{root} \mathscr{R}\left(L_{i}\right)$ of the lattice L_{i} are represented by black circles. The element a of the lattice L_{1} is meet-irreducible, but it is not an element of the root $\mathscr{R}\left(L_{1}\right)$. Also, elements b, c and d of the lattice L_{2} are meet-irreducible, but they do not belong to the root $\mathscr{R}\left(L_{2}\right)$. All meet-irreducible elements of the lattice L_{3} are elements of the root $\mathscr{R}\left(L_{3}\right)$.

L_{1}

L_{2}

L_{3}

Fig. 1.
Theorem 2.3. Let L be a finite lattice. Then $\mathscr{R}(L)$ is a chain if and only if L is a chain. In that case $\mathscr{R}(L)=L$.
Proof. If L is a chain, than clearly $\mathscr{R}(L)$ is a chain. Conversely, let L be a lattice such that $\mathscr{R}(L)$ is a chain. The greatest element $1_{L} \in L$ belongs to the root $\mathscr{R}(L)$ by definition of the root. Let $1_{L}, r_{1}, \ldots, r_{k}, 0_{\mathscr{R}(L)}$ be all elements of the root $\mathscr{R}(L)$, such that $1_{L}>r_{1}>\cdots>r_{k}>0_{\mathscr{R}(L)}$. If there exists $a \in L$ such that $1_{L}>a \neq r_{1}$, then the principal filter $[a)$ is a chain, so $a \in \mathscr{R}(L)$, which is a contradiction. From this it follows that 1_{L} covers only element $r_{1} \in \mathscr{R}(L)$. Similarly, if there exists an element $b \in L$ such that $r_{j}>b \neq r_{j+1}(j=1,2, \ldots, k-1)$, then $b \in \mathscr{R}(L)$, which is also a contradiction. Thus, r_{j} covers only r_{j+1}. Analogously, r_{k} covers only the least element $0_{\mathscr{R}(L)}$ of the root $\mathscr{R}(L)$.

Let us also prove that the elements $1_{L}, r_{1}, \ldots, r_{k}, 0_{\mathscr{R}(L)}$ of the chain are the only elements of the lattice L, i.e., that $0_{\mathscr{R}(L)}$ is also the least element of the lattice L.

Let there exists an element $c \in L \backslash \mathscr{R}(L)$ such that $0_{\mathscr{R}(L)}>c$. If the element c is meet-irreducible, then [c) is a chain and $c \in \mathscr{R}(L)$, which is a contradiction.

If the element c is meet-reducible, then besides the chain $c<0_{\mathscr{R}(L)}<r_{k}<\cdots<r_{1}<1_{L}$ at least one more chain exists between elements c and 1_{L}. That chain is $c<a_{1}<\cdots<a_{i}<r_{j}<\cdots<r_{1}<1_{L}$, for some $j=1,2, \ldots, k$, and $i \in N$, or $c<a_{1}<\cdots<a_{i}<1_{L}$, for some $a_{1}, \ldots, a_{i} \neq r_{l},(l=1,2, \ldots, k)$.

In both cases, the principal filter $\left[a_{i}\right)(i \in N)$ is a chain, so $a_{i} \in \mathscr{R}(L)$, which contradicts the fact that $\mathscr{R}(L)$ is a chain.

Thus $L \backslash \mathscr{R}(L)=\emptyset$, so $L=\mathscr{R}(L)$.

3. \otimes_{r}-product and \otimes_{l}-product of lattices

Let \mathscr{L}_{f} be the class of all finite lattices with at least two elements and let \otimes_{r} and \otimes_{l} be two binary operations on \mathscr{L}_{f} defined as follows: for all $L_{1}, L_{2} \in \mathscr{L}_{f}$,

$$
\begin{aligned}
& L_{1} \otimes_{r} L_{2}=\{0\}+\left(L_{1} \backslash\{0\}\right) \times \mathscr{R}\left(L_{2}\right), \\
& L_{1} \otimes_{l} L_{2}=\{0\}+\mathscr{R}\left(L_{1}\right) \times\left(L_{2} \backslash\{0\}\right) .
\end{aligned}
$$

In a very simple way we can prove the following proposition.
Proposition 3.1. Let $L_{1}, L_{2} \in \mathscr{L}_{f}$. Then the following hold.
(A) For every $r \in \mathcal{R}\left(L_{2}\right)$, the set $\left\{(l, r) \mid l \in L_{1} \backslash\{0\}\right\} \cup\{0\}$ forms a sublattice of $L_{1} \otimes_{r} L_{2}$ which is isomorphic to L_{1}.
(B) There exists a sublattice of $L_{1} \otimes_{r} L_{2}$ with the greatest element $1_{L_{1} \otimes_{r} L_{2}}$ and the least element $0_{L_{1} \otimes_{r} L_{2}}$ which is isomorphic to L_{1}.
(C) For every $l \in L_{1} \backslash\{0\}$, the set $\left\{(l, r) \mid r \in \mathcal{R}\left(L_{2}\right)\right\}$ forms a subsemilattice of $\left(L_{1} \otimes_{r} L_{2}, \vee\right)$ which is isomorphic to ($\left.\mathcal{R}\left(L_{2}\right), \mathrm{V}\right)$.
(D) There exists a subsemilattice of $\left(L_{1} \otimes_{r} L_{2}, \vee\right)$ with the greatest element $1_{L_{1} \otimes_{r} L_{2}}$ which is isomorphic to $\left(\mathcal{R}\left(L_{2}\right), \vee\right)$.

Proof. By the construction of the \otimes_{r}-product, it is easy to verify that assertions (A) and (C) hold. The assertion (B) follows by (A) if we take that $r=1_{L_{2}}$ and the assertion (D) follows by (C) if we take $l=1_{L_{1}}$.

Clearly, $L_{1} \otimes_{r} L_{2}$ is a finite lattice with at least two elements. In addition, \otimes_{r} is not associative on \mathscr{L}_{f} (see Example 3.9) and thus different order of operations \otimes_{r} on lattices $L_{1}, \ldots, L_{m} \in \mathscr{L}_{f}$ gives different lattices, even with different number of elements.

For lattices $L_{1}, \ldots, L_{m} \in \mathscr{L}_{f}$, by $\mathscr{P}\left(L_{1}, L_{2}, \ldots, L_{m}\right)$ we will denote the subset of \mathscr{L}_{f} consisting of all \otimes_{r}-products of lattices L_{1}, \ldots, L_{m} in that order of appearance of lattices.

Theorem 3.2. Let $L_{1}, L_{2}, \ldots, L_{m} \in \mathscr{L}_{f}$ and let $L \in \mathscr{P}\left(L_{1}, L_{2}, \ldots, L_{m}\right)$. Then

$$
\mathscr{R}(L)=\left\{\left(1, \ldots, 1, r_{i}, 1, \ldots, 1\right) \mid r_{i} \in \mathscr{R}\left(L_{i}\right) \backslash\{1\}, i=1,2, \ldots, m\right\} \cup\{(1,1, \ldots, 1)\},
$$

and

$$
|\mathscr{R}(L)|=1+\sum_{i=1}^{m}\left(\left|\mathscr{R}\left(L_{i}\right)\right|-1\right)=1-m+\sum_{i=1}^{m}\left|\mathscr{R}\left(L_{i}\right)\right| .
$$

Proof. Let $L_{1}, L_{2}, \ldots, L_{m} \in \mathscr{L}_{f}$ and let $L \in \mathscr{P}\left(L_{1}, L_{2}, \ldots, L_{m}\right)$ be an arbitrary element.
Let $r=\left(1, \ldots, 1, r_{i}, 1, \ldots, 1\right)$ and let $a, b \in L$ be elements such that $r \leq a, b$. Then $a_{j}=1, b_{j}=1$ for $j \neq i$, and $r_{i} \leq a_{i}, b_{i}$. Since r_{i} is an element of the root $\mathscr{R}\left(L_{i}\right)$, i.e., $\left[r_{i}\right)$ is a chain, we have that $a_{i} \leq b_{i}$ or $b_{i} \leq a_{i}$, and hence $a \leq b$ or $b \leq a$, i.e., $[r)$ is a chain. So, every element of a form $\left(1, \ldots, 1, r_{i}, 1, \ldots, 1\right)$ is an element of the root $\mathscr{R}(L)$.

Conversely, let $\bar{r}=\left(\bar{r}_{i}\right)_{i=1}^{m}$ be an element of the root $\mathscr{R}(L)$. First, we will prove that for $i=1,2, \ldots, m, \bar{r}_{i}$ is an element of the root $\mathscr{R}\left(L_{i}\right)$. Let $a_{i}, b_{i} \in L_{i}$ be such that $\bar{r}_{i} \leq a_{i}, b_{i}$. Then, for elements $a=\left(1, \ldots, 1, a_{i}, 1, \ldots, 1\right)$ and $b=\left(1, \ldots, 1, b_{i}, 1, \ldots, 1\right)$ in L holds $\bar{r} \leq a, b$, and since $[\bar{r})$ is a chain, we have $a \leq b$ or $b \leq a$. Thus $a_{i} \leq b_{i}$ or $b_{i} \leq a_{i}$ in L_{i}, and $\left[\bar{r}_{i}\right)$ is a chain, so \bar{r}_{i} is an element of the root $\mathscr{R}\left(L_{i}\right)$. Further, if for some $i \neq j$ we have that $\bar{r}_{i} \neq 1$ and $\bar{r}_{j} \neq 1$, then the elements $u=\left(1, \ldots, 1, \bar{r}_{i}, 1, \ldots, 1\right)$ and $v=\left(1, \ldots, 1, \bar{r}_{j}, 1, \ldots, 1\right)$ are incomparable in L and $\bar{r} \leq u, v$, which is in contradiction to the fact that $[\bar{r})$ is a chain. Thus $\bar{r}_{k} \neq 1$ for at most one k.

Further, it is clear that $|\mathscr{R}(L)|=1+\sum_{i=1}^{m}\left(\left|\mathscr{R}\left(L_{i}\right)\right|-1\right)=1-m+\sum_{i=1}^{m}\left|\mathscr{R}\left(L_{i}\right)\right|$.
Corollary 3.3. For $L_{1}, L_{2}, \ldots, L_{m} \in \mathscr{L}_{f}$, all lattices in $\mathscr{P}\left(L_{1}, L_{2}, \ldots, L_{m}\right)$ have the same roots.

Theorem 3.4. Let $m \in \mathbb{N}$, let $L_{1}, L_{2}, \ldots, L_{m} \in \mathscr{L}_{f}$, and let $L_{A r}^{(m)}=\left(\cdots\left(\left(L_{1} \otimes_{r} L_{2}\right) \otimes_{r} L_{3}\right) \otimes_{r} \cdots\right) \otimes_{r} L_{m}$. Then

$$
\begin{equation*}
\left|L_{A r}^{(m)}\right|=1+\left(\left|L_{1}\right|-1\right) \cdot \prod_{i=2}^{m}\left|\mathscr{R}\left(L_{i}\right)\right| . \tag{2}
\end{equation*}
$$

Proof. We have that

$$
\begin{aligned}
L_{A r}^{(m)} & =\left(\cdots\left(\left(L_{1} \otimes_{r} L_{2}\right) \otimes_{r} L_{3}\right) \otimes_{r} \cdots\right) \otimes_{r} L_{m} \\
& =\left(\cdots\left(\left(\{0\}+\left(L_{1} \backslash\{0\} \times \mathscr{R}\left(L_{2}\right)\right) \otimes_{r} L_{3}\right) \otimes_{r} \cdots\right) \otimes_{r} L_{m}\right. \\
& =\left(\cdots\left(\{0\}+\left(\left(\{0\}+\left(L_{1} \backslash\{0\}\right) \times \mathscr{R}\left(L_{2}\right)\right) \backslash\{0\}\right) \times \mathscr{R}\left(L_{3}\right)\right) \otimes_{r} \cdots\right) \otimes_{r} L_{m} \\
& =\left(\cdots\left(\{0\}+\left(L_{1} \backslash\{0\}\right) \times \mathscr{R}\left(L_{2}\right) \times \mathscr{R}\left(L_{3}\right)\right) \otimes_{r} \cdots\right) \otimes_{r} L_{m} \\
& =\{0\}+\left(L_{1} \backslash\{0\}\right) \times \mathscr{R}\left(L_{2}\right) \times \mathscr{R}\left(L_{3}\right) \times \cdots \times \mathscr{R}\left(L_{m}\right) .
\end{aligned}
$$

Thus, the number of elements of this \otimes_{r}-product is given by (2).
Theorem 3.5. Let $m \in \mathbb{N}$, let $L_{1}, L_{2}, \ldots, L_{m} \in \mathscr{L}_{f}$, and let $L_{B r}^{(m)}=L_{1} \otimes_{r}\left(\cdots \otimes_{r}\left(L_{m-2} \otimes_{r}\left(L_{m-1} \otimes_{r} L_{m}\right)\right) \cdots\right)$. Then

$$
\begin{equation*}
\left|L_{B r}^{(m)}\right|=1+\left(\left|L_{1}\right|-1\right)\left(\sum_{i=2}^{m}\left|\mathscr{R}\left(L_{i}\right)\right|-m+2\right) . \tag{3}
\end{equation*}
$$

Proof. We have that

$$
\begin{aligned}
L_{B r}^{(m)} & =L_{1} \otimes_{r}\left(\cdots \otimes_{r}\left(L_{m-2} \otimes_{r}\left(L_{m-1} \otimes_{r} L_{m}\right)\right) \cdots\right) \\
& =\{0\}+\left(L_{1} \backslash\{0\}\right) \times \mathscr{R}\left(L_{2} \otimes_{r}\left(\cdots \otimes_{r}\left(L_{m-2} \otimes_{r}\left(L_{m-1} \otimes_{r} L_{n}\right)\right) \cdots\right)\right)
\end{aligned}
$$

By Theorem 3.2, we have that

$$
\left|\mathscr{R}\left(L_{2} \otimes_{r}\left(\cdots \otimes_{r}\left(L_{m-2} \otimes_{r}\left(L_{m-1} \otimes_{r} L_{m}\right)\right) \cdots\right)\right)\right|=\sum_{i=2}^{m}\left|\mathscr{R}\left(L_{i}\right)\right|-m+2,
$$

so the equality (3) holds.
Corollary 3.6. $\left|L_{B r}^{(m)}\right| \leq\left|L_{A r}^{(m)}\right|$
Proof. By Bernoulli's inequality it follows

$$
\prod_{i=2}^{m}\left|\mathscr{R}\left(L_{i}\right)\right|=\prod_{i=2}^{m}\left(1+\left|\mathscr{R}\left(L_{i}\right)\right|-1\right) \geq 1+\sum_{i=2}^{m}\left(\left|\mathscr{R}\left(L_{i}\right)\right|-1\right)=\sum_{i=2}^{m}\left|\mathscr{R}\left(L_{i}\right)\right|-m+2,
$$

and thus

$$
1+\left(\left|L_{1}\right|-1\right) \cdot \prod_{i=2}^{m}\left|\mathscr{R}\left(L_{i}\right)\right| \geq 1+\left(\left|L_{1}\right|-1\right)\left(\sum_{i=2}^{m}\left|\mathscr{R}\left(L_{i}\right)\right|-m+2\right),
$$

i.e., $\left|L_{B r}^{(m)}\right| \leq\left|L_{A r}^{(m)}\right|$.

If all \otimes_{r}-products in which lattices $L_{1}, L_{2}, \ldots, L_{m}$ occur in that order are observed, then cardinality of \otimes_{r}-product depends on the parentheses, but the number of elements of the corresponding roots are always the same (it is given by Theorem 3.2). For some application, \otimes_{r}-product that has the greatest cardinality is interesting for observation, and by Theorems 3.4, 3.5 and Corollary 3.6 it follows that it is the \otimes_{r}-product $L_{A r}^{(m)}=\left(\cdots\left(\left(L_{1} \otimes_{r} L_{2}\right) \otimes_{r} L_{3}\right) \otimes_{r} \cdots\right) \otimes_{r} L_{m}$.

By duality, for \otimes_{l}-product the following holds.

Theorem 3.7. Let $m \in \mathbb{N}$ and let $L_{1}, L_{2}, \ldots, L_{m} \in \mathscr{L}_{f}$. Furthermore, let $L_{A l}^{(m)}=\left(\cdots\left(\left(L_{1} \otimes_{l} L_{2}\right) \otimes_{l} L_{3}\right) \otimes_{l} \cdots\right) \otimes_{l} L_{m}$ and $L_{B l}^{(m)}=L_{1} \otimes_{l}\left(\cdots \otimes_{l}\left(L_{m-2} \otimes_{l}\left(L_{m-1} \otimes_{l} L_{m}\right)\right) \cdots\right)$. Then
(i) $\left|L_{A l}^{(m)}\right|=1+\left(\left|L_{m}\right|-1\right)\left(\sum_{i=1}^{m-1}\left|\mathscr{R}\left(L_{i}\right)\right|-m+2\right)$;
(ii) $\left|L_{B l}^{(m)}\right|=1+\left(\left|L_{m}\right|-1\right) \cdot \prod_{i=1}^{m-1}\left|\mathscr{R}\left(L_{i}\right)\right|$;
(iii) $\left|L_{A l}^{(m)}\right| \leq\left|L_{B r}^{(m)}\right|$.

Corollary 3.8. Let $m \in \mathbb{N}$ and let $L_{1}, L_{2}, \ldots, L_{m} \in \mathscr{L}_{f}$ be such that $L_{1}=L_{2}=\cdots=L_{m}$. Then

$$
\left|L_{A r}^{(m)}\right|=\left|L_{B l}^{(m)}\right| \geq\left|L_{A l}^{(m)}\right|=\left|L_{B r}^{(m)}\right| .
$$

Proof. This follows from Theorems 3.2, 3.4, 3.5 and Corollary 3.3.
Example 3.9. Let L_{1}, L_{2} and L_{3} be lattices given in Fig. 2. Then the lattice $L_{1} \otimes_{r} L_{2}$ is given in Fig. 3., and the lattice $\left(L_{1} \otimes_{r} L_{2}\right) \otimes_{r} L_{3}$ is given in Fig. 4. The elements of the corresponding roots are denoted respectively by black circles. In Fig. 5. the lattice $L_{2} \otimes_{r} L_{3}$ is given, and in Fig. 6. the lattice $L_{1} \otimes_{r}\left(L_{2} \otimes_{r} L_{3}\right)$ is given. The number of root-elements of the lattices given in Figs. 4. and 6. is the same and it is exactly

$$
\left|\mathscr{R}\left(L_{1}\right)\right|+\left|\mathscr{R}\left(L_{2}\right)\right|+\left|\mathscr{R}\left(L_{3}\right)\right|-2=9 .
$$

Clearly, the lattice in Fig. 4. has more elements than the lattice in Fig. 6.

Fig. 2.

Fig. 3. Lattice $L_{1} \otimes_{r} L_{2}$

Fig. 4. Lattice $\left(L_{1} \otimes_{r} L_{2}\right) \otimes_{r} L_{3}$

Fig. 5. Lattice $L_{2} \otimes_{r} L_{3}$

Fig. 6. Lattice $L_{1} \otimes_{r}\left(L_{2} \otimes_{r} L_{3}\right)$

Example 3.10. Let L_{1} and L_{2} be the lattices given in Fig. 7. Then $\left|L_{1} \otimes_{r} L_{2}\right|=29$ and $\left|L_{2} \otimes_{r} L_{1}\right|=21$, and hence $L_{1} \otimes_{r} L_{2} \neq L_{2} \otimes_{r} L_{1}$.

Fig. 7.
Corollary 3.11. The \otimes_{r}-product is not commutative on \mathscr{L}_{f}.
A lattice $L \in \mathscr{L}_{f}$ is \otimes_{r}-simple if $L \backslash\{0\}=\mathscr{R}(L)$. The class of all \otimes_{r}-simple lattices will be denoted by \mathscr{L}_{s}.
Theorem 3.12. Up to an isomorphism, the \otimes_{r}-product is commutative on \mathscr{L}_{s}.
Proof. Let $L_{1}, L_{2} \in \mathscr{L}_{s}$. Then $L_{1} \otimes_{r} L_{2}=\{0\}+\left(L_{1} \backslash\{0\}\right) \times \mathscr{R}\left(L_{2}\right) \cong\{0\}+\left(L_{2} \backslash\{0\}\right) \times \mathscr{R}\left(L_{1}\right)=L_{2} \otimes_{r} L_{1}$, and therefore, $L_{1} \otimes_{r} L_{2} \cong L_{2} \otimes_{r} L_{1}$.

The collection of all filters on a finite poset X, ordered dually to inclusion, is a finite distributive lattice L; its poset of meet-irreducibles is isomorphic to X. The converse is given by Birkhoff's theorem [2], as follows. Every finite distributive lattice is isomorphic to the lattice of all filters of the poset of its meet-irreducible elements, ordered dually to inclusion. As is known, the same poset of meet-irreducibles determine also some other, non-distributive lattices in which it is the poset of meet-irreducibles. In [15], conditions under which an arbitrary finite lattice has the same (up to isomorphism) poset of meet-irreducibles as that distributive lattice, are given.

For $n \in \mathbb{N}$, the Boolean lattice 2^{n} is a lattice of greatest cardinality among all lattices with n meet-irreducible elements. From this it follows that among all latices whose corresponding root has $n+1$ elements, $\mathbf{2}^{n}$ is a lattice of greatest cardinality. In that case, $\left|2^{n} \otimes_{r} L_{2}\right|=\left(2^{n}-1\right) \cdot\left|\mathscr{R}\left(L_{2}\right)\right|+1$ and

$$
\left|\mathscr{R}\left(2^{n} \otimes_{r} L_{2}\right)\right|=1+\left(\left|\mathscr{R}\left(2^{n}\right)\right|-1\right)+\left(\left|\mathscr{R}\left(L_{2}\right)\right|-1\right)=1+n+1-1+\left|\mathscr{R}\left(L_{2}\right)\right|-1=n+\left|\mathscr{R}\left(L_{2}\right)\right| .
$$

Thus the following assertions hold.
Corollary 3.13. Let 2^{n} be a Boolean lattice $(n \in \mathbb{N})$ and let $L \in \mathscr{L}_{f}$. Then $\mathscr{R}\left(2^{n} \otimes_{r} L\right)=\mathscr{I}\left(2^{n} \otimes_{r} L\right) \cup\{1\}$ and $\left|\mathscr{I}\left(2^{n} \otimes_{r} L\right)\right|=n-1+\left|\mathscr{R}\left(L_{2}\right)\right|$.

Corollary 3.14. Let $L_{1}, L_{2} \in \mathscr{L}_{f}$. Let n be the number of meet-irreducible elements of the lattice L_{1}. Then the lattice $L_{1} \otimes_{r} L_{2}$, treated as a function of L_{1}, has the greatest cardinality in the case that L_{1} is a Boolean lattice 2^{n} and $|\mathscr{I}(L)|=n+\left|\mathscr{R}\left(L_{2}\right)\right|-1$.

Corollary 3.15. Let $\mathbf{2}^{n}$ be a Boolean lattice $(n \in \mathbb{N})$ and for every $i \in\{1,2, \ldots, m\}$ let $L_{i}=\mathbf{2}^{n}$. Then
(i) $\left|L_{A r}^{m}\right|=1+\left(2^{n}-1\right)(n+1)^{m}$,
(ii) $\left|L_{B r}^{m}\right|=1+\left(2^{n}-1\right)(1+n(m-1))$,

$$
\text { and }\left|\mathscr{I}\left(L_{n}^{m}\right)\right|=n m .
$$

Proof. From Theorems 3.4 and 3.5 follows (i) and (ii), respectively. Let L_{n}^{m} be $L_{A r}^{m}$ or $L_{B r}^{m}$. We will calculate the number of meet-irreducible elements of L_{n}^{m}. From Theorem 3.2 follows that it is the number of root-elements of L_{n}^{m} is $\left|\mathscr{R}\left(L_{n}^{m}\right)\right|=1+\sum_{i=1}^{m}\left(\left|\mathscr{R}\left(L_{i}\right)\right|-1\right)=1+m((n+1)-1)=1+n m$. Then, by Theorem 3.13 follows that $\left|\mathscr{I}\left(L_{n}^{m}\right)\right|=n m$.

Concluding remarks: In this paper we gave a new construction of a lattice starting from a given family of lattices. By the given algorithm, one can construct a lattice of large cardinality starting from quite small and simple lattices. The obtained lattice can be used as a co-domain of fuzzy sets whose cuts are presented as binary words. Connections between coding theory and lattice valued fuzzy sets can be found in [10],[12]-[17]. Using our root product in coding theory could provide more code words without considerably increasing the code length.

Acknowledgement

The authors are grateful to the reviewer and area editor for valuable suggestions which significantly improved the quality of the paper.

References

[1] R. Belohlavek, V. Vychodil, Fuzzy Equational Logic, Springer, Berlin/Heidelberg, 2005.
[2] G. Birkhoff, Lattice Theory, Amer. Soc, Coll. Publ. Vol. 25, (3rd edition, 3rd printing), Providence, 1979.
[3] G. Birkhoff, T. Barti, Modern Applied Algebra, Mc Graw-Hill, inc, 1970.
[4] S. Burris, H.P. Sankappanavar, A Course in Universal Algebra, Springer-Verlag, New York, 1981.
[5] G. Grätzer, Universal Algebra, D. Van Nostrand Comp., Princeton, 1968.
[6] G. Grätzer, General lattice theory, Akademie-Verlag, Berlin, 1978.
[7] F. Lucas, Latices of antichains of a root system, Tatra Mt. Math. Publ. 27 (2003) 177-187.
[8] J. M. Howie, Fundamentals of Semigroup Theory, London Mathematical Society Monograpfs. New Series, Oxford: Clarendon Press, 1995.
[9] K.H. Lee, First Course on Fuzzy Theory and Applications, Springer-Verlag, Berlin/Heidelberg, 2005.
[10] V. Lazarević, B. Šešelja, Constructing maximal block-codes by bisemilattice valued fuzzy sets, Novi Sad J. Math. 29 (2) (1998) 79-90.
[11] R. Lidl, G. Pilz, Applied Abstract Algebra, Springer-Verlag, 1984.
[12] B. Šešelja, A. Tepavčević, Representation of lattices by fuzzy sets, Information Sciences, 79 (1994) 171-180.
[13] B. Šešelja, A. Tepavčević, Collection of lattices determined by the same poset of meet-irreducible elements, Novi Sad J.Math. 26 (2) (1996) 11-19.
[14] B. Šešelja, A. Tepavčević, On generation of finite posets by meet-irreducibles, Discrete Mathematics 186 (1998) 269-275.
[15] B. Šešelja, A. Tepavčević, Collection of finite lattices generated by a poset, Order 17 (2000) 129-139.
[16] M. Žižović, V. Lazarević, Construction of codes by lattice valuated fuzzy sets, Novi Sad J. Math. 35 (2005) 155-160.
[17] M. Žižović, V. Lazarević, Generating of a class of lattices and its application, Kragujevac J. Math. 28 (2005) 185-192.

[^0]: 2010 Mathematics Subject Classification. Primary 06B35
 Keywords. Lattices, meet-irreducible elements, root of a lattice, root products
 Received: 04 May 2011; Received in revised form: 12 December 2011; Accepted: 23 December 2011
 Communicated by Miroslav Ćirić
 Research of the third author is supported by Ministry Education and Science, Republic of Serbia, Grant No. 174013
 Email addresses: vera@tfc.kg.ac.rs (Vera Lazarević), zizovic@gmail.com (Mališa Žižović), nada@tfc.kg.ac.rs (Nada
 Damljanović)

