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Root product of lattices
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Abstract. In this paper a new product of lattices, the root product, is defined, and here are given some
basic properties of this product. By multiplying two lattices a new lattice L is obtained. The lattice L posses
better properties in terms of dimension and determinant.

1. Notions and notations

Let us recall some notions and notations. Let H be an ordered set. Let ≤ denote the ordering relation on
H. If they exist, the least and the greatest element of H will be denoted by 0 and 1, respectively. As usual, if H
is a lattice, then the corresponding meet and join operations on H will be denoted by ∧ and ∨, respectively.
Since this paper deals with more than one ordered set, usually the notation ≤H will be used to indicate that
it is ordering relation on H. Similarly, the notations 0H, 1H, ∧H and ∨H will be used.

Let H and K be ordered sets. The linear sum of H and K, in notation H + K, is the set H ∪ K with the
ordering relation preserving the orders in H and K, with addition that h ≤ k, for all h ∈ H and k ∈ K. Also,
let us recall that ordering relation on the direct product H × K is defined by (h1, k1) ≤ (h2, k2) if and only if
h1 ≤ h2 and k1 ≤ k2.

A filter of a lattice L is a subset F , ∅ of L such that x ∈ F and x ≤ y imply y ∈ F for all x, y ∈ L, and for
all x, y ∈ F, x ∧ y ∈ F. For a ∈ L, the set [a) = {x ∈ L | a ≤ x} is the principal filter generated by a. If L is a finite
lattice than every filter of L is principal filter.

An element a of a lattice L covers b ∈ L, which will be denoted by b ≺ a, if b < a and c ∈ L such that
b ≤ c ≤ a implies c = b or c = a.

For all non-defined notions and notations we refer to books [1]–[6], [8] and [11].

2. Root of the lattice

Let L be a lattice with greatest element 1. An element a ∈ L, a , 1 is meet-irreducible if any b, c ∈ L such
that a = b ∧ c implies a = b or a = c. The set of all meet-irreducible elements of L will be denoted by I (L).
It is well-known fact that in a finite lattice L every element can be represented as meet of meet-irreducible
elements of L. More information about that can be found in [15].
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Let L be a finite lattice with identity 1 and let I (L) = {a1, a2, . . . , an} be a set of all meet-irreducible
elements of L. Let R(L) be a subset of L consisting of identity 1 and all ak ∈ I (L) such that [ak) is a chain.

Theorem 2.1. Let L be a finite lattice. Then (R(L),∨) is a subsemilattice of the semilattice (L,∨).

Proof. Let r1, r2 ∈ R(L) be arbitrary elements. If r1 = 1L or r2 = 1L, then we have that r1 ∨L r2 = 1L ∈ R(L).
Otherwise, if r1 , 1L and r2 , 1L, then [r1) and [r2) are chains, and r1 ∨L r2 ∈ [r1) ∩ [r2), so [r1 ∨L r2) is also a
chain.

Let b, c ∈ L be such that r1 ∨L r2 = b ∧ c. Then r1 ∨L r2 6 b, c, and since [r1 ∨L r2) is a chain, we have that
b 6 c or c 6 b, and thus we have that r1 ∨L r2 = b or r1 ∨L r2 = c. So, r1 ∨L r2 is a meet-irreducible element of
L, and therefore r1 ∨L r2 ∈ R(L).

For an arbitrary finite lattice L, the semilattice (R(L),∨) will be called the root of the lattice L. Clearly, the
following holds:

|R(L)| ≤ |I (L)| + 1. (1)

If L is a lattice such that its every meet-irreducible element is an element of a root of L, then in (1) the equality
holds. For example, this is true if L is a chain, Boolean lattice, or a lattice whose every meet-irreducible
element is covered by either its greatest element or some other of its meet-irreducible elements (see L3 in
Fig. 1).

Example 2.2. Let us observe lattices Li, i ∈ {1, 2, 3} in Fig. 1 and their corresponding roots R(Li), i ∈ {1, 2, 3}.
For i ∈ {1, 2, 3} the elements of a root R(Li) of the lattice Li are represented by black circles. The element a of
the lattice L1 is meet-irreducible, but it is not an element of the root R(L1). Also, elements b, c and d of the
lattice L2 are meet-irreducible, but they do not belong to the root R(L2). All meet-irreducible elements of the
lattice L3 are elements of the root R(L3).

Fig. 1.

Theorem 2.3. Let L be a finite lattice. Then R(L) is a chain if and only if L is a chain. In that case R(L) = L.

Proof. If L is a chain, than clearly R(L) is a chain. Conversely, let L be a lattice such that R(L) is a chain.
The greatest element 1L ∈ L belongs to the root R(L) by definition of the root. Let 1L, r1, . . . , rk, 0R(L) be all
elements of the root R(L), such that 1L ≻ r1 ≻ · · · ≻ rk ≻ 0R(L). If there exists a ∈ L such that 1L ≻ a , r1, then
the principal filter [a) is a chain, so a ∈ R(L), which is a contradiction. From this it follows that 1L covers
only element r1 ∈ R(L). Similarly, if there exists an element b ∈ L such that r j ≻ b , r j+1 ( j = 1, 2, . . . , k − 1),
then b ∈ R(L), which is also a contradiction. Thus, r j covers only r j+1. Analogously, rk covers only the least
element 0R(L) of the root R(L).

Let us also prove that the elements 1L, r1, . . . , rk, 0R(L) of the chain are the only elements of the lattice L,
i.e., that 0R(L) is also the least element of the lattice L.

Let there exists an element c ∈ L \R(L) such that 0R(L) ≻ c. If the element c is meet-irreducible, then [c)
is a chain and c ∈ R(L), which is a contradiction.

If the element c is meet-reducible, then besides the chain c ≺ 0R(L) ≺ rk ≺ · · · ≺ r1 ≺ 1L at least one
more chain exists between elements c and 1L. That chain is c ≺ a1 ≺ · · · ≺ ai ≺ r j ≺ · · · ≺ r1 ≺ 1L, for some
j = 1, 2, . . . , k, and i ∈ N, or c ≺ a1 ≺ · · · ≺ ai ≺ 1L, for some a1, . . . , ai , rl, (l = 1, 2, . . . , k, ).

In both cases, the principal filter [ai) (i ∈ N) is a chain, so ai ∈ R(L), which contradicts the fact that R(L)
is a chain.

Thus L \R(L) = ∅, so L = R(L).
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3. ⊗r-product and ⊗l-product of lattices

Let L f be the class of all finite lattices with at least two elements and let ⊗r and ⊗l be two binary
operations on L f defined as follows: for all L1,L2 ∈ L f ,

L1 ⊗r L2 = {0} + (L1\{0}) ×R(L2),

L1 ⊗l L2 = {0} +R(L1) × (L2\{0}).
In a very simple way we can prove the following proposition.

Proposition 3.1. Let L1,L2 ∈ L f . Then the following hold.

(A) For every r ∈ R(L2), the set {(l, r) | l ∈ L1\{0}} ∪ {0} forms a sublattice of L1 ⊗r L2 which is isomorphic to L1.

(B) There exists a sublattice of L1 ⊗r L2 with the greatest element 1L1⊗rL2 and the least element 0L1⊗rL2 which is
isomorphic to L1.

(C) For every l ∈ L1\{0}, the set {(l, r) | r ∈ R(L2)} forms a subsemilattice of (L1 ⊗r L2,∨) which is isomorphic to
(R(L2),∨).

(D) There exists a subsemilattice of (L1 ⊗r L2,∨) with the greatest element 1L1⊗rL2 which is isomorphic to (R(L2),∨).

Proof. By the construction of the⊗r-product, it is easy to verify that assertions (A) and (C) hold. The assertion
(B) follows by (A) if we take that r = 1L2 and the assertion (D) follows by (C) if we take l = 1L1 .

Clearly, L1 ⊗r L2 is a finite lattice with at least two elements. In addition, ⊗r is not associative on L f (see
Example 3.9) and thus different order of operations ⊗r on lattices L1, . . . ,Lm ∈ L f gives different lattices,
even with different number of elements.

For lattices L1, . . . , Lm ∈ L f , by P(L1,L2, . . . ,Lm) we will denote the subset of L f consisting of all
⊗r-products of lattices L1, . . . ,Lm in that order of appearance of lattices.

Theorem 3.2. Let L1,L2, . . . ,Lm ∈ L f and let L ∈P(L1,L2, . . . ,Lm). Then

R(L) = {(1, . . . , 1, ri, 1, . . . , 1) | ri ∈ R(Li)\{1}, i = 1, 2, . . . ,m} ∪ {(1, 1, . . . , 1)},

and

|R(L)| = 1 +
m∑

i=1

(|R(Li)| − 1) = 1 −m +
m∑

i=1

|R(Li)|.

Proof. Let L1,L2, . . . , Lm ∈ L f and let L ∈P(L1,L2, . . . , Lm) be an arbitrary element.
Let r = (1, . . . , 1, ri, 1, . . . , 1) and let a, b ∈ L be elements such that r ≤ a, b. Then a j = 1, b j = 1 for j , i, and

ri ≤ ai, bi. Since ri is an element of the root R(Li), i.e., [ri) is a chain, we have that ai ≤ bi or bi ≤ ai, and hence
a ≤ b or b ≤ a, i.e., [r) is a chain. So, every element of a form (1, . . . , 1, ri, 1, . . . , 1) is an element of the root
R(L).

Conversely, let r = (ri)m
i=1 be an element of the root R(L). First, we will prove that for i = 1, 2, . . . ,m, ri is

an element of the root R(Li). Let ai, bi ∈ Li be such that ri ≤ ai, bi. Then, for elements a = (1, . . . , 1, ai, 1, . . . , 1)
and b = (1, . . . , 1, bi, 1, . . . , 1) in L holds r ≤ a, b, and since [r) is a chain, we have a ≤ b or b ≤ a. Thus ai ≤ bi
or bi ≤ ai in Li, and [ri) is a chain, so ri is an element of the root R(Li). Further, if for some i , j we have that
ri , 1 and r j , 1, then the elements u = (1, . . . , 1, ri, 1, . . . , 1) and v = (1, . . . , 1, r j, 1, . . . , 1) are incomparable in
L and r ≤ u, v, which is in contradiction to the fact that [r) is a chain. Thus rk , 1 for at most one k.

Further, it is clear that |R(L)| = 1 +
∑m

i=1(|R(Li)| − 1) = 1 −m +
∑m

i=1 |R(Li)|.

Corollary 3.3. For L1,L2, . . . ,Lm ∈ L f , all lattices in P(L1,L2, . . . , Lm) have the same roots.
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Theorem 3.4. Let m ∈N, let L1, L2, . . . ,Lm ∈ L f , and let L(m)
Ar = (· · · ((L1 ⊗r L2) ⊗r L3) ⊗r · · · ) ⊗r Lm. Then

|L(m)
Ar | = 1 + (|L1| − 1) ·

m∏
i=2

|R(Li)|. (2)

Proof. We have that

L(m)
Ar = (· · · ((L1 ⊗r L2) ⊗r L3) ⊗r · · · ) ⊗r Lm

= (· · · (({0} + (L1\{0} ×R(L2)) ⊗r L3) ⊗r · · · ) ⊗r Lm

= (· · · ({0} + (({0} + (L1\{0}) ×R(L2))\{0}) ×R(L3)) ⊗r · · · ) ⊗r Lm

= (· · · ({0} + (L1\{0}) ×R(L2) ×R(L3)) ⊗r · · · ) ⊗r Lm

= {0} + (L1\{0}) ×R(L2) ×R(L3) × · · · ×R(Lm).

Thus, the number of elements of this ⊗r-product is given by (2).

Theorem 3.5. Let m ∈N, let L1, L2, . . . ,Lm ∈ L f , and let L(m)
Br = L1 ⊗r (· · · ⊗r (Lm−2 ⊗r (Lm−1 ⊗r Lm)) · · · ). Then

|L(m)
Br | = 1 + (|L1| − 1)

 m∑
i=2

|R(Li)| −m + 2

 . (3)

Proof. We have that

L(m)
Br = L1 ⊗r (· · · ⊗r (Lm−2 ⊗r (Lm−1 ⊗r Lm)) · · · )
= {0} + (L1\{0}) ×R (L2 ⊗r (· · · ⊗r (Lm−2 ⊗r (Lm−1 ⊗r Ln)) · · · ))

By Theorem 3.2, we have that

|R (L2 ⊗r (· · · ⊗r (Lm−2 ⊗r (Lm−1 ⊗r Lm)) · · · )) | =
m∑

i=2

|R(Li)| −m + 2,

so the equality (3) holds.

Corollary 3.6. |L(m)
Br | ≤ |L

(m)
Ar |

Proof. By Bernoulli’s inequality it follows

m∏
i=2

|R(Li)| =
m∏

i=2

(1 + |R(Li)| − 1) ≥ 1 +
m∑

i=2

(|R(Li)| − 1) =
m∑

i=2

|R(Li)| −m + 2,

and thus

1 + (|L1| − 1) ·
m∏

i=2

|R(Li)| ≥ 1 + (|L1| − 1)

 m∑
i=2

|R(Li)| −m + 2

 ,
i.e., |L(m)

Br | ≤ |L
(m)
Ar |.

If all ⊗r-products in which lattices L1,L2, . . . ,Lm occur in that order are observed, then cardinality of
⊗r-product depends on the parentheses, but the number of elements of the corresponding roots are always
the same (it is given by Theorem 3.2). For some application, ⊗r-product that has the greatest cardinality is
interesting for observation, and by Theorems 3.4, 3.5 and Corollary 3.6 it follows that it is the ⊗r-product
L(m)

Ar = (· · · ((L1 ⊗r L2) ⊗r L3) ⊗r · · · ) ⊗r Lm.
By duality, for ⊗l-product the following holds.
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Theorem 3.7. Let m ∈ N and let L1,L2, . . . ,Lm ∈ L f . Furthermore, let L(m)
Al = (· · · ((L1 ⊗l L2) ⊗l L3) ⊗l · · · ) ⊗l Lm

and L(m)
Bl = L1 ⊗l (· · · ⊗l (Lm−2 ⊗l (Lm−1 ⊗l Lm)) · · · ). Then

(i) |L(m)
Al | = 1 + (|Lm| − 1)

(∑m−1
i=1 |R(Li)| −m + 2

)
;

(ii) |L(m)
Bl | = 1 + (|Lm| − 1) ·∏m−1

i=1 |R(Li)|;

(iii) |L(m)
Al | ≤ |L

(m)
Br |.

Corollary 3.8. Let m ∈N and let L1,L2, . . . ,Lm ∈ L f be such that L1 = L2 = · · · = Lm. Then

|L(m)
Ar | = |L

(m)
Bl | ≥ |L

(m)
Al | = |L

(m)
Br |.

Proof. This follows from Theorems 3.2, 3.4, 3.5 and Corollary 3.3.

Example 3.9. Let L1,L2 and L3 be lattices given in Fig. 2. Then the lattice L1 ⊗r L2 is given in Fig. 3., and the
lattice (L1 ⊗r L2) ⊗r L3 is given in Fig. 4. The elements of the corresponding roots are denoted respectively
by black circles. In Fig. 5. the lattice L2 ⊗r L3 is given, and in Fig. 6. the lattice L1 ⊗r (L2 ⊗r L3) is given. The
number of root-elements of the lattices given in Figs. 4. and 6. is the same and it is exactly

| R(L1) | + | R(L2) | + | R(L3) | −2 = 9.

Clearly, the lattice in Fig. 4. has more elements than the lattice in Fig. 6.

Fig. 2.

Fig. 3. Lattice L1 ⊗r L2

Fig. 4. Lattice (L1 ⊗r L2) ⊗r L3
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Fig. 5. Lattice L2 ⊗r L3

Fig. 6. Lattice L1 ⊗r (L2 ⊗r L3)

Example 3.10. Let L1 and L2 be the lattices given in Fig. 7. Then |L1⊗r L2| = 29 and |L2⊗r L1| = 21, and hence
L1 ⊗r L2 , L2 ⊗r L1.

Fig. 7.

Corollary 3.11. The ⊗r-product is not commutative on L f .

A lattice L ∈ L f is ⊗r-simple if L\{0} = R(L). The class of all ⊗r-simple lattices will be denoted by Ls.

Theorem 3.12. Up to an isomorphism, the ⊗r-product is commutative on Ls.

Proof. Let L1,L2 ∈ Ls. Then L1 ⊗r L2 = {0}+ (L1\{0})×R(L2) � {0}+ (L2\{0})×R(L1) = L2 ⊗r L1, and therefore,
L1 ⊗r L2 � L2 ⊗r L1.

The collection of all filters on a finite poset X, ordered dually to inclusion, is a finite distributive lattice L;
its poset of meet-irreducibles is isomorphic to X. The converse is given by Birkhoff’s theorem [2], as follows.
Every finite distributive lattice is isomorphic to the lattice of all filters of the poset of its meet-irreducible
elements, ordered dually to inclusion. As is known, the same poset of meet-irreducibles determine also some
other, non-distributive lattices in which it is the poset of meet-irreducibles. In [15], conditions under which
an arbitrary finite lattice has the same (up to isomorphism) poset of meet-irreducibles as that distributive
lattice, are given.

For n ∈N, the Boolean lattice 2n is a lattice of greatest cardinality among all lattices with n meet-irredu-
cible elements. From this it follows that among all latices whose corresponding root has n + 1 elements, 2n

is a lattice of greatest cardinality. In that case, |2n ⊗r L2| = (2n − 1) · |R(L2)| + 1 and

|R(2n ⊗r L2)| = 1 + (|R(2n)| − 1) + (|R(L2)| − 1) = 1 + n + 1 − 1 + |R(L2)| − 1 = n + |R(L2)|.

Thus the following assertions hold.

Corollary 3.13. Let 2n be a Boolean lattice (n ∈ N) and let L ∈ L f . Then R(2n ⊗r L) = I (2n ⊗r L) ∪ {1} and
|I (2n ⊗r L)| = n − 1 + |R(L2)|.
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Corollary 3.14. Let L1, L2 ∈ L f . Let n be the number of meet-irreducible elements of the lattice L1. Then the lattice
L1 ⊗r L2, treated as a function of L1, has the greatest cardinality in the case that L1 is a Boolean lattice 2n and
|I (L)| = n + |R(L2)| − 1.

Corollary 3.15. Let 2n be a Boolean lattice (n ∈N) and for every i ∈ {1, 2, . . . ,m} let Li = 2n. Then

(i) |Lm
Ar| = 1 + (2n − 1)(n + 1)m,

(ii) |Lm
Br| = 1 + (2n − 1)(1 + n(m − 1)),

and |I (Lm
n )| = nm.

Proof. From Theorems 3.4 and 3.5 follows (i) and (ii), respectively. Let Lm
n be Lm

Ar or Lm
Br. We will calculate the

number of meet-irreducible elements of Lm
n . From Theorem 3.2 follows that it is the number of root-elements

of Lm
n is |R(Lm

n )| = 1 +
∑m

i=1(|R(Li)| − 1) = 1 + m((n + 1) − 1) = 1 + nm. Then, by Theorem 3.13 follows that
|I (Lm

n )| = nm.

Concluding remarks: In this paper we gave a new construction of a lattice starting from a given family of
lattices. By the given algorithm, one can construct a lattice of large cardinality starting from quite small and
simple lattices. The obtained lattice can be used as a co-domain of fuzzy sets whose cuts are presented as bi-
nary words. Connections between coding theory and lattice valued fuzzy sets can be found in [10],[12]–[17].
Using our root product in coding theory could provide more code words without considerably increasing
the code length.
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