On the diameter of the graph $\Gamma_{A n n(M)}(R)$

David F. Anderson ${ }^{\text {a }}$, Shaban Ghalandarzadeh ${ }^{\text {b }}$, Sara Shirinkam ${ }^{\text {b }}$, Parastoo Malakooti Rad ${ }^{\text {c }}$
${ }^{a}$ Department of Mathematics, University of Tennessee, Knoxville, TN 37996-1320, USA
${ }^{b}$ Department of Mathematics, K. N. Toosi University of Technology, P. O. Box 16315-1618, Tehran, Iran.
${ }^{c}$ Faculty of Electronic and Computer and IT, Islamic Azad university, Qazvin Branch, Qazvin, Iran

Abstract

For a commutative ring R with identity, the ideal-based zero- divisor graph, denoted by $\Gamma_{I}(R)$, is the graph whose vertices are $\{x \in R \backslash I \mid x y \in I$ for some $y \in R \backslash I\}$, and two distinct vertices x and y are adjacent if and only if $x y \in I$. In this paper, we investigate an annihilator ideal-based zero-divisor graph, denoted by $\Gamma_{A n n(M)}(R)$, by replacing the ideal I with the annihilator ideal $\operatorname{Ann}(M)$ for an R-module M. We also study the relationship between the diameter of $\Gamma_{A n n(M)}(R)$ and the minimal prime ideals of $A n n(M)$. In addition, we determine when $\Gamma_{A n n(M)}(R)$ is complete. In particular, we prove that for a reduced R-module $M, \Gamma_{A n n(M)}(R)$ is a complete graph if and only if $R \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ and $M \cong M_{1} \times M_{2}$ for M_{1} and M_{2} nonzero \mathbb{Z}_{2}-modules.

1. Introduction

The zero divisor graph of a commutative ring was introduced by I. Beck in 1988 [8], and further studied by D. D. Anderson and M. Naseer in 1993 [1]. However, they let all the elements of R be vertices of the graph, and they were mainly interested in colorings. D. F. Anderson and P. S. Livingston in 1999 [2], introduced and studied the zero-divisor graph of a commutative ring with identity, whose vertices are the nonzero zero-divisors and $x-y$ is an edge whenever $x y=0$. Since then, the concept of zero-divisor graphs has been studied extensively by many authors, including [3, 12, 14, 17, 18], and [19]. For recent developments on graphs of commutative rings, see [4-6, 11], and [13].
S. P. Redmond in 2003 [18], extended the zero-divisor graph of a commutative ring to an ideal-based zero-divisor graph of a commutative ring. For a given ideal I of R, he defined an undirected graph $\Gamma_{I}(R)$, whose vertices are $\{a \in R \backslash I \mid a b \in I$ for some $b \in R \backslash I\}$, where distinct vertices a and b are adjacent if and only if $a b \in I$. He proved that this graph is connected with $\operatorname{diam}\left(\Gamma_{I}(R)\right) \leq 3$. Moreover, the concept of the zero-divisor graph for a ring has been extended to module theory by Sh. Ghalandarzadeh and P. Malakooti Rad in 2009 [10]. They defined the torsion graph of an R-module M, whose vertices are the nonzero torsion elements of M such that two distinct vertices x, y are adjacent if and only if $(x: M)(y: M) M=0$. For a reduced multiplication R-module M, they proved that, if $\Gamma(M)$ is complemented, then $S^{-1} M$ is von Neumann regular, where $S=R \backslash Z(M)$. In addition, the authors in [16] have investigated the relationship between the diameter of $\Gamma(M)$ and $\Gamma(R)$.

[^0]Let R be a commutative ring with nonzero identity and M be a unitary R-module. In this paper, we will investigate the annihilator ideal-based zero-divisor graph by replacing the ideal I with the ideal $\operatorname{Ann}(M)$ for the R-module M. Here the annihilator ideal-based zero-divisor graph $\Gamma_{A n n(M)}(R)$ is a simple graph, whose vertices are the set $\{a \in R \backslash \operatorname{Ann}(M) \mid a b M=0$ for some $b \in R \backslash \operatorname{Ann}(M)\}$, where distinct vertices a and b are adjacent if and only if $a b M=0$, defined by Sh. Ghalandarzadeh et al. in 2011 [11]. In the first section, our main purpose is to characterize the diameter of $\Gamma_{A n n(M)}(R)$ in terms of properties of the R-module M and ring R. In addition, we investigate the relationship between the diameter of $\Gamma_{\operatorname{Ann}(M)}(R)$ and the minimal prime ideals of $\operatorname{Ann}(M)$ over a multiplication R-module M. In the second section, we determine when $\Gamma_{A n n(M)}(R)$ is complete. Also, we prove that for a reduced R-module $M, \Gamma_{A n n(M)}(R)$ is a complete graph if and only if $R \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ and $M \cong M_{1} \times M_{2}$ for M_{1} and M_{2} nonzero \mathbb{Z}_{2}-modules. This paper can be viewed as generalizing some results in [14] for $\Gamma(R)$ to $\Gamma_{A n n(M)}(R)$. Also, many of the results in this research have corresponding analogs in that study.

Let G be a simple graph and $V(G)$ denotes the set of vertices of G. Then G is a connected graph if there is a path between any two distinct vertices. A complete graph is a simple graph whose vertices are pairwise adjacent; the complete graph with n vertices is denoted by K^{n}. The distance $d(x, y)$ between connected vertices x, y is the length of a shortest path from x to $y(d(x, y)=\infty$ if there is no such path). The diameter of G is the supremum of the distances between vertices. The diameter is 0 if the graph consists of a single vertex.

A ring R is called reduced if $\operatorname{Nil}(R)=0$, and an R-module M is called a reduced module if $r m=0$ implies that $r M \cap R m=0$, where $r \in R$ and $m \in M$. It is clear that M is a reduced module if and only if $r^{2} m=0$ for $r \in R, m \in M$ implies that $r m=0$. A proper submodule N of M is called a prime submodule of M, whenever $r m \in N$ implies that $m \in N$ or $r \in(N: M)$, where $r \in R$ and $m \in M$. A prime submodule N of M is called a minimal prime submodule of a submodule H of M, if it contains H and there is no smaller prime submodule with this property. A minimal prime submodule of the zero submodule is also known as a minimal prime submodule of the module M. We recall that an R-module M is said to be a multiplication module if for every submodule K of M, there exists an ideal I of R such that $K=I M$, [7]. By El-Bast and Smith ([9], Theorem 2.5), every non-zero multiplication R-module has a maximal submodule and so has a minimal prime submodule. The radical of an ideal I of a commutative ring R, denoted by $\operatorname{Rad}(I)$, is defined as $\operatorname{Rad}(I)=\left\{r \in R \mid r^{n} \in I\right.$ for some positive integer $\left.n\right\}$. If an ideal I of R is equal to its radical, then I is called a radical ideal.

Throughout this paper, $\operatorname{Nil}(R)$ will be the ideal consisting of the nilpotent elements of R. Moreover, $\operatorname{Spec}(M)$ will denote the set of the prime submodules of M, and $\operatorname{Nil}(M):=\bigcap_{N \in \operatorname{Spec}(M)} N$ will denote the nilradical of M. Also, by the proof of Lemma 3.7, step 1, in [10], one can check that a multiplication R-module M is reduced if and only if $\operatorname{Nil}(M)=0$. We shall often use $(x: M)$ and $(0: M)=\operatorname{Ann}(M)$ to denote the residual of $R x$ by M and the annihilator of an R-module M, respectively. The set $Z(M):=\{r \in R \mid r m=0$ for some $0 \neq m \in M\}$ will denote the set of zero-divisors of M. As usual, the rings of integers and integers modulo n will be denoted by \mathbb{Z} and \mathbb{Z}_{n}, respectively.

2. The diameter of $\Gamma_{A n n(M)}(R)$

In this section, we investigate the relationship between the diameter of $\Gamma_{\operatorname{Ann}(M)}(R)$ and the minimal prime ideals of $\operatorname{Ann}(M)$ over a multiplication R-module M.

Lemma 2.1. If M is reduced, then $I=\operatorname{Ann}(M)$ is a radical ideal of R, and hence R / I is a reduced ring.
Proof. Suppose that $r^{n} \in I$ for some $n \geq 1, r \in R$. Then $r^{n} m=0$ for all $m \in M$, and thus $r m=0$ for all $m \in M$ since M is reduced. Hence I is a radical ideal of R.

The following example shows that the converse of the above lemma is not true.
Example 2.2. Let $R=\mathbb{Z}$ and $M=\mathbb{Z} \oplus \mathbb{Z}_{4}$. Then $\operatorname{Ann}(M)=\operatorname{Ann}(\mathbb{Z}) \cap \operatorname{Ann}\left(\mathbb{Z}_{4}\right)=0 \cap 4 \mathbb{Z}=0$ is a radical ideal of \mathbb{Z}. However, M is not reduced since $\operatorname{Ann}((0,1+4 \mathbb{Z}))=4 \mathbb{Z}$ is not a radical ideal of \mathbb{Z}.

Lemma 2.3. Let M be a reduced multiplication R-module and I be an ideal of R. If $I \subseteq P$ for some $P \in \operatorname{Min}(\operatorname{Ann}(M))$, then $I \subseteq Z(M)$.
Proof. Let $P \in \operatorname{Min}(\operatorname{Ann}(M))$ and $I \subseteq P$. Since M is a reduced R-module, M_{P} will be a reduced R_{P} module. We show that M_{P} has exactly one maximal submodule. Suppose that M_{P} has two maximal submodules $S^{-1} H_{1}$ and $S^{-1} H_{2}$; so by Theorem 2.5 [9], there exist two maximal ideals $S^{-1} h_{1}$ and $S^{-1} h_{2}$, such that $S^{-1} H_{1}=S^{-1} h_{1} S^{-1} M$ and $S^{-1} H_{2}=S^{-1} h_{2} S^{-1} M$. Since R_{P} is a local ring, $S^{-1} h_{1}=S^{-1} h_{2}=S^{-1} P$ and $S^{-1} H_{1}=S^{-1} H_{2}=S^{-1}(P M)$. We know that $S^{-1}(P M)$ is a proper submodule of $S^{-1} M$; so $P M \neq M$. Also, if $S^{-1} H_{0}$ is a prime submodule of M_{P}, then by Corollary 2.11 [9], there is a prime ideal $S^{-1} h_{0}$ of $S^{-1} R$ such that $S^{-1} H_{0}=S^{-1} h_{0} S^{-1} M$ and $\operatorname{Ann}\left(S^{-1} M\right) \subseteq S^{-1} h_{0}$. Since R_{P} is a local ring, $S^{-1} h_{0} \subseteq S^{-1} P$. One can easily check that $h_{0} \subseteq P$ and $\operatorname{Ann}(M) \subseteq h_{0}$. Since P is a minimal prime ideal of $\operatorname{Ann}(M), h_{0}=P$ and $h_{0} M=P M$. So M_{P} has exactly one prime submodule. Therefore $\operatorname{Nil}\left(M_{P}\right)=S^{-1}(P M)$. Since M_{P} is reduced, $\operatorname{Nil}\left(M_{P}\right)=0$. Thus $S^{-1}(P M)=0$. On the other hand, $I \subseteq P$; hence $S^{-1}(I M)=0$. Since $P M \neq M$, there is an $x \in M$ such that $x \notin P M$. Thus $(a / 1)(x / 1)=0$ for all $a \in I$. Hence there exists an element $s \in R \backslash P$ such that $s a x=0$. We show that $s x \neq 0$. If $s x=0$, then $s(x: M) M=0$. So $s(x: M) \subseteq A n n(M) \subseteq P$, which is a contradiction since $s \notin P$ and $x \notin P M$. Consequently, $I \subseteq Z(M)$.
Proposition 2.4. Let M be a reduced R-module. Then $V\left(\Gamma_{A n n(M)}(R)\right) \cup \operatorname{Ann}(M)=\bigcup_{P \in \operatorname{Min}(\operatorname{Ann}(M))} P$.
Proof. Let $K:=V\left(\Gamma_{\operatorname{Ann}(M)}(R)\right) \bigcup \operatorname{Ann}(M)$, and let $x \in \bigcup_{P \in \operatorname{Min}(\operatorname{Ann}(M))} P$. Then there exists a $P_{0} \in \operatorname{Min}(A n n(M))$ such that $x \in P_{0}$. First, suppose that $x M=0$; so $x \in \operatorname{Ann}(M)$. Next, assume that $x M \neq 0$. We claim that $\bar{P}_{0}=P_{0} \operatorname{Ann}(M) \in \operatorname{Min}(\bar{R})$, where $\bar{R}=R / \operatorname{Ann}(M)$. Assume that $\bar{P}_{0} \notin \operatorname{Min}(\bar{R})$. Thus, there is a prime ideal $\bar{P}_{1}=P_{1} \operatorname{Ann}(M)$ of \bar{R} such that $\bar{P}_{1} \subseteq \bar{P}_{0}$. Let $0 \neq y \in P_{1}$; hence $y+\operatorname{Ann}(M)=\bar{y} \in \bar{P}_{1}$. Thus $\bar{y}=\bar{z}$ for some nonzero element \bar{z} of \bar{P}_{0}. Therefore $y \in P_{0}$, and so $P_{1} \subseteq P_{0}$. Hence $P_{0}=P_{1}$. Consequently, $\bar{P}_{0} \in \operatorname{Min}(\bar{R})$. We know that $\bar{x} \in \bar{P}_{0} \in \operatorname{Min}(\bar{R})$. So $\bar{x} \in \bigcup_{\bar{P} \in \operatorname{Min}(\bar{R})} \bar{P}$. Since M is reduced, \bar{R} is a reduced ring by Lemma 2.1. Thus $\bigcup_{\bar{P} \in \operatorname{Min}(\bar{R})} \bar{P}=Z(\bar{R})$, and so $\bar{x} \in Z(\bar{R})$. Thus $\bar{x} \bar{y}=0$ for some $\overline{0}=\bar{y} \in \bar{R}$. So $x y M=0$ and $y M \neq 0$. Hence $x \in K$. Therefore $\bigcup_{P \in \operatorname{Min}(A n n(M))} P \subseteq K$.

Now we show that $K \subseteq \bigcup_{P \in \operatorname{Min}(\operatorname{Ann}(M))} P$. Let $x \in K$. First, suppose that $x M=0$. Thus $x \in \bigcup_{P \in \operatorname{Min}(\operatorname{Ann}(M))} P$. Next, assume that $x M \neq 0$. Thus x is a vertex of the graph since $x \in K$. Hence $x y M=0$ for some $y \in R \backslash \operatorname{Ann}(M)$. Thus $\bar{x} \in Z(\bar{R})$, where $\bar{R}=R / \operatorname{Ann}(M)$ and $\bar{x}=x+\operatorname{Ann}(M)$. Since M is reduced, $x \neq y$ and \bar{R} is reduced by Lemma 2.1; so $\bigcup_{\bar{P} \in \operatorname{Min}(\operatorname{Ann}(M))} \bar{P}=Z(\bar{R})$. Hence $\bar{x} \in \bar{P}_{0}$ for some $\bar{P}_{0} \in \operatorname{Min}(\bar{R})$. Thus $x \in P_{0}$. We show that P_{0} is a minimal prime ideal of R. If not, there exists a prime ideal P_{1} of R such that $\operatorname{Ann}(M) \subseteq P_{1} \subseteq P_{0}$. So $\bar{P}_{1} \subseteq \bar{P}_{0} \in \operatorname{Min}(\bar{R})$. Thus $\bar{P}_{1}=\bar{P}_{0}$. Therefore, for all $z \in P_{0}$, we have $\bar{z}=\bar{P}_{0}=\bar{P}_{1}$; so $z \in P_{1}$. Consequently, $P_{0}=P_{1}$. Hence $P_{0} \in \operatorname{Min}(\operatorname{Ann}(M))$, and so $K \in \bigcup_{P \in \operatorname{Min}(\operatorname{Ann}(M))} P$.
Theorem 2.5. Let M be a reduced multiplication R-module. If R has more than two minimal prime ideals of $A n n(M)$ and $R \alpha+R \beta \nsubseteq Z(M)$ for some $\alpha, \beta \in V\left(\Gamma_{\operatorname{Ann}(M)}(R)\right)$, then $\operatorname{diam}\left(\Gamma_{\operatorname{Ann}(M)}(R)\right)=3$.
Proof. Let α, β be two distinct vertices of $\Gamma_{A n n(M)}(R)$ with $R \alpha+R \beta \nsubseteq Z(M)$. First, suppose that $\alpha \beta M \neq 0$; so $d(\alpha, \beta) \neq 1$. If $d(\alpha, \beta)=2$, then there exists a vertex γ such that $\alpha-\gamma-\beta$ is a path. Thus $\alpha \gamma M=0=\beta \gamma M$. Accordingly, $\gamma(R \alpha+R \beta) M=0$. Since $\gamma M \neq 0, R \alpha+R \beta \nsubseteq Z(M)$, which is a contradiction. We shall now assume that $d(\alpha, \beta) \neq 2$. By Theorem $2.4[18], \Gamma_{\operatorname{Ann}(M)}(R)$ is connected with $\operatorname{diam}\left(\Gamma_{\operatorname{Ann}(M)}(R)\right) \leq 3$. Therefore $d(\alpha, \beta)=3$.

Next, assume that $\alpha \beta M=0$. By Proposition $2.4 \alpha, \beta \in \bigcup_{P \in \operatorname{Min}(\operatorname{Ann}(M))} P$. Also, by Lemma 2.3, α and β belong to two distinct minimal prime ideals of $A n n(M)$ since $R \alpha+R \beta \nsubseteq Z(M)$. Suppose that P, N and Q are distinct minimal prime ideals of $A n n(M)$ such that $\alpha \in P \backslash(Q \cup N)$ and $\alpha \in(Q \cap N) \backslash P$. Let $x \in(Q \cap P) \backslash N$. We show that $\alpha(\beta+\alpha x) M \neq 0$. If $\alpha(\beta+\alpha x) M=0$, then for all $m \in M, \alpha(\beta m+\alpha x m)=\alpha^{2} x m=0$. Hence $\alpha^{2} x \in \operatorname{Ann}(M) \subseteq N$. We know that $x \notin N$ and N is a prime ideal of $\operatorname{Ann}(M)$; so $\alpha \in N$, which is a contradiction. Therefore $\alpha(\beta+\alpha x) M \neq 0$. On the other hand, we have $\beta, x \in Q$. So $\beta+\alpha x \in Q \in \operatorname{Min}(\operatorname{Ann}(M))$. Thus $\beta+\alpha x \in \bigcup_{P \in \operatorname{Min}(\operatorname{Ann}(M))} P$. Since $\alpha(\beta+\alpha x) M \neq 0$, we have $\beta+\alpha x \notin \operatorname{Ann}(M)$. By Proposition $2.4, \beta+\alpha x$ is a vertex of the graph. Also, for all $y=R \alpha+R \beta$, we have $y=r \alpha+s \beta=r \alpha-s \alpha x+s \alpha x+s \beta=(r-s x) \alpha+s(\alpha x+\beta)$ for some $r, s \in R$. Thus $R \alpha+R \beta=R \alpha+R(\beta+\alpha x)$. So $R \alpha+R(\beta+\alpha x) \nsubseteq Z(M)$. Similarly to the above argument, we have $d(\alpha, \beta+\alpha x)=3$. Consequently, $\operatorname{diam}\left(\Gamma_{\operatorname{Ann}(M)}(R)\right)=3$.

The following example shows that the condition $|\operatorname{Min}(\operatorname{Ann}(M))|>2$ is not superfluous.
Example 2.6. Let $R=\mathbb{Z} \times \mathbb{Z}=M$. One can easily check that M is a reduced multiplication $\mathbb{Z} \times \mathbb{Z}$-module and $\operatorname{Ann}(M)=\{0\}$. Thus $\Gamma_{A n n(M)}(R)=\Gamma(R)$. Also, we have $R \alpha+R \beta \nsubseteq Z(M)$ for $\alpha=(1,0), \beta=(0,1) \in V\left(\Gamma_{A n n(M)}(R)\right)$ and $\operatorname{Min}(\operatorname{Ann}(M))=\{0 \times \mathbb{Z}, \mathbb{Z} \times 0\}$. As one sees in Fig. 1, $\Gamma_{A n n(M)}(R)$ is a complete bipartite graph, and $\operatorname{diam}\left(\Gamma_{\operatorname{Ann}(M)}(R)\right) \neq 3$. So the condition $|\operatorname{Min}(\operatorname{Ann}(M))|>2$ is not superfluous.

Figure 1: $\Gamma_{\text {Ann }(M)}(R)$, where $R=\mathbb{Z} \times \mathbb{Z}$ and $M=\mathbb{Z} \times \mathbb{Z}$.

Theorem 2.7. Let M be a reduced multiplication R-module and $R \alpha+R \beta \nsubseteq Z(M)$ for some $\alpha, \beta \in V\left(\Gamma_{A n n(M)}(R)\right)$. Then $\operatorname{diam}\left(\Gamma_{A n n(M)}(R)\right) \leq 2$ if and only if R has exactly two minimal prime ideals of $\operatorname{Ann}(M)$.

Proof. Suppose that $\operatorname{diam}\left(\Gamma_{\operatorname{Ann}(M)}(R)\right) \leq 2$ and $R \alpha+R \beta \nsubseteq Z(M)$ for some $\alpha, \beta \in V\left(\Gamma_{A n n(M)}(R)\right)$. By Proposition 2.4, $\alpha, \beta \in \bigcup_{P \in \operatorname{Min}(A n n(M))} P$. Since for some $\alpha, \beta \in V\left(\Gamma_{A n n(M)}(R)\right), R \alpha+R \beta \nsubseteq Z(M)$, by Lemma 2.3, there are at least two distinct minimal prime ideals P and Q of $\operatorname{Ann}(M)$ such that $\alpha \in P \backslash Q, \beta \in Q \backslash P$. By Theorem 2.5, if R has more than two minimal prime ideals of $\operatorname{Ann}(M)$, then $\operatorname{diam}\left(\Gamma_{\operatorname{Ann}(M)}(R)\right)=3$. So R has exactly two minimal prime ideals of $\operatorname{Ann}(M)$.
Conversely, suppose that P and Q are the only two minimal prime ideals of $\operatorname{Ann}(M)$. By Proposition 2.4, $V\left(\Gamma_{A n n(M)}(R)\right) \cup \operatorname{Ann}(M)=P \cup Q$. First, assume that α, β are two vertices of the graph such that $\alpha \in P \backslash Q$ and $\beta \in Q \backslash P$. We show that $\bigcap_{N \in \operatorname{Min}(M)} N=P M \cap Q M$. Let N_{0} be a minimal prime submodule of M. By Corollary 2.11 [9], $N_{0}=P_{0} M$, where P_{0} is a prime ideal of R and $\operatorname{Ann}(M) \subseteq P_{0}$. If P_{0} is a minimal prime ideal of $\operatorname{Ann}(M)$, then $N_{0}=P M$ or $N_{0}=Q M$. Otherwise, $A n n(M) \subseteq P \subseteq P_{0}$ or $\operatorname{Ann}(M) \subseteq Q \subseteq P_{0}$. Since N_{0} is a minimal prime submodule of $M, N_{0}=P M$ or $N_{0}=Q M$. Thus $\bigcap_{N \in M i n(M)} N=P M \cap Q M$. By Theorem 2.4 [16], $P M \cap Q M=\operatorname{Nil}(M)$. Since $\alpha M \subseteq P M$ and $\beta M \subseteq Q M, \alpha \beta M \subseteq P M \cap Q M$. Also, since M is reduced, $\operatorname{Nil}(M)=0$. Hence $\alpha \beta M=0$. Thus $d(\alpha, \beta)=1$. Now let r, s be two distinct vertices of the graph. If $r \in P \backslash Q$ and $s \in Q \backslash P$, then by the above argument, $d(r, s)=1$. Assume that $r, s \in P$; so $r \beta \in P$. Also, since $\beta \in Q \backslash P$, we have $r \beta \in Q$. Thus $r \beta M \subseteq P M \cap Q M=\operatorname{Nil}(M)=0$. Similarly, $s \beta M=0$. Also, if $r, s \in Q$, then similarly to the above argument, we have $r \alpha M=0=s \alpha M$. Therefore $d(r, s)=2$. It follows that $\operatorname{diam}\left(\Gamma_{\operatorname{Ann}(M)}(R)\right) \leq 2$.

Theorem 2.8. Let M be a multiplication R-module with $\operatorname{Nil}(M) \neq 0$. If there are $\alpha, \beta \in V\left(\Gamma_{A n n(M)}(R)\right)$ such that $R \alpha+R \beta \nsubseteq Z(M)$, then $\operatorname{diam}\left(\Gamma_{\operatorname{Ann}(M)}(R)\right)=3$.

Proof. $\alpha, \beta \in V\left(\Gamma_{A n n(M)}(R)\right)$ such that $R \alpha+R \beta \nsubseteq Z(M)$. So $d(\alpha, \beta) \neq 2$. Suppose that $\alpha \beta M \neq 0$. Hence $d(\alpha, \beta) \neq 1$. Thus by Theorem 2.4 [18], $\operatorname{diam}\left(\Gamma_{\operatorname{Ann}(M)}(R)\right)=3$.

Next, let $\alpha \beta M=0$. So $d(\alpha, \beta)=1$. Since $\operatorname{Nil}(M) \neq 0$, there exists a nonzero element $x \in \operatorname{Nil}(M)$. Hence $(x: M) M \neq 0$; so $q m_{0} \neq 0$ for some nonzero $q \in(x: M), m_{0} \in M$. Consider the pair α and $\beta+\alpha q$. One can easily show that $R \alpha+R \beta=R \alpha+R(\beta+\alpha q)$ and $\beta+\alpha q$ is a vertex of the graph. Therefore $R \alpha+R(\beta+\alpha q) \nsubseteq Z(M)$. If $\alpha^{2} q m_{0}=0=\beta^{2} q m_{0}$, then $q\left(R \alpha^{2}+R \beta^{2}\right) m_{0}=0$. On the other hand, $\left(R \alpha^{2}+R \beta^{2}\right) m_{0}=(R \alpha+R \beta)^{2} m_{0}$ since $\alpha \beta M=0$. So $q(R \alpha+R \beta)^{2} m_{0}=0$. Hence $R \alpha+R \beta \subseteq Z(M)$ since $q(R \alpha+R \beta) m_{0} \neq 0$, which is a contradiction. Thus without loss of generality, we may assume $\alpha^{2} q m_{0} \neq 0$. Hence $\alpha(\beta+\alpha q) M \neq 0$. Consequently, $d(\alpha, \beta+\alpha q) \neq 1$. Also, $d(\alpha, \beta+\alpha q) \neq 2$ since $R \alpha+R(\beta+\alpha q) \nsubseteq Z(M)$. So $\operatorname{diam}\left(\Gamma_{\operatorname{Ann}(M)}(R)\right)=3$.

3. Complete graphs

In this section, we determine when $\Gamma_{\operatorname{Ann}(M)}(R)$ is complete. We will need the following characterization from Theorem 2.8 [2], of when $\Gamma(R)$ is complete.

Theorem 3.1. Let R be a commutative ring. Then $\Gamma(R)$ is a complete graph if and only if either $R \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ or $x y=0$ for all $x, y \in Z(R)$.

Theorem 3.2. Let M be a reduced R-module. Then $\Gamma_{\operatorname{Ann}(M)}(R)$ is a complete (nonempty) graph if and only if $R \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ and $M \cong M_{1} \times M_{2}$ for M_{1} and M_{2} nonzero \mathbb{Z}_{2}-modules.

Proof. Suppose that $R \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ and $M \cong M_{1} \times M_{2}$ for nonzero \mathbb{Z}_{2}-modules M_{1} and M_{2}. Then $I=\operatorname{Ann}(M)=0$; so $\Gamma_{I}(R)=\Gamma\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)=K^{2}$ is a complete, nonempty graph. Conversely, let M be a reduced R-module and $I=\operatorname{Ann}(M)$. Then I is a radical ideal of R, and hence R / I is a reduced ring by Lemma 2.1 Assume that $\Gamma_{I}(R)$ is nonempty and complete. Let α be a vertex of $\Gamma_{I}(R)$. Then α^{2} is also a vertex since I is a radical ideal of R. If $\alpha^{2} \neq \alpha$, then $\alpha^{3}=\alpha^{2} \cdot \alpha \in I$ since $\Gamma_{I}(R)$ is complete. But then $\alpha \in I$ since I is a radical ideal of R, which is a contradiction. Thus $\alpha^{2}=\alpha$ for every vertex α of $\Gamma_{I}(R)$. Hence $R=R \alpha \oplus R(1-\alpha)$. So we may assume that $R=R_{1} \times R_{2}$ with $\alpha=(1,0)$ a vertex of $\Gamma_{I}(R)$. Moreover, $M=M_{1} \times M_{2}$ for R_{i}-modules $M_{i},(i=1,2)$. Since $\alpha=(1,0)$ is a vertex of $\Gamma_{I}(R),(1,0) \notin I$. Thus $(1,0)\left(M_{1} \times M_{2}\right)=M_{1} \times 0$ is nonzero; so $M_{1} \neq 0$. Moreover, $I=\operatorname{Ann}(M)=\operatorname{Ann}\left(M_{1}\right) \times \operatorname{Ann}\left(M_{2}\right)$.

Since $(1,0)$ is a vertex of $\Gamma_{I}(R),(a, 0)=(1,0)(a, b) \in I$ for some $(a, b) \in R_{1} \times R_{2} \backslash I$. Thus $(a, 0)\left(M_{1} \times M_{2}\right)=0$; so $a M_{1}=0$. Hence $b M_{2} \neq 0$ since $(a, b) \notin I$. Thus $M_{2} \neq 0$, and so $(0,1)\left(M_{1} \times M_{2}\right) \neq 0$. Therefore $(0,1) \notin I$, but $(1,0)(0,1)=(0,0) \in I$; so $(0,1)$ is also a vertex of $\Gamma_{I}(R)$.

We next show that $(c, 0)$ is a vertex of $\Gamma_{I}(R)$ if and only if $c=1$. Suppose that $(c, 0)$ is a vertex for some $c \in R_{1} \backslash\{0,1\}$. Thus $(c, 0)$ and $(1,0)$ are distinct vertices of $\Gamma_{I}(R)$, and thus are adjacent since $\Gamma_{I}(R)$ is complete. Hence $(c, 0)=(c, 0)(1,0) \in I$, a contradiction. Similarly, $(0, d)$ is a vertex of $\Gamma_{I}(R)$ if and only if $d=1$. We show that (c, d) is a vertex of $\Gamma_{I}(R)$ if and only if $(c, d)=(1,0)$ or $(c, d)=(0,1)$. Suppose that (c, d) is a vertex of $\Gamma_{I}(R)$ distinct from both $(1,0)$ and $(0,1)$. Then $(c, 0)=(c, d)(1,0) \in I$ and $(0, d)=(c, d)(0,1) \in I$; and hence $(c, d)=(c, 0)+(0, d) \in I$, a contradiction. Thus $\left|\Gamma_{I}(R)\right|=2$; so $\Gamma_{I}(R)=K^{2}$. By Corollary 2.7 [18], either $(i)|I|=1$ and $\Gamma(R / I)=K^{2}$, or $(i i)|I|=2$ and $\Gamma(R / I)=K^{1}$.
(i) Suppose that $|I|=1$ and $\Gamma(R / I)=K^{2}$. Then $I=0$; so $\Gamma_{I}(R)=\Gamma(R)=K^{2}$. Thus $R \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}, \mathbb{Z}_{9}$ or $\mathbb{Z}_{3}[x] /\left(x^{2}\right)$ by Example 2.1 [2]. However, $R / I \cong R$ is a reduced ring by Lemma 2.1; so $R \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$. Since $M \cong M_{1} \times M_{2}$ and $I=0$, we must have both M_{1} and M_{2} nonzero.
(ii) Suppose that $|I|=2$ and $\Gamma(R / I)=K^{1}$. Thus $R / I \cong \mathbb{Z}_{4}$ or $\mathbb{Z}_{2}[x] /\left(x^{2}\right)$ by Example 2.1 [2]. However, R / I must be a reduced ring by Lemma 2.1 ; so neither of these cases is possible. Thus $R \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ and $M \cong M_{1} \times M_{2}$, where each M_{i} is a nonzero \mathbb{Z}_{2}-module $(i=1,2)$.

This completes the proof.
The next example shows that the above theorem fails if we do not assume that M is a reduced R-module.
Example 3.3. Let $n \geq 2$ be an integer. By Theorem 6.1 [18], there is a ring R with a nonzero ideal I such that $\Gamma_{I}(R)=K^{n}$. Specifically, let $R=\mathbb{Z}_{4} \times \mathbb{Z}_{n}$ and $I=0 \times \mathbb{Z}_{n}$. Then $R / I \cong \mathbb{Z}_{4}$; so $\Gamma(R / I)=K^{1}$. Thus $\Gamma_{I}(R)=K^{n}$. So for $M=R / I$, we have $\operatorname{Ann}(M)=I$. Hence $\Gamma_{A n n(M)}(R)=K^{n}$. For $n=1$, let $R=M=\mathbb{Z}_{4}$. Then $I=\operatorname{Ann}(M)=0$; so $\Gamma_{\operatorname{Ann}(M)}(R)=\Gamma\left(\mathbb{Z}_{4}\right)=K^{1}$. So for every $n \geq 1$, there is a ring R and an R-module M such that $\Gamma_{A n n(M)}(R)=K^{n}$.
Theorem 3.4. Let M be a reduced R-module. If $\Gamma(R)$ is complete, then either $\Gamma_{A n n(M)}(R)$ is complete or the vertex sets of $\Gamma_{A n n(M)}(R)$ and $\Gamma(R)$ are disjoint.
Proof. Since $\Gamma(R)$ is complete, by Theorem 3.1, either $R \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ or $x y=0$ for all $x, y \in Z(R)$. If $R \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$, then by Theorem 3.2, $\Gamma_{\operatorname{Ann(M)}}(R)$ is complete. Suppose that $x y=0$ for all $x, y \in Z(R)$. Let $x \in V(\Gamma(R)) \cap V\left(\Gamma_{\text {Ann }(M)}(R)\right)$. Then $x^{2}=0$; hence $x^{2} M=0$. Since M is reduced, $x M=0$, which is a contradiction. Consequently, the vertex sets of $\Gamma_{\operatorname{Ann}(M)}(R)$ and $\Gamma(R)$ are disjoint.

Corollary 3.5. Let M be a reduced R-module. If $\Gamma(R)$ is complete, then either $\Gamma_{A n n(M)}(R)$ is complete or $Z(R) M=0$.
Corollary 3.6. Let R be a ring and M be an R-module.
(1) $\operatorname{diam}\left(\Gamma_{\operatorname{Ann}(M)}(R)\right)=0$ if and only if $\operatorname{Nil}(M) \neq 0, R$ is isomorphic to either \mathbb{Z}_{4} or $\mathbb{Z}_{2}[x] /\left(x^{2}\right)$, and $\operatorname{Ann}(M)=0$.
(2) $\operatorname{diam}\left(\Gamma_{\operatorname{Ann}(M)}(R)\right)=1$ if and only if either (i) M is reduced, $R \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ and $M \cong M_{1} \times M_{2}$ for M_{1} and M_{2} nonzero \mathbb{Z}_{2}-modules, or (ii) $\operatorname{Nil}(M) \neq 0$ and $x y M=0$ for each distinct pair of vertices x and y.

Let R be a ring and M be a multiplication R-module. Suppose that there exist two distinct vertices α and β such that $R \alpha+R \beta \nsubseteq Z(M)$.
(3) $\operatorname{diam}\left(\Gamma_{A n n(M)}(R)\right)=2$ if and only if either (i) R has exactly two minimal prime ideals of $A n n(M), M$ is reduced, and $\Gamma_{A n n(M)}(R)$ has at least three vertices, or (ii) for each distinct pair of vertices α and β, there exists a vertex which is adjacent to both α and β.
(4) $\operatorname{diam}\left(\Gamma_{A n n(M)}(R)\right)=3$ if and only if either ($\left.i\right) R$ has more than two minimal prime ideals of $\operatorname{Ann}(M)$ and M is reduced, or (ii) $\operatorname{Nil}(M) \neq 0$.

Proof. (1) By Example 2.1 [2] and by Corollary 2.7 [18].
(2) By Theorem 3.2.
(3) Suppose that $\operatorname{diam}\left(\Gamma_{\operatorname{Ann}(M)}(R)\right)=2$ and there exist two distinct vertices α and β such that $R \alpha+R \beta \nsubseteq$ $Z(M)$. If M is reduced, then R has exactly two minimal prime ideals of $A n n(M)$, by Theorem 2.7

Conversely, suppose that (i) holds. By Theorem 2.7, $\operatorname{diam}\left(\Gamma_{\operatorname{Ann}(M)}(R)\right) \leq 2$. Assume that $\operatorname{diam}\left(\Gamma_{\operatorname{Ann}(M)}(R)\right)=$ 0 . Thus by (1), $\operatorname{Nil}(M) \neq 0$, which is a contradiction. Suppose that $\operatorname{diam}\left(\Gamma_{\operatorname{Ann}(M)}(R)\right)=1$. Hence by (2), either $R \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$, or $\operatorname{Nil}(M) \neq 0$. Since $\Gamma_{A n n(M)}(R)$ has at least three vertices and M is reduced, we have a contradiction. Therefore $\operatorname{diam}\left(\Gamma_{\operatorname{Ann}(M)}(R)\right)=2$.
(4) Suppose that $\operatorname{diam}\left(\Gamma_{\operatorname{Ann}(M)}(R)\right)=3, M$ is reduced, and R has exactly two minimal prime ideals of $\operatorname{Ann}(M)$. By Theorem 2.7, $\operatorname{diam}\left(\Gamma_{\operatorname{Ann}(M)}(R)\right) \leq 2$, which is a contradiction. Now assume that P is the only minimal prime ideal of $\operatorname{Ann}(M)$. By Proposition 2.4, for all vertices α and β we have $\alpha, \beta \in P$. Thus $R \alpha+R \beta \subseteq Z(M)$ by Lemma 2.3, which is a contradiction. Therefore R has more than two minimal prime ideals of $\operatorname{Ann}(M)$.

Conversely, if $\operatorname{Nil}(M) \neq 0$, then $\operatorname{diam}\left(\Gamma_{A n n(M)}(R)\right)=3$ by Theorem 2.8. Now assume that M is reduced and R has more than two minimal prime ideals of $\operatorname{Ann}(M)$. Then $\operatorname{diam}\left(\Gamma_{\operatorname{Ann}(M)}(R)\right)=3$ by Theorem 2.5.

Acknowledgements

This work was done while the third author was a visiting scholar at the University of Tennessee.

References

[1] D. D. Anderson, M. Naseer, Beck's coloring of a commutative ring, J. Algebra 159 (1993) 500-514.
[2] D. F. Anderson, P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999) 434-447.
[3] D. F. Anderson, R. Levy, J. Shapiro, Zero-divisor graphs, von Neumann regular rings, and boolean algebras, J. Pure Appl. Algebra 180 (2003) 221-241.
[4] D. F. Anderson, A. Badawi, The total graph of a commutative ring, J. Algebra 320 (2008) 2706-2719.
[5] D. F. Anderson, A. Badawi, On the zero-divisor graph of a ring, Comm. Algebra 36 (2008) 3073-3092.
[6] D. F. Anderson, M. C. Axtell, J. A. Stickles, Zero-divisor Graphs in Commutative Rings, in Commutative Algebra, Noetherian and Non- Noetheiran Perspectives, (Fontana, M., Kabbaj, S. E., Olberding, B., Swanson, I., EDS.), Springer-Verlag, New York. pp. 23-45, 2011.
[7] A. Barnard, Multiplication modules, J. Algebra 71 (1981) 174-178.
[8] I. Beck, Coloring of commutative rings, J. Algebra 116 (1988) 208-226.
[9] Z. A. El-Bast, P. F. Smith, Multiplication modules, Comm. Algebra 16 (1988) 755-779.
[10] SH. Ghalandarzadeh, P. Malakooti Rad, Torsion graph over multiplication modules, Extracta Math. 24 (2009) 281-299.
[11] SH. Ghalandarzadeh, S. Shirinkam, P. Malakooti Rad, Annihilator ideal-based zero-divisor graph over multiplication modules, Comm. Algebra, To appear.
[12] J. D. LaGrange, Complemented zero divisor graphs and boolean rings, J. Algebra 315 (2007) 600-611.
[13] J. D. LaGrange, Weakly central-vertex complete graphs with applications to commutative rings, J. Pure Appl. Algebra 214 (2010) 1121-1130.
[14] T. G. Lucas, The diameter of a zero divisor graph, J. Algebra 301 (2006) 174-193.
[15] H. R. Maimani, M.R. Pournaki, A. Tehranian, S. Yassime, Graphs attached to rings revisited, AJSE-Mathematics, Springer 36 (2011) 997-1012.
[16] P. Malakooti Rad, SH. Ghalandarzadeh, S. Shirinkam, On the torsion graph and von Numann regular rings, Filomat 26 (2012) 253-259.
[17] S. P. Redmond, The zero-divisor graph of a non-commutative ring, Internat. J. Commutative Rings 1 (2002) 203-211.
[18] S. P. Redmond, An ideal-based zero-divisor graph of a commutative ring, Comm. Algebra 31 (2003) 4425-4443.
[19] S. P. Redmond, On zero divisor graphs of small finite commutative rings, Discrete Math. 307 (2007) 1155-1166.

[^0]: 2010 Mathematics Subject Classification. Primary 13A99; Secondary 05C99, 13C99
 Keywords. Annihilator ideal-based zero-divisor graphs, reduced modules, minimal prime ideals
 Received: 07 September 2011; Accepted: 01 February 2012
 Communicated by Miroslav Ćirić
 Email addresses: anderson@math.utk. edu (David F. Anderson), ghalandarzadeh@kntu.ac.ir (Shaban Ghalandarzadeh), sshirinkam@dena.kntu.ac.ir (Sara Shirinkam), pmalakoti@gmail.com (Parastoo Malakooti Rad)

