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On weaker forms of relator Menger, relator Rothberger and relator
Hurewicz properties

Darko Koceva
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Abstract. We introduce new selection principles in relator spaces using neighbourhoods and closures
in the same manner as it was done in [1, 11, 20] in topological spaces and prove that these properties are
weaker versions of the corresponding selection principles defined in [12]. Some properties of these selection
principles are proved.

1. Introduction and definitions

In this paper we continue the investigation of selection principles in relator spaces started in [12]. In
the second section we follow the idea of Bonanzinga, Cammaroto, Kočinac and Matveev (see [1]) who
used neighbourhoods of sets to define selection principles which are weaker than the known properties of
Menger, Rothberger and Hurewicz. In the third section as a motivation we used the papers [12, 20], where
weaker properties than Menger were defined by closures of sets.

We first recall the basic facts about selection principles in topological spaces (for selection principles
theory see the survey papers [15], [23], [28]).

LetA and B be collections of open covers of a topological space X. Then: (see [10, 22])

• S1(A,B) denotes the selection hypothesis that for each sequence (Un : n ∈N) of elements ofA there
is a sequence (Vn : n ∈N) such that for each n ∈N, Vn ∈ Un and {Vn : n ∈N} ∈ B.

• S f in(A,B) denotes the selection hypothesis that for each sequence (Un : n ∈ N) there is a sequence
(Vn : n ∈N) such that for each n ∈N,Vn is a finite subset ofUn and

∪
n∈NVn is an element of B.

As usual, for a subset A of a topological space X and a collectionP of subsets of X, we denote by St(A,P)
the union of all elements of Pwhich have a nonempty intersection with A. In [13], Kočinac introduced star
selection principles in the following way:

Definition 1.1. LetA and B be collections of open covers of a topological space X. Then:

• S∗1(A,B) denotes the selection hypothesis that for each sequence (Un : n ∈ N) of elements of A one
can choose Un ∈ Un, n ∈N, such that {St(Un,Un) : n ∈N} ∈ B.
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• S∗f in(A,B) denotes the selection hypothesis that for each sequence (Un : n ∈N) of elements ofA one
can choose finiteVn ⊂ Un, n ∈N, such that

∪
n∈N{St(V,Un) : V ∈ Vn} ∈ B.

• SS∗1(A,B) denotes the selection hypothesis that for each sequence (Un : n ∈N) of elements ofA one
can choose points xn ∈ X, n ∈N, such that {St({xn},Un) : n ∈N} ∈ B.

• SS∗f in(A,B) denotes the selection hypothesis that for each sequence (Un : n ∈ N) of elements of A
one can choose finite Fn ⊂ X, n ∈N, such that {St(Fn,Un) : n ∈N} ∈ B.

For a space X we use the following notation:

• O denotes the collection of all open covers of X.

• Ω denotes the collection of all ω-covers of X; we say that an open coverU of X is an ω-cover (see [8])
if every finite subset of X is contained in some element ofU.

• Γ denotes the collection of all γ-covers of X; we say that an open coverU of X is a γ-cover ([8]) if it is
infinite and each point of X belongs to all but finitely many elements ofU.

We say that a space X is:
R (Rothberger) if the selection hypothesis S1(O,O) is true for X ([7],[21], [22]);
M (Menger) if the selection hypothesis S f in(O,O) is true for X ([7], [9], [10], [18]);
H (Hurewicz) if the selection hypothesis S f in(O,Γ) is true for X ([9], [16]);
SR (star-Rothberger) if the selection hypothesis S∗1(O,O) is true for X ([13]);
SSR (strongly star-Rothberger) if the selection hypothesis SS∗1(O,O) is true for X ([13]);
SM (star-Menger) if the selection hypothesis S∗f in(O,O) is true for X ([13]);
SSM (strongly star-Menger) if the selection hypothesis SS∗f in(O,O) is true for X ([13]);
SH (star-Hurewicz) if for every sequence (Un : n ∈N) of open covers of X one can choose finiteVn⊂Un,

n ∈N, such that for every x ∈ X, x ∈ St(∪Vn,Un) for all but finitely many n ([2]);
SSH (strongly star-Hurewicz) if the selection hypothesis SS∗f in(O,Γ) is true for X ([2]).
Száz in several papers on relator spaces (see [25-27]) showed that many topological structures can be

derived from relator spaces.
Let us recall some basic facts on relations and relators.
A subset F of a product set X × Y is called a relation on X to Y. If in particular X = Y, then we may

simply say that F is a relation on X. Note that if F is a relation on X to Y, then F is also a relation on X ∪ Y.
Therefore, it is frequently not a severe restriction to assume that X = Y. The relations ∆X = {(x, x) : x ∈ X}
and X2 = X × X are called the identity and the universal relations on X, respectively.

If F is a relation on X to Y, x ∈ X and A ⊂ X, then the sets F(x) = {y ∈ Y : (x, y) ∈ F} and F(A) =
∪

x∈A F(x)
are called the images of x and A under F, respectively.

If F is a relation on X to Y, then the values F(x), where x ∈ X, uniquely determine F since we have
F =
∪

x∈X{x} × F(x). Therefore, the inverse F−1 can be defined such that F−1(y) = {x ∈ X : y ∈ F(x)} for all
y ∈ Y.

Further, if F is a relation on X to Y, and G is a relation on Y to Z, then the composition G ◦ F is defined
such that (G ◦ F)(x) = G(F(x)) for every x ∈ X. If F is a relation on X to Y and G is a relation on Z to W, then
the product F × G is defined such that (F × G)(x, y) = F(x) × G(y) for every x ∈ X and y ∈ Z.

A relation R on X is called reflexive if ∆X ⊂ R.
A nonvoid family R of relations on a nonvoid set X is called a relator on X, and the ordered pair

X(R) = (X,R) is called a relator space.
Let C denotes the family of covers of X and let ΓC denotes the family of allU ∈ C such that every x ∈ X

belongs to all but finitely many elements of U. For a given relation R ∈ R, where R is a relator on X, we
use the following notation:

• UR = {R(x) : x ∈ X}.
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• ω(R) = {R(F) : F ⊂ X finite}.

• CR = {UR : R ∈ R} .

• Ω(R)={ω(R) : R ∈ R}.

We can derive topological structures from relator spaces in the following way: If R is a relator on X,
then for any A ⊂ X we write:

intR(A) = {x ∈ X : ∃R ∈ R : R(x) ⊂ A};
clR(A) = {x ∈ X : ∀R ∈ R : R(x) ∩ A , ∅};

TR = {A ⊂ X : A ⊂ intR(A)};
FR = {A ⊂ X : clR(A) ⊂ A}.

DR = {(An)n∈N : An ⊂ X, clR(
∪

n∈NAn) = X}.

Let (X,R) and (Y,S) be relator spaces. We say that a map f : X −→ Y is relator continuous if for every
S ∈ S there exists R ∈ R such that for every x ∈ X we have f (R(x)) ⊂ S( f (x)).

Recently, Kočinac introduced selection principles in relator spaces in the following way:

Definition 1.2. A relator space (X,R) is:

• RR (relator Rothberger) if for every sequence (Rn : n ∈ N) of relations from R one can choose xn ∈ X,
n ∈N, such that {Rn(xn) : n ∈N} is a cover of X;

• RM (relator Menger) if for every sequence (Rn : n ∈N) of relations fromR one can choose finite Fn ⊂ X,
n ∈N, such that {Rn(Fn) : n ∈N} is a cover of X;

• RH (relator Hurewicz) if for every sequence (Rn : n ∈ N) of relations from R one can choose finite
Fn ⊂ X, n ∈N such that every x ∈ X belongs to Rn(Fn) for all but finitely many n ∈N.

By a topological space we usually mean a Hausdorff topological space. The notation and terminology
are as in [5].

2. Neighbourhood selection principles in relator spaces

In [1], neighbourhood star selection principles were defined.

Definition 2.1. LetA and B be collections of open covers of a space X. A space X satisfies:

• NSR(A,B) if for every sequence (Un : n ∈ N) of elements of A one can choose xn ∈ X, n ∈ N, such
that for every open On, xn ∈ On, n ∈N, {St(On,Un) : n ∈N} ∈ B;

• NSM(A,B) if for every sequence (Un : n ∈ N) of elements ofA one can choose finite Fn ⊂ X, n ∈ N,
such that for every open On ⊃ Fn, n ∈N, {St(On,Un) : n ∈N} ∈ B.

In particular, a space X is neighbourhood star-Rothberger (NSR) (resp. neighbourhood star-Menger (NSM),
neighbourhood star-Hurewicz (NSH)) if the selection hypothesis NSR(O,O) (resp. NSM(O,O), NSM(O,Γ)) is
true for X.

Notice that NSR and NSM spaces were considered in [14] under different names (nearly stongly star-
Rothberger and nearly strongly star-Menger spaces).

We define neighbourhood selection principles in relator spaces in a similar way as it was done in [1].
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Definition 2.2. A relator space (X,R) is:

• NRR (neighbourhood relator Rothberger) if for every sequence (Rn : n ∈ N) of relations from R one can
choose xn ∈ X, n ∈N, such that for every On ∈ TR containing xn, n ∈N, {Rn(On) : n ∈N} is a cover of
X;

• NRM (neighbourhood relator Menger) if for every sequence (Rn : n ∈ N) of relations from R one can
choose finite Fn ⊂ X, n ∈N, such that for every On ∈ TR such that Fn ⊂ On, n ∈N, {Rn(On) : n ∈N} is
a cover of X;

• NRH (neighbourhood relator Hurewicz) if for every sequence (Rn : n ∈ N) of relations from R one can
choose finite Fn ⊂ X, n ∈ N, such that for every On ∈ TR with Fn ⊂ On, n ∈ N, each x ∈ X belongs to
Rn(On) for all but finitely many n ∈N.

Let (X,R) be a relator space. If we use the notation:

• NCR = {Rα(Aα) : α ∈ I,Rα ∈ R, Aα ⊂ X and for every Oα ⊃ Aα,Oα ∈ TR, {Rα(Oα) : α ∈ I} ∈ C},

• NΓR = {Rα(Aα) : α ∈ I,Rα ∈ R, Aα ⊂ X and for every Oα ⊃ Aα,Oα ∈ TR, {Rα(Oα) : α ∈ I} ∈ ΓC},

where I is an index set, then we have the following statements:

• (X,R) is NRR iff (X,R) satisfies the selection hypothesis S1(CR,NCR);

• (X,R) is NRM iff (X,R) satisfies the selection hypothesis S1(Ω(R),NCR) iff (X,R) satisfies the selection
hypothesis S f in(CR,NCR);

• (X,R) is NRH iff (X,R) satisfies the selection hypothesis S1(Ω(R),NΓR) iff (X,R) satisfies the selection
hypothesis S f in(CR,NΓR).

We prove that these properties are preserved under relator continuous functions.

Theorem 2.3. Let (X,R) and (Y,S) be relator spaces and let f : X→ Y be a relator continuous surjection. If (X,R)
is NRM, then (Y,S) is NRM.

Proof. Let (Sn : n ∈ N) be a sequence of relations from S. Then for every n ∈ N there exists Rn ∈ R such
that for every x ∈ X, f (Rn(x)) ⊂ Sn( f (x)). Since (X,R) is NRM, there exists a sequence (Fn : n ∈ N) of
finite subsets of X such that for every On ⊃ Fn with On ∈ TR we have

∪
Rn(On) = X. Then we have that∪

n∈N f (Rn(On)) = f (
∪

n∈N Rn(On)) = f (X) = Y. Note also that f (Rn(On)) ⊂ Sn( f (On)) for every n ∈N.
We prove that the sequence ( f (Fn) : n ∈ N) of finite subsets of Y witnesses that (Y,S) is NRM. Let

Bn ⊃ f (Fn), Bn ∈ TS, and let An = f−1(Bn). We claim that An ∈ TR. Indeed, if x ∈ An, then y = f (x) ∈ Bn.
Since Bn ∈ TS, there exists S ∈ S such that S(y) ⊂ Bn. By the assumption, we can find R ∈ R such that
f (R(x)) ⊂ S(y) ⊂ Bn. That implies R(x) ⊂ An, so we proved that An ∈ TR. We also have that An ⊃ Fn and
f (Rn(An)) ⊂ Sn(Bn), so

∪
n∈N Sn(Bn) = Y.

It is a natural to ask how these properties are related to the corresponding properties in topological
spaces.

Let (X,T ) be a topological space. For every U ∈ O we can define a relation RU on X in the following
way: RU(x) = St({x},U) for every x ∈ X. Then R∗T = {RU : U ∈ O} is a relator on X and the ordered pair
(X,R∗T ) is a relator space. It is easy to prove the following statements:

(1): (X,T ) is SSR iff (X,R∗T ) is RR;
(2): (X,T ) is SSM iff (X,R∗T ) is RM;
(3): (X,T ) is SSH iff (X,R∗T ) is RH.

In order to prove similar statement in the case of neighbourhood selection principles, we need the
following lemma:
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Lemma 2.4. If (X,T ) is a regular topological space, then T = TR∗ .
Proof. We will first prove that T ⊂ TR∗ . Let U ∈ T and x ∈ U is arbitrary. Since (X,T ) is regular, one can
choose V ∈ T such that x ∈ V ⊂ U. Then U = {U,X \ V} is an open cover of X and RU(x) = U, so RU
witnesses that U ∈ TR∗ .

On the other hand, if U ∈ TR∗ then for every x ∈ U one can choose R ∈ R∗ such that R(x) ⊂ U. By the
definition of R∗, there is an open coverU of X such that R = RU , so in fact St({x},U) ⊂ U. Since St({x},U)
is an open set, then U ∈ T .

Theorem 2.5. Let (X,T ) be a regular topological space. Then:

(1) : (X,T ) is NSR if and only if (X,R∗T ) is NRR;

(2) : (X,T ) is NSM if and only if (X,R∗T ) is NRM;

(3) : (X,T ) is NSH if and only if (X,R∗T ) is NRH.

Proof. We prove only (2), because the proofs of the other two statements are similar. Let (X,T ) has the
neighbourhood star-Menger property. We will show that (X,R∗T ) has the neighbourhood relator Menger
property. Let (Rn : n ∈ N) be a sequence of relations from R∗T . For every n ∈ N, there exists an open cover
Un of X such that Rn = RUn . By the assumption, one can choose finite Fn ⊂ X, n ∈ N, such that for every
open On ⊃ Fn, n ∈ N, {St(On,Un) : n ∈ N} is an open cover for X. Since Rn(On) = St(On,Un) and T = TR∗
(by Lemma 2.4), it is obvious that (Fn : n ∈N) is the sequence we have been looking for. In the same manner
we can prove the converse.

Note that the implications⇒ in the above theorem are always true.
Our next goal is to show that NRR, NRM, and NRH are in fact the weaker versions of RR, RM and RH,

respectively.
First recall that (see [4, 6, 17]) a space X is strongly star-compact (resp., strongly star-Lindelöf ), briefly SSC

(resp., SSL) if for every open cover U of X there exists a finite (resp., countable) subset A of X such that
St(A,U) = X.

In [12] we defined the corresponding notions in relator spaces: A relator space (X,R) is relator compact
(resp., relator Lindelöf ), briefly RC (resp., RL) if for every relation R from R there exists a finite (resp.,
countable) subset A of X such that R(A) = X. We say that a relator space (X,R) is σ-relator compact (σ-RC) if
X is the countable union of relator compact spaces.

The notion of neighbourhood star-Lindelöf property was introduced in [1] in the following way:
A space X is NSL (neighbourhood star-Lindelöf ) if for every open cover U of X there exists a countable

subset A of X such that for every neighbourhood U of A, St(U,U) = X.
We now define the corresponding notion in relator spaces.

Definition 2.6. A relator space (X,R) is NRL (neighbourhood relator Lindelöf ) if for every relation R from R
there exists a countable subset A of X such that for every O ∈ TR, O ⊃ A implies R(O) = X.

Note that a topological space (X,T ) is SSC (resp., SSL) iff a relator space (X,R∗T ) is RC (resp., RL), and
if (X,T ) is regular, then (X,T ) is NSL iff (X,R∗T ) is NRL.

In the next diagram we present some implications that are obvious.

RR −→ RM ←− RH ←− σ-RC

?

NRR

?

−→NRM

?

←−NRH

↑
RC
↓

RL

?

NRL

HHHHHHHj

HHHHHHHj
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By using examples 2.4, 3.1, 3.2 and 3.3 from [1], we prove that the inverses of implications RL ⇒ NRL,
RR⇒ NRR, RM⇒ NRM and RH⇒ NRH do not hold.

Example 2.7. Consider X = P×(ω + 1), whereP denotes the set of irrational points, with the same topology
as in Example 2.4 from [1]. A relator R∗T on X is defined in the same manner as earlier in the paper.

In [1], it was shown that (X,T ) is NSL and not SSL. Since O ∈ TR∗ implies O ∈ T , we conclude that the
relator space (X,R∗T ) is NRL, but not RL.

Now we show that consistently, NRM, NRH and NRR do not imply RM, RH and RR, respectively. In
fact, the examples are not even RL.

Recall first the definition of b, d and cov(M). For f , 1 ∈NN put

f ≤∗ 1 if f (n) ≤ 1(n) for all but finitely many n.

A subset B ofNN is bounded if there is 1 ∈NN such that f ≤∗ 1 for every f ∈ B. D ⊂NN is dominating if
for each 1 ∈ NN there is f ∈ D such that 1 ≤∗ f . The minimal cardinality of an unbounded subset ofNN is
denoted by b, and the minimal cardinality of a dominating subset ofNN is denoted by d. A subset X ofNN

can be guessed by a function 1 ∈ NN if for every f ∈ X the set {n ∈ N : f (n) = 1(n)} is infinite. The minimal
cardinality of a subset ofNN that cannot be guessed is denoted by cov(M). (see [19])

Example 2.8. (ω1 <d) There is a NRM space which is not RL.

Example 2.9. (ω1 <b) There is a NRH space which is not RL.

Example 2.10. (ω1 <cov(M)) There is a NRR space which is not RL.

We will use the same space to prove these three assumptions. (see [1], Example 3.1, Example 3.2,
Example 3.3)

Let S be a subset of R such that for every non-empty open U ⊂ R, |S ∩U| = ω1 (then in particular,
|S| = ω1). Consider XS = S × (ω + 1) topologized in the same manner as in [1].

In [1] it was proved that XS with this topology is NSM (resp. NSH, NSR) under assumption ω1 <d
(resp. ω1 <b, ω1 <cov(M)), but XS is not SSL. By [1] and Example 2.7, the relator space (XS,R∗T ) is not RL.
Since O ∈ TR∗ implies O ∈ T , we obtain that the relator space (XS,R∗T ) is NRM (resp. NRH, NRR) under
assumption ω1 <d (resp. ω1 <b, ω1 <cov(M)).

Problem 2.11. Do there exist ZFC examples of spaces as in Examples 2.8, 2.9 and 2.10?

Now we study the NRM property in finite powers of spaces.

Theorem 2.12. Let (X,R) be a relator space. If (Xn,Rn) is NRM for every n ∈ N, then for every sequence
(Rn : n ∈ N) ⊂ R there exists a sequence (Fn : n ∈ N) of finite subsets of X such that for every On ⊃ Fn, On ∈ TR,
n ∈N, {Rn(On) : n ∈N} is an ω-cover for X.

Proof. Let (Rn : n ∈ N) be a sequence of relations from R and letN = N1 ∪ N2 ∪ ... be a partition ofN into
infinite (pairwise disjoint) sets. For every k ∈ N and m ∈ Nk let Sm = (Rm)k. Then (Sm : m ∈ Nk) is the
sequence of relations from Rk. Since (Xk,Rk) is NRM, one can choose finite subsets Am ⊂ Xk, m ∈ Nk, such
that for every Om ⊃ Am with Om ∈ TRk and m ∈ Nk, {Sm(Om) : m ∈ Nk} is a cover for Xk. For every m ∈ Nk,
let Fm be a finite subset of X such that (Fm)k ⊃ Am. Consider the sequence (Fn : n ∈N). Let (Tn : n ∈N) be a
sequence of elements of TR such that Fn ⊂ Tn for every n ∈N. We claim that {Rn(Tn) : n ∈N} is an ω-cover
for X. Let F = {x1, x2, ..., xp} be a finite subset of X. Then ⟨x1, x2, ..., xp⟩ ∈ Xp, so there exists n ∈ Np such that
⟨x1, x2, ..., xp⟩ ∈ Sn(Tn

p), so that we have F ⊂ Rn(Tn).

Theorem 2.13. If relator spaces (X,R) and (Y,S) are NRH, then the relator space (X × Y,R × S) is also NRH.
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Proof. Let (Tn : n ∈ N) be a sequence of relations from R × S. For every n ∈ N, Tn = Rn × Sn, where
Rn ∈ R, Sn ∈ S. We can choose a sequence (Fn : n ∈ N) of finite subsets of X such that for every sequence
(Un : n ∈ N) of elements of TR with Un ⊃ Fn for every n ∈ N, every point x ∈ X belongs to all but finitely
many Rn(Un). We can also find a sequence (Gn : n ∈ N) of finite subsets of Y such that for every sequence
(Vn : n ∈ N) of elements of TS with Gn ⊂ Vn for every n ∈ N, every point y ∈ Y belongs to all but finitely
many Sn(Vn) . We show that the sequence (An : n ∈ N) of finite subsets of X × Y, where An = Fn × Gn for
every n ∈ N, witnesses that the relator space (X × Y,R × S) is NRH. Let On ⊃ An, On ∈ TR×S. Then there
exist Un ⊂ X and Vn ⊂ Y such that On = Un × Vn, where Un ⊃ Fn and Vn ⊃ Gn. We show that Un ∈ TR
and Vn ∈ TS. Let (x, y) ∈ On. Then there exist R ∈ R and S ∈ S such that (R × S)(x, y) ⊂ On. That implies
R(x) ⊂ Un and S(y) ⊂ Vn.

Let (x, y) ∈ X × Y. There exist n1 ∈ N and n2 ∈ N so that x belongs to Rn(Un) for each n > n1 and y
belongs to Sn(Vn) for each n > n2. Put n0 = max{n1,n2}. Now we have that (x, y) ∈ Rn(Un) × Sn(Vn) for each
n > n0, i.e. (x, y) ∈ Tn(On) for every n > n0.

In a similar way we can prove the following statement:

Theorem 2.14. If a relator space (X,R) is NRM and a relator space (Y,S) is NRH, then the relator space (X×Y,R×S)
is NRM.

3. Closure selection principles in relator spaces

In [11], we used the closures of open sets to define properties similar to the well-known properties of
Menger and star-Menger. In this section we will consider the corresponding properties in relator spaces.
We will assume that every relation from the relator is reflexive.

First we recall the definitions of almost Menger and almost star-Menger property and naturally introduce
the notion of almost strongly star-Menger property.

Definition 3.1. A topological space (X,T ) is:

• AM (almost Menger) if for each sequence (Un : n ∈ N) of open covers of X there exists a sequence
(Vn : n ∈ N) such that for every n ∈ N,Vn is a finite subset ofUn and ∪{V′

n : n ∈ N} is a cover of X,
whereV′

n = {V : V ∈ Vn} ([14]; compare with [29]);

• ASM (almost star-Menger) if for each sequence (Un : n ∈ N) of open covers of X there exists a sequence
(Vn : n ∈ N) such that for each n ∈ N,Vn is a finite subset ofUn and {St(∪Vn,Un) : n ∈ N} is a cover
of X ([11]);

• ASSM (almost strongly star-Menger) if for each sequence (Un : n ∈ N) of open covers of X there exists
a sequence (Fn : n ∈N) of finite subsets of X such that {St(Fn,Un) : n ∈N} is a cover of X;

We naturally define the following notions in relator spaces.

Definition 3.2. A relator space (X,R) is:

• ARM (Almost relator Menger) if for each sequence (Rn : n ∈ N) of relations from R there exists a
sequence (Fn : n ∈N) of finite subsets of X such that {clR(Rn(Fn)) : n ∈N} is a cover of X;

• ARR (Almost relator Rothberger) if for each sequence (Rn : n ∈ N) of relations from R there exists a
sequence (xn : n ∈N) of elements of X such that {clR(Rn(xn)) : n ∈N} is a cover of X;

• ARH (Almost relator Hurewicz) if for each sequence (Rn : n ∈ N) of relations from R there exists a
sequence (Fn : n ∈N) of finite subsets of X such that every point x ∈ X belongs to all but finitely many
clR(Rn(Fn)).
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If we use the notation:

• cl(ω(R)) = {clR(R(F)) : F ⊂ X finite},

• cl(Ω(R))= {cl(ω(R)) : R ∈ R},

• cl(UR) = {clR(R(x)) : x ∈ X},

• cl(CR) = {cl(UR) : R ∈ R},

then for a relator space (X,R) we have the following statements:

• (X,R) is ARM iff (X,R) satisfies the selection hypothesis S1(cl(Ω(R)),C) iff (X,R) satisfies the selection
hypothesis S f in(cl(CR),C);

• (X,R) is ARR iff (X,R) satisfies the selection hypothesis S1(cl(CR),C);

• (X,R) is ARH iff (X,R) satisfies the selection hypothesis S1(cl(Ω(R)),ΓC) iff (X,R) satisfies the selection
hypothesis S f in(cl(CR),ΓC).

It is clear that RM implies ARM, RR implies ARR, RH implies ARH. It is natural to ask is the converse
true in every of these three cases, and also to find out the connection with the corresponding properties in
topological spaces.

The following example shows that the implications RM⇒ ARM and RH⇒ ARH can not be inverted. It
also shows that there exists ARM (resp. ARH) space which is not NRM (NRH).

Example 3.3. Let R be the set of real numbers and let D be a countable and dense subset of R. We denote
X = R and for every ϵ ∈ Rwe define a relation Rϵ such that Rϵ(x) = {x}∪ (D∩ (x− ϵ, x+ ϵ)) (see [24, Example
68]). Then (X,R) is a relator space, where R = {Rϵ : ϵ ∈ R}.

In order to prove that the relator space (X,R) is not RM, we will prove that it is not RL. Let A be a
countable subset of X and ϵ ∈ R. Then Rϵ(A) ⊂ A ∪D. The set A ∪D is countable and R is uncountable, so
Rε(A) can not cover X.

Notice that (X,R) is not even NRM. Indeed, let (Rεn : n ∈N) be a sequence of relations from R. For every
n ∈ N we pick arbitrary finite subsets Fn of X. For every x ∈ Fn, Rεn (x) ∈ TR. Denote On = Rεn (Fn). Then
Rεn (On) ⊂ Fn∪D. If B =

∪
n∈N Fn, then

∪
n∈N Rεn (On) ⊂ B∪D. Since B∪D is countable andR is uncountable,

(X,R) is not NRM.
We prove that (X,R) is ARM. Moreover, we prove that (X,R) is ARH. Let (Rϵn : n ∈ N) be a sequence of

relations from R. For every x ∈ X and every ϵ ∈ R, clR(Rε(x)) = clD(Dϵ(x)), where D = {Dϵ : ϵ ∈ R} and
Dϵ(x) = (x − ϵ, x + ε) for every x ∈ R (These closures are equal because the set D is dense in R). We show
that the space (R,D) is RH. Indeed, for every n ∈ N, the space ([−n, n],D) is relator compact, so we can
find finite subsets Fn of R, n ∈N, such that [−n,n] ⊂ Dεn (Fn). Let x ∈ X. Then there exists n0 ∈N such that
x ∈ [−n0,n0], so for every n ≥ n0, x ∈ Dεn (Fn). Since (R,D) is RH, the space (X,R) is ARH.

Problem 3.4. Is there an ARR space which is not RR?

Problem 3.5. Is there an NRM (resp. NRR, NRH) space which is not ARM (ARR, ARH)?

Theorem 3.6. If a relator space (X,R) is ARM and for every R ∈ R and every x ∈ X, R(x) intersects only finitely
many R(y), y ∈ X, then X is countable.

Proof. Let (Rn : n ∈ N) be a sequence of relations from R. Since (X,R) is ARM, we can choose finite subsets
Fn, n ∈ N such that

∪
n∈N clR(Rn(Fn)) = X. Put An = {x ∈ X : Rn(x) ∩ Rn(Fn) , ∅}. By the assumption, the

set An is finite for every n ∈ N. We prove that
∪

n∈N An = X. Let x ∈ X. Then there exists n ∈ N such that
x ∈ clR(Rn(Fn)). For every R ∈ R, R(x) ∩ Rn(Fn) , ∅, so Rn(x) ∩ Rn(Fn) , ∅. That implies x ∈ An.
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Lemma 3.7. If a topological space (X,T ) is regular, then for every subset A of X, A = clR∗T (A).

The proof is similar to the proof of Lemma 2.4.
The following is straightforward:

Theorem 3.8. If (X,T ) is regular then (X,T ) is ASSM if and only if the relator space (X,R∗T ) is ARM.

In [11], we showed that the almost Menger property is preserved under almost continuous functions.
We shall see that the similar statement holds in relator spaces. First we define the notion of almost relator
continuous function.

Definition 3.9. Let (X,R) and (Y,S) be relator spaces. We say that a function f : (X,R) → (Y,S) is almost
relator continuous if for every S ∈ S there exists R ∈ R such that for every x ∈ X, f (clR(R(x))) ⊂ S( f (x)).

Theorem 3.10. Let (X,R) be ARM and (Y,S) be a relator space. If f : (X,R)→ (Y,S) is an almost relator continuous
surjection, then (Y,S) is RM.

Proof. Let (Sn : n ∈ N) be a sequence of relations from S. Since f is almost relator continuous, we
can pick a relation Rn ∈ R for every n ∈ N such that f (clR(Rn(x))) ⊂ Sn( f (x)) for every x ∈ X. By the
assumption, we can find finite Fn ⊂ X, n ∈ N, such that

∪
n∈N clR(Rn(Fn)) = X. Now we have that

Y = f (
∪

n∈N clR(Rn(Fn))) =
∪

n∈N f (clR(Rn(Fn))) ⊂ ∪n∈N Sn( f (Fn)). So, the sequence ( f (Fn) : n ∈ N) of finite
subsets of Y witnesses that (Y,S) is RM.

Now we study the ARM property in finite powers.

Theorem 3.11. Let (X,R) be a relator space. If all finite powers of (X,R) are ARM, then for every sequence
(Rn : n ∈N) of relations fromR, there is a sequence (Fn : n ∈N) of finite subsets of X, such that {clR(Rn(Fn)) : n ∈N}
is an ω-cover of X.

Proof. Let (Rn : n ∈ N) be a sequence of relations from R and letN = N1 ∪ N2 ∪ ... be a partition ofN into
infinite pairwise disjoint sets. For every k ∈ N and every m ∈ Nk let Sm = (Rm)k. Then (Sm : m ∈ Nk) is a
sequence of relations from Rk. Since (Xk,Rk) is ARM, then one can choose finite subsets Am of Xk, m ∈ Nk,
such that {clRk (Sm(Am)) : m ∈ Nk} is a cover of Xk. For every m ∈ Nk, let Fm be a finite subset of X such that
Fk

m ⊃ Am. Consider the sequence of all Fm,m ∈ Nk, k ∈ N, chosen in this way and denote it (Fn : n ∈ N).
We claim that {clR(Rn(Fn)) : n ∈ N} is an ω-cover of X. Let F = {x1, x2, ..., xp} be a finite subset of X. Then
⟨x1, x2, ..., xp⟩ ∈ Xp. There is n ∈ Np such that ⟨x1, x2, ..., xp⟩ ∈ clRp (Rp

n(Fp
n)), so that we have F ⊂ clR(Rn(Fn)).

The following two statements and their proofs are similar to the statements of Theorems 2.13 and 2.14.

Theorem 3.12. The product of two ARH spaces is ARH.

Theorem 3.13. If a relator space (X,R) is ARM and a relator space (Y,S) is ARH, then the relator space (X×Y,R×S)
is ARM.

Recently, in [20], the notion of weakly Menger space was introduced in the following way:
A topological space is weakly Menger if for each sequence (Un : n ∈N) of open covers of X there exists a

sequence (Vn : n ∈N) such thatVn is a finite subset ofUn for each n ∈N and
∪{Vn : n ∈N} is dense in X.

Now we define the corresponding property in relator spaces.

Definition 3.14. A relator space (X,R) is weakly relator Menger (WRM) if for every sequence (Rn : n ∈ N) of
elements of R there exists a sequence (Fn : n ∈N) of finite subsets of X such that clR(

∪
n∈N Rn(Fn)) = X.
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Let (X,R) be a relator space. Then the following statements are equivalent:

• (1): (X,R) is WRM;

• (2): The selection hypothesis S1(Ω(R),DR) is true for X;

• (3): The selection hypothesis S f in(CR,DR) is true for X.

It is clear that every almost Menger space is weakly Menger. In [20], it was proved that there exists a
weakly Menger space which is not almost Menger. Naturally, we are interested in the relationship between
ARM and WRM spaces.

Theorem 3.15. Let (X,R) be a relator space. If (X,R) is ARM, then (X,R) is WRM.

Proof. Let (Rn : n ∈ N) be a sequence of relations from R. Since (X,R) is ARM, there exists a sequence
(Fn : n ∈ N) of finite subsets of X such that

∪
n∈N clR(Rn(Fn)) = X. We will show that clR(

∪
n∈N Rn(Fn)) = X.

Let x ∈ X. Then there exists n ∈ N such that x ∈ clR(Rn(Fn)). So, for every R ∈ R, R(x) ∩ Rn(Fn) , ∅. That
implies R(x) ∩∪n∈N Rn(Fn) , ∅ for every R ∈ R, so x ∈ clR(

∪
n∈N Rn(Fn)).

We show that the inverse does not hold.

Example 3.16. There exists a relator space which is WRM and not ARM.
Let R be the set of real numbers, Q the set of rational numbers and I the set of irrational numbers.

For every x ∈ I enumerate all sequences of rational numbers converging to x in the Euclidean topology as
{xα : α < c}. We construct a relatorD onR in the following way: for every α < c, we define a relation Dα such
that Dα(r) = {r} for every r ∈ Q and Dα(x) = {x} ∪ {xα,i : i ∈ N} for every x ∈ I and we put D = {Dα : α < c}
(see [24, Example 65]).

The relator space (R,D) is WRM because for every sequence (Dn : n ∈ N) of relations from D, we can
choose finite subsets Fn of R such that

∪
n∈NDn(Fn) = Q and clD(Q) = R.

Let us show that the relator space (R,D) is not ARM. Notice that clD(D(x)) = D(x) for every D ∈ D and
every x ∈ R. Let (Dn : n ∈N) be a sequence of relations fromD. Since I is uncountable and for every D ∈ D
and every x ∈ I only D(x) contains x, for every sequence (Fn : n ∈N) of finite subsets of R there exists x ∈ I
such that x <

∪
n∈N clD(Dn(Fn)).

We say that a relator space (X,R) is almost relator Lindelöf (ARL) if for every relation R ∈ R there exists a
countable subset A of X such that clR(A) = X.

Theorem 3.17. If a relator space (X,R) is WRM, then (X,R) is ARL.

Proof. Let R ∈ R. Then there exists a sequence (Fn : n ∈N) of finite subsets of X such that clR(
∪

n∈N R(Fn)) =
X. If we put A =

∪
n∈N Fn, then A is countable and clR(A) = X.

The property of WRM is preserved under relator continuous functions.

Theorem 3.18. If a relator space (X,R) is WRM and f : (X,R) → (Y,S) is a relator continuous surjection, then
(Y,S) is also WRM.

Proof. Let (Sn : n ∈ N) be a sequence of relations from S. Since f is relator continuous, for every n ∈ N
there exists Rn ∈ R such that f (Rn(x)) ⊂ Sn( f (x)) for every x ∈ X. Then we can find finite subsets Fn of X
such that clR(

∪
n∈N Rn(Fn)) = X. We prove that the sequence ( f (Fn) : n ∈N) witnesses that the relator space

(Y,S) is WRM.
Let y ∈ Y. Then there exists x ∈ X such that y = f (x). We have that x ∈ clR(

∪
n∈N Rn(Fn)). So, for every

R ∈ R there exists n ∈ N such that R(x) ∩ Rn(Fn) , ∅. That implies f (R(x)) ∩ f (Rn(Fn)) , ∅ for some n ∈ N.
If we pick arbitrary S ∈ S, then we can find R ∈ R such that f (R(x)) ⊂ S( f (x)) for every x ∈ X. So, we
conclude that S( f (x)) ∩ Sn( f (Fn)) , ∅ for some n ∈ N, i.e. we have that S(y) ∩∪n∈N Sn( f (Fn)) , ∅. That
implies y ∈ clR(

∪
n∈N Sn( f (Fn))).
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We now consider the property of WRM in finite powers of spaces.
We say that a relator space (X,R) is almost relator compact (ARC) if for every R ∈ R there exists a finite

subset F of X such that clR(R(F)) = X.

Theorem 3.19. Let (X,R) and (Y,S) be relator spaces. If (X,R) is WRM and (Y,S) is ARC, then the product
(X × Y,R × S) is WRM.

Proof. Let (Tn : n ∈N) be a sequence of relations from R × S. For every n ∈N, Tn = Rn × Sn, where Rn ∈ R,
Sn ∈ S. There exist sequences (Fn : n ∈ N) and (Gn : n ∈ N) of finite subsets of X and Y respectively, such
that clR(

∪
n∈N Rn(Fn)) = X and clS(Sn(Gn)) = Y for each n ∈N. We show that clR×S(

∪
n∈N Tn(Fn×Gn)) = X×Y.

Let (x, y) ∈ X × Y. Then for every R ∈ R, R(x) ∩ (
∪

n∈N Rn(Fn)) , ∅ and for every S ∈ S and every n ∈ N,
S(y)∩ Sn(Gn) , ∅. So, we can find n ∈N such that for every T = R× S ∈ R × S, T(x, y)∩Tn(Fn ×Gn) , ∅.

Problem 3.20. Is the product of two WRM spaces also a WRM space?
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Mathematics, Birkhäuser, 2006, pp. 225-255.
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