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Available at: http://www.pmf.ni.ac.rs/filomat

On the diameter of the graph ΓAnn(M)(R)

David F. Andersona, Shaban Ghalandarzadehb, Sara Shirinkamb, Parastoo Malakooti Radc

aDepartment of Mathematics, University of Tennessee, Knoxville, TN 37996-1320, USA
bDepartment of Mathematics, K. N. Toosi University of Technology, P. O. Box 16315-1618, Tehran, Iran.

c Faculty of Electronic and Computer and IT, Islamic Azad university, Qazvin Branch, Qazvin, Iran

Abstract. For a commutative ring R with identity, the ideal-based zero- divisor graph, denoted by ΓI(R),
is the graph whose vertices are {x ∈ R \ I | xy ∈ I for some y ∈ R \ I}, and two distinct vertices x and y are
adjacent if and only if xy ∈ I. In this paper, we investigate an annihilator ideal-based zero-divisor graph,
denoted by ΓAnn(M)(R), by replacing the ideal I with the annihilator ideal Ann(M) for an R-module M. We
also study the relationship between the diameter of ΓAnn(M)(R) and the minimal prime ideals of Ann(M). In
addition, we determine when ΓAnn(M)(R) is complete. In particular, we prove that for a reduced R-module
M, ΓAnn(M)(R) is a complete graph if and only if R � Z2 × Z2 and M � M1 ×M2 for M1 and M2 nonzero
Z2-modules.

1. Introduction

The zero divisor graph of a commutative ring was introduced by I. Beck in 1988 [8], and further studied
by D. D. Anderson and M. Naseer in 1993 [1]. However, they let all the elements of R be vertices of the graph,
and they were mainly interested in colorings. D. F. Anderson and P. S. Livingston in 1999 [2], introduced
and studied the zero-divisor graph of a commutative ring with identity, whose vertices are the nonzero
zero-divisors and x− y is an edge whenever xy = 0. Since then, the concept of zero-divisor graphs has been
studied extensively by many authors, including [3, 12, 14, 17, 18], and [19]. For recent developments on
graphs of commutative rings, see [4–6, 11], and [13].

S. P. Redmond in 2003 [18], extended the zero-divisor graph of a commutative ring to an ideal-based
zero-divisor graph of a commutative ring. For a given ideal I of R, he defined an undirected graph ΓI(R),
whose vertices are {a ∈ R \ I | ab ∈ I for some b ∈ R \ I}, where distinct vertices a and b are adjacent if and
only if ab ∈ I. He proved that this graph is connected with diam(ΓI(R)) ≤ 3. Moreover, the concept of the
zero-divisor graph for a ring has been extended to module theory by Sh. Ghalandarzadeh and P. Malakooti
Rad in 2009 [10]. They defined the torsion graph of an R-module M, whose vertices are the nonzero torsion
elements of M such that two distinct vertices x, y are adjacent if and only if (x : M)(y : M)M = 0. For a
reduced multiplication R-module M, they proved that, if Γ(M) is complemented, then S−1M is von Neumann
regular, where S = R \Z(M). In addition, the authors in [16] have investigated the relationship between the
diameter of Γ(M) and Γ(R).
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Let R be a commutative ring with nonzero identity and M be a unitary R-module. In this paper, we will
investigate the annihilator ideal-based zero-divisor graph by replacing the ideal I with the ideal Ann(M) for
the R-module M. Here the annihilator ideal-based zero-divisor graph ΓAnn(M)(R) is a simple graph, whose
vertices are the set {a ∈ R \ Ann(M) | abM = 0 for some b ∈ R \ Ann(M)}, where distinct vertices a and b are
adjacent if and only if abM = 0, defined by Sh. Ghalandarzadeh et al. in 2011 [11]. In the first section, our
main purpose is to characterize the diameter of ΓAnn(M)(R) in terms of properties of the R-module M and
ring R. In addition, we investigate the relationship between the diameter of ΓAnn(M)(R) and the minimal
prime ideals of Ann(M) over a multiplication R-module M. In the second section, we determine when
ΓAnn(M)(R) is complete. Also, we prove that for a reduced R-module M, ΓAnn(M)(R) is a complete graph if
and only if R � Z2 ×Z2 and M � M1 ×M2 for M1 and M2 nonzero Z2-modules. This paper can be viewed
as generalizing some results in [14] for Γ(R) to ΓAnn(M)(R). Also, many of the results in this research have
corresponding analogs in that study.

Let G be a simple graph and V(G) denotes the set of vertices of G. Then G is a connected graph if there is
a path between any two distinct vertices. A complete graph is a simple graph whose vertices are pairwise
adjacent; the complete graph with n vertices is denoted by Kn. The distance d(x, y) between connected
vertices x, y is the length of a shortest path from x to y (d(x, y) = ∞ if there is no such path). The diameter of
G is the supremum of the distances between vertices. The diameter is 0 if the graph consists of a single
vertex.

A ring R is called reduced if Nil(R) = 0, and an R-module M is called a reduced module if rm = 0 implies
that rM ∩ Rm = 0, where r ∈ R and m ∈ M. It is clear that M is a reduced module if and only if r2m = 0
for r ∈ R, m ∈ M implies that rm = 0. A proper submodule N of M is called a prime submodule of M,
whenever rm ∈ N implies that m ∈ N or r ∈ (N : M), where r ∈ R and m ∈ M. A prime submodule N of
M is called a minimal prime submodule of a submodule H of M, if it contains H and there is no smaller
prime submodule with this property. A minimal prime submodule of the zero submodule is also known as
a minimal prime submodule of the module M. We recall that an R-module M is said to be a multiplication
module if for every submodule K of M, there exists an ideal I of R such that K = IM, [7]. By El-Bast and
Smith ([9], Theorem 2.5), every non-zero multiplication R-module has a maximal submodule and so has a
minimal prime submodule. The radical of an ideal I of a commutative ring R, denoted by Rad(I), is defined
as Rad(I) = {r ∈ R|rn ∈ I for some positive integer n}. If an ideal I of R is equal to its radical, then I is called a
radical ideal.

Throughout this paper, Nil(R) will be the ideal consisting of the nilpotent elements of R. Moreover,
Spec(M) will denote the set of the prime submodules of M, and Nil(M) :=

∩
N∈Spec(M) N will denote the

nilradical of M. Also, by the proof of Lemma 3.7, step 1, in [10], one can check that a multiplication
R-module M is reduced if and only if Nil(M) = 0. We shall often use (x : M) and (0 : M) = Ann(M) to denote
the residual of Rx by M and the annihilator of an R-module M, respectively. The set Z(M) := {r ∈ R | rm = 0
for some 0 , m ∈ M} will denote the set of zero-divisors of M. As usual, the rings of integers and integers
modulo n will be denoted by Z and Zn, respectively.

2. The diameter of ΓAnn(M)(R)

In this section, we investigate the relationship between the diameter of ΓAnn(M)(R) and the minimal prime
ideals of Ann(M) over a multiplication R-module M.

Lemma 2.1. If M is reduced, then I = Ann(M) is a radical ideal of R, and hence R/I is a reduced ring.

Proof. Suppose that rn ∈ I for some n ≥ 1, r ∈ R. Then rnm = 0 for all m ∈ M, and thus rm = 0 for all m ∈ M
since M is reduced. Hence I is a radical ideal of R.

The following example shows that the converse of the above lemma is not true.

Example 2.2. Let R = Z and M = Z⊕Z4. Then Ann(M) = Ann(Z)∩Ann(Z4) = 0∩ 4Z = 0 is a radical ideal
of Z. However, M is not reduced since Ann((0, 1 + 4Z)) = 4Z is not a radical ideal of Z.
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Lemma 2.3. Let M be a reduced multiplication R-module and I be an ideal of R. If I ⊆ P for some P ∈Min(Ann(M)),
then I ⊆ Z(M).

Proof. Let P ∈ Min(Ann(M)) and I ⊆ P. Since M is a reduced R-module, MP will be a reduced RP-
module. We show that MP has exactly one maximal submodule. Suppose that MP has two maximal
submodules S−1H1 and S−1H2; so by Theorem 2.5 [9], there exist two maximal ideals S−1h1 and S−1h2, such
that S−1H1 = S−1h1S−1M and S−1H2 = S−1h2S−1M. Since RP is a local ring, S−1h1 = S−1h2 = S−1P and
S−1H1 = S−1H2 = S−1(PM). We know that S−1(PM) is a proper submodule of S−1M; so PM , M. Also, if
S−1H0 is a prime submodule of MP, then by Corollary 2.11 [9], there is a prime ideal S−1h0 of S−1R such that
S−1H0 = S−1h0S−1M and Ann(S−1M) ⊆ S−1h0. Since RP is a local ring, S−1h0 ⊆ S−1P. One can easily check
that h0 ⊆ P and Ann(M) ⊆ h0. Since P is a minimal prime ideal of Ann(M), h0 = P and h0M = PM. So MP
has exactly one prime submodule. Therefore Nil(MP) = S−1(PM). Since MP is reduced, Nil(MP) = 0. Thus
S−1(PM) = 0. On the other hand, I ⊆ P; hence S−1(IM) = 0. Since PM , M, there is an x ∈ M such that
x < PM. Thus (a/1)(x/1) = 0 for all a ∈ I. Hence there exists an element s ∈ R \ P such that sax = 0. We show
that sx , 0. If sx = 0, then s(x : M)M = 0. So s(x : M) ⊆ Ann(M) ⊆ P, which is a contradiction since s < P and
x < PM. Consequently, I ⊆ Z(M).

Proposition 2.4. Let M be a reduced R-module. Then V(ΓAnn(M)(R))
∪

Ann(M) =
∪

P∈Min(Ann(M)) P.

Proof. Let K := V(ΓAnn(M)(R))
∪

Ann(M), and let x ∈ ∪P∈Min(Ann(M)) P. Then there exists a P0 ∈ Min(Ann(M))
such that x ∈ P0. First, suppose that xM = 0; so x ∈ Ann(M). Next, assume that xM , 0. We claim that
P0 = P0/Ann(M) ∈ Min(R), where R = R/Ann(M). Assume that P0 < Min(R). Thus, there is a prime ideal
P1 = P1/Ann(M) of R such that P̄1 ⊆ P0. Let 0 , y ∈ P1; hence y + Ann(M) = y ∈ P1. Thus y = z for some
nonzero element z of P0. Therefore y ∈ P0, and so P1 ⊆ P0. Hence P0 = P1. Consequently, P0 ∈ Min(R). We
know that x ∈ P0 ∈Min(R). So x ∈ ∪P∈Min(R̄) P. Since M is reduced, R is a reduced ring by Lemma 2.1. Thus∪

P∈Min(R) P̄ = Z(R), and so x ∈ Z(R). Thus x y = 0 for some 0 = y ∈ R. So xyM = 0 and yM , 0. Hence x ∈ K.
Therefore

∪
P∈Min(Ann(M)) P ⊆ K.

Now we show that K ⊆ ∪P∈Min(Ann(M)) P. Let x ∈ K. First, suppose that xM = 0. Thus x ∈ ∪P∈Min(Ann(M)) P.
Next, assume that xM , 0. Thus x is a vertex of the graph since x ∈ K. Hence xyM = 0 for some
y ∈ R \ Ann(M). Thus x ∈ Z(R), where R = R/Ann(M) and x = x + Ann(M). Since M is reduced, x , y
and R is reduced by Lemma 2.1; so

∪
P∈Min(Ann(M)) P = Z(R). Hence x ∈ P0 for some P0 ∈ Min(R). Thus

x ∈ P0. We show that P0 is a minimal prime ideal of R. If not, there exists a prime ideal P1 of R such that
Ann(M) ⊆ P1 ⊆ P0. So P1 ⊆ P0 ∈ Min(R). Thus P1 = P0. Therefore, for all z ∈ P0, we have z = P0 = P1; so
z ∈ P1. Consequently, P0 = P1. Hence P0 ∈Min(Ann(M)), and so K ∈ ∪P∈Min(Ann(M)) P.

Theorem 2.5. Let M be a reduced multiplication R-module. If R has more than two minimal prime ideals of Ann(M)
and Rα + Rβ * Z(M) for some α, β ∈ V(ΓAnn(M)(R)), then diam(ΓAnn(M)(R)) = 3.

Proof. Let α, β be two distinct vertices of ΓAnn(M)(R) with Rα + Rβ * Z(M). First, suppose that αβM , 0; so
d(α, β) , 1. If d(α, β) = 2, then there exists a vertex γ such that α − γ − β is a path. Thus αγM = 0 = βγM.
Accordingly, γ(Rα + Rβ)M = 0. Since γM , 0, Rα + Rβ * Z(M), which is a contradiction. We shall now
assume that d(α, β) , 2. By Theorem 2.4 [18], ΓAnn(M)(R) is connected with diam(ΓAnn(M)(R)) ≤ 3. Therefore
d(α, β) = 3.

Next, assume that αβM = 0. By Proposition 2.4 α, β ∈ ∪P∈Min(Ann(M)) P. Also, by Lemma 2.3, α and β
belong to two distinct minimal prime ideals of Ann(M) since Rα + Rβ * Z(M). Suppose that P,N and Q are
distinct minimal prime ideals of Ann(M) such that α ∈ P \ (Q ∪N) and α ∈ (Q ∩N) \ P. Let x ∈ (Q ∩ P) \N.
We show that α(β + αx)M , 0. If α(β + αx)M = 0, then for all m ∈ M, α(βm + αxm) = α2xm = 0. Hence
α2x ∈ Ann(M) ⊆ N. We know that x < N and N is a prime ideal of Ann(M); so α ∈ N, which is a contradiction.
Therefore α(β + αx)M , 0. On the other hand, we have β, x ∈ Q. So β + αx ∈ Q ∈ Min(Ann(M)). Thus
β + αx ∈ ∪P∈Min(Ann(M)) P. Since α(β + αx)M , 0, we have β + αx < Ann(M). By Proposition 2.4, β + αx is a
vertex of the graph. Also, for all y = Rα+Rβ, we have y = rα+ sβ = rα− sαx+ sαx+ sβ = (r− sx)α+ s(αx+ β)
for some r, s ∈ R. Thus Rα+Rβ = Rα+R(β+αx). So Rα+R(β+αx) * Z(M). Similarly to the above argument,
we have d(α, β + αx) = 3. Consequently, diam(ΓAnn(M)(R)) = 3.
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The following example shows that the condition |Min(Ann(M))| > 2 is not superfluous.

Example 2.6. Let R = Z×Z =M. One can easily check that M is a reduced multiplicationZ×Z-module and
Ann(M) = {0}. Thus ΓAnn(M)(R) = Γ(R). Also, we have Rα+Rβ * Z(M) for α = (1, 0), β = (0, 1) ∈ V(ΓAnn(M)(R))
and Min(Ann(M)) = {0 × Z,Z × 0}. As one sees in Fig. 1, ΓAnn(M)(R) is a complete bipartite graph, and
diam(ΓAnn(M)(R)) , 3. So the condition |Min(Ann(M))| > 2 is not superfluous.

Figure 1: ΓAnn(M)(R), where R = Z ×Z and M = Z ×Z.

Theorem 2.7. Let M be a reduced multiplication R-module and Rα + Rβ * Z(M) for some α, β ∈ V(ΓAnn(M)(R)).
Then diam(ΓAnn(M)(R)) ≤ 2 if and only if R has exactly two minimal prime ideals of Ann(M).

Proof. Suppose that diam(ΓAnn(M)(R)) ≤ 2 and Rα + Rβ * Z(M) for some α, β ∈ V(ΓAnn(M)(R)). By Proposition
2.4, α, β ∈ ∪P∈Min(Ann(M)) P. Since for some α, β ∈ V(ΓAnn(M)(R)), Rα + Rβ * Z(M), by Lemma 2.3, there are at
least two distinct minimal prime ideals P and Q of Ann(M) such that α ∈ P \Q, β ∈ Q \ P. By Theorem 2.5,
if R has more than two minimal prime ideals of Ann(M), then diam(ΓAnn(M)(R)) = 3. So R has exactly two
minimal prime ideals of Ann(M).
Conversely, suppose that P and Q are the only two minimal prime ideals of Ann(M). By Proposition 2.4,
V(ΓAnn(M)(R))

∪
Ann(M) = P ∪ Q. First, assume that α, β are two vertices of the graph such that α ∈ P \ Q

and β ∈ Q \ P. We show that
∩

N∈Min(M) N = PM
∩

QM. Let N0 be a minimal prime submodule of M. By
Corollary 2.11 [9], N0 = P0M, where P0 is a prime ideal of R and Ann(M) ⊆ P0. If P0 is a minimal prime
ideal of Ann(M), then N0 = PM or N0 = QM. Otherwise, Ann(M) ⊆ P ⊆ P0 or Ann(M) ⊆ Q ⊆ P0. Since N0
is a minimal prime submodule of M, N0 = PM or N0 = QM. Thus

∩
N∈Min(M) N = PM

∩
QM. By Theorem

2.4 [16], PM
∩

QM = Nil(M). Since αM ⊆ PM and βM ⊆ QM, αβM ⊆ PM
∩

QM. Also, since M is reduced,
Nil(M) = 0. Hence αβM = 0. Thus d(α, β) = 1. Now let r, s be two distinct vertices of the graph. If r ∈ P \Q
and s ∈ Q \ P, then by the above argument, d(r, s) = 1. Assume that r, s ∈ P; so rβ ∈ P. Also, since β ∈ Q \ P,
we have rβ ∈ Q. Thus rβM ⊆ PM

∩
QM = Nil(M) = 0. Similarly, sβM = 0. Also, if r, s ∈ Q, then similarly to

the above argument, we have rαM = 0 = sαM. Therefore d(r, s) = 2. It follows that diam(ΓAnn(M)(R)) ≤ 2.

Theorem 2.8. Let M be a multiplication R-module with Nil(M) , 0. If there are α, β ∈ V(ΓAnn(M)(R)) such that
Rα + Rβ * Z(M), then diam(ΓAnn(M)(R)) = 3.

Proof. α, β ∈ V(ΓAnn(M)(R)) such that Rα + Rβ * Z(M). So d(α, β) , 2. Suppose that αβM , 0. Hence
d(α, β) , 1. Thus by Theorem 2.4 [18], diam(ΓAnn(M)(R)) = 3.

Next, let αβM = 0. So d(α, β) = 1. Since Nil(M) , 0, there exists a nonzero element x ∈ Nil(M). Hence
(x : M)M , 0; so qm0 , 0 for some nonzero q ∈ (x : M), m0 ∈ M. Consider the pair α and β + αq. One can
easily show that Rα+Rβ = Rα+R(β+αq) and β+αq is a vertex of the graph. Therefore Rα+R(β+αq) * Z(M).
If α2qm0 = 0 = β2qm0, then q(Rα2 + Rβ2)m0 = 0. On the other hand, (Rα2 + Rβ2)m0 = (Rα + Rβ)2m0 since
αβM = 0. So q(Rα+Rβ)2m0 = 0. Hence Rα+Rβ ⊆ Z(M) since q(Rα+Rβ)m0 , 0, which is a contradiction. Thus
without loss of generality, we may assume α2qm0 , 0. Hence α(β+αq)M , 0. Consequently, d(α, β+αq) , 1.
Also, d(α, β + αq) , 2 since Rα + R(β + αq) * Z(M). So diam(ΓAnn(M)(R)) = 3.
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3. Complete graphs

In this section, we determine when ΓAnn(M)(R) is complete. We will need the following characterization
from Theorem 2.8 [2], of when Γ(R) is complete.

Theorem 3.1. Let R be a commutative ring. Then Γ(R) is a complete graph if and only if either R � Z2 × Z2 or
xy = 0 for all x, y ∈ Z(R).

Theorem 3.2. Let M be a reduced R-module. Then ΓAnn(M)(R) is a complete (nonempty) graph if and only if
R � Z2 ×Z2 and M �M1 ×M2 for M1 and M2 nonzero Z2-modules.

Proof. Suppose that R � Z2×Z2 and M �M1×M2 for nonzeroZ2-modules M1 and M2. Then I = Ann(M) = 0;
so ΓI(R) = Γ(Z2 ×Z2) = K2 is a complete, nonempty graph. Conversely, let M be a reduced R-module and
I = Ann(M). Then I is a radical ideal of R, and hence R/I is a reduced ring by Lemma 2.1 Assume that ΓI(R)
is nonempty and complete. Let α be a vertex of ΓI(R). Then α2 is also a vertex since I is a radical ideal of R.
If α2 , α, then α3 = α2 · α ∈ I since ΓI(R) is complete. But then α ∈ I since I is a radical ideal of R, which is a
contradiction. Thus α2 = α for every vertex α of ΓI(R). Hence R = Rα ⊕ R(1 − α). So we may assume that
R = R1 × R2 with α = (1, 0) a vertex of ΓI(R). Moreover, M = M1 ×M2 for Ri-modules Mi, (i = 1, 2). Since
α = (1, 0) is a vertex of ΓI(R), (1, 0) < I. Thus (1, 0)(M1 ×M2) = M1 × 0 is nonzero; so M1 , 0. Moreover,
I = Ann(M) = Ann(M1) × Ann(M2).

Since (1, 0) is a vertex of ΓI(R), (a, 0) = (1, 0)(a, b) ∈ I for some (a, b) ∈ R1 ×R2 \ I. Thus (a, 0)(M1 ×M2) = 0;
so aM1 = 0. Hence bM2 , 0 since (a, b) < I. Thus M2 , 0, and so (0, 1)(M1 ×M2) , 0. Therefore (0, 1) < I, but
(1, 0)(0, 1) = (0, 0) ∈ I; so (0, 1) is also a vertex of ΓI(R).

We next show that (c, 0) is a vertex of ΓI(R) if and only if c = 1. Suppose that (c, 0) is a vertex for some
c ∈ R1 \ {0, 1}. Thus (c, 0) and (1, 0) are distinct vertices of ΓI(R), and thus are adjacent since ΓI(R) is complete.
Hence (c, 0) = (c, 0)(1, 0) ∈ I, a contradiction. Similarly, (0, d) is a vertex of ΓI(R) if and only if d = 1. We
show that (c, d) is a vertex of ΓI(R) if and only if (c, d) = (1, 0) or (c, d) = (0, 1). Suppose that (c, d) is a vertex
of ΓI(R) distinct from both (1, 0) and (0, 1). Then (c, 0) = (c, d)(1, 0) ∈ I and (0, d) = (c, d)(0, 1) ∈ I; and hence
(c, d) = (c, 0)+ (0, d) ∈ I, a contradiction. Thus |ΓI(R)| = 2; so ΓI(R) = K2. By Corollary 2.7 [18], either (i)|I| = 1
and Γ(R/I) = K2, or (ii)|I| = 2 and Γ(R/I) = K1.

(i) Suppose that |I| = 1 and Γ(R/I) = K2. Then I = 0; so ΓI(R) = Γ(R) = K2. Thus R � Z2 × Z2, Z9 or
Z3[x]/(x2) by Example 2.1 [2]. However, R/I � R is a reduced ring by Lemma 2.1; so R � Z2 × Z2.
Since M �M1 ×M2 and I = 0, we must have both M1 and M2 nonzero.

(ii) Suppose that |I| = 2 and Γ(R/I) = K1. Thus R/I � Z4 or Z2[x]/(x2) by Example 2.1 [2]. However, R/I
must be a reduced ring by Lemma 2.1; so neither of these cases is possible. Thus R � Z2 × Z2 and
M �M1 ×M2, where each Mi is a nonzero Z2-module (i = 1, 2).

This completes the proof.

The next example shows that the above theorem fails if we do not assume that M is a reduced R-module.

Example 3.3. Let n ≥ 2 be an integer. By Theorem 6.1 [18], there is a ring R with a nonzero ideal I such
that ΓI(R) = Kn. Specifically, let R = Z4 × Zn and I = 0 × Zn. Then R/I � Z4; so Γ(R/I) = K1. Thus
ΓI(R) = Kn. So for M = R/I, we have Ann(M) = I. Hence ΓAnn(M)(R) = Kn. For n = 1, let R = M = Z4. Then
I = Ann(M) = 0; so ΓAnn(M)(R) = Γ(Z4) = K1. So for every n ≥ 1, there is a ring R and an R-module M such
that ΓAnn(M)(R) = Kn.

Theorem 3.4. Let M be a reduced R-module. If Γ(R) is complete, then either ΓAnn(M)(R) is complete or the vertex
sets of ΓAnn(M)(R) and Γ(R) are disjoint.

Proof. Since Γ(R) is complete, by Theorem 3.1, either R � Z2 × Z2 or xy = 0 for all x, y ∈ Z(R). If
R � Z2 × Z2, then by Theorem 3.2, ΓAnn(M)(R) is complete. Suppose that xy = 0 for all x, y ∈ Z(R). Let
x ∈ V(Γ(R))

∩
V(ΓAnn(M)(R)). Then x2 = 0; hence x2M = 0. Since M is reduced, xM = 0, which is a

contradiction. Consequently, the vertex sets of ΓAnn(M)(R) and Γ(R) are disjoint.
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Corollary 3.5. Let M be a reduced R-module. If Γ(R) is complete, then either ΓAnn(M)(R) is complete or Z(R)M = 0.

Corollary 3.6. Let R be a ring and M be an R-module.

(1) diam(ΓAnn(M)(R)) = 0 if and only if Nil(M) , 0, R is isomorphic to either Z4 or Z2[x]/(x2), and Ann(M) = 0.

(2) diam(ΓAnn(M)(R)) = 1 if and only if either (i) M is reduced, R � Z2 ×Z2 and M � M1 ×M2 for M1 and M2
nonzero Z2-modules, or (ii) Nil(M) , 0 and xyM = 0 for each distinct pair of vertices x and y.

Let R be a ring and M be a multiplication R-module. Suppose that there exist two distinct vertices α and β such that
Rα + Rβ * Z(M).

(3) diam(ΓAnn(M)(R)) = 2 if and only if either (i) R has exactly two minimal prime ideals of Ann(M), M is reduced,
and ΓAnn(M)(R) has at least three vertices, or (ii) for each distinct pair of vertices α and β, there exists a vertex
which is adjacent to both α and β.

(4) diam(ΓAnn(M)(R)) = 3 if and only if either (i) R has more than two minimal prime ideals of Ann(M) and M is
reduced, or (ii) Nil(M) , 0.

Proof. (1) By Example 2.1 [2] and by Corollary 2.7 [18].
(2) By Theorem 3.2.
(3) Suppose that diam(ΓAnn(M)(R)) = 2 and there exist two distinct vertices α and β such that Rα + Rβ *

Z(M). If M is reduced, then R has exactly two minimal prime ideals of Ann(M), by Theorem 2.7
Conversely, suppose that (i) holds. By Theorem 2.7, diam(ΓAnn(M)(R)) ≤ 2. Assume that diam(ΓAnn(M)(R)) =

0. Thus by (1), Nil(M) , 0, which is a contradiction. Suppose that diam(ΓAnn(M)(R)) = 1. Hence by (2), either
R � Z2 × Z2, or Nil(M) , 0. Since ΓAnn(M)(R) has at least three vertices and M is reduced, we have a
contradiction. Therefore diam(ΓAnn(M)(R)) = 2.

(4) Suppose that diam(ΓAnn(M)(R)) = 3, M is reduced, and R has exactly two minimal prime ideals of
Ann(M). By Theorem 2.7, diam(ΓAnn(M)(R)) ≤ 2, which is a contradiction. Now assume that P is the only
minimal prime ideal of Ann(M). By Proposition 2.4, for all vertices α and β we have α, β ∈ P. Thus
Rα + Rβ ⊆ Z(M) by Lemma 2.3, which is a contradiction. Therefore R has more than two minimal prime
ideals of Ann(M).

Conversely, if Nil(M) , 0, then diam(ΓAnn(M)(R)) = 3 by Theorem 2.8. Now assume that M is reduced
and R has more than two minimal prime ideals of Ann(M). Then diam(ΓAnn(M)(R)) = 3 by Theorem 2.5.
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