A new application of generalized power increasing sequences

Hüseyin Bor^a

^aP. O. Box 121, 06502 Bahçelievler, Ankara, Turkey

Abstract. In this paper, an application of quasi- σ -power increasing sequences has been generalized for quasi-f-power increasing sequences. We have also obtained some new results.

1. Introduction

Let $\sum a_n$ be a given infinite series with partial sums (s_n). We denote by t_n^{α} *n*th Cesàro mean of order α , with $\alpha > -1$, of the sequence (na_n), that is

$$t_n^{\alpha} = \frac{1}{A_n^{\alpha}} \sum_{v=1}^n A_{n-v}^{\alpha-1} v a_v,$$
(1)

where

$$A_n^{\alpha} = \binom{n+\alpha}{n} = O(n^{\alpha}), \quad A_0^{\alpha} = 1 \quad and \quad A_{-n}^{\alpha} = 0 \quad for \quad n > 0.$$
⁽²⁾

The series $\sum a_n$ is said to be summable $|C, \alpha; \delta|_k, k \ge 1, \alpha > -1$ and $\delta \ge 0$, if (see [5])

$$\sum_{n=1}^{\infty} n^{\delta k-1} \mid t_n^{\alpha} \mid^k < \infty.$$
(3)

A positive sequence (b_n) is said to be almost increasing if there exists a positive increasing sequence (c_n) and two positive constants A and B such that $Ac_n \leq b_n \leq Bc_n$ (see[1]). A positive sequence $X = (X_n)$ is said to be a quasi- σ -power increasing sequence if there exists a constant $K = K(\sigma, X) \geq 1$ such that $Kn^{\sigma}X_n \geq m^{\sigma}X_m$ holds for all $n \geq m \geq 1$ (see [6]). It should be noted that every almost increasing sequence is a quasi- σ -power increasing sequence for any nonnegative σ , but the converse may not be true as can be seen by taking an example, say $X_n = n^{-\sigma}$ for $\sigma > 0$. A sequence (λ_n) is said to be of bounded variation, denote by $(\lambda_n) \in \mathcal{BV}$, if $\sum_{n=1}^{\infty} |\Delta\lambda_n| = \sum_{n=1}^{\infty} |\lambda_n - \lambda_{n+1}| < \infty$. In [3], we have proved the following theorem dealing with an application of a quasi- σ -power increasing sequences.

²⁰¹⁰ Mathematics Subject Classification. Primary 40D15; Secondary 40F05, 40G05, 40G99, 46A45

Keywords. Power increasing sequences, Cesàro mean, sequence spaces, infinite series

Received: 17 June 2011; Accepted: 05 December 2011

Communicated by Ljubiša D.R. Kočinac

Email address: hbor33@gmail.com (Hüseyin Bor)

Theorem 1.1. Let (X_n) be a quasi- σ -power increasing sequence for some σ ($0 < \sigma < 1$). Suppose also that there exist sequences (β_n) and (λ_n), such that

$$|\Delta\lambda_n| \le \beta_n \tag{4}$$

$$\beta_n \to 0 \quad as \quad n \to \infty$$
 (5)

$$\sum_{n=1}^{\infty} n \mid \Delta \beta_n \mid X_n < \infty \tag{6}$$

$$|\lambda_n| X_n = O(1) \quad as \quad n \to \infty.$$
⁽⁷⁾

If the sequence (u_n^{α}) *defined by (see* [7])

$$u_n^{\alpha} = |t_n^{\alpha}|, \quad \alpha = 1$$
(8)

$$u_n^{\alpha} = \max_{1 \le v \le n} |t_v^{\alpha}|, \quad 0 < \alpha < 1$$
(9)

satisfies the condition

$$\sum_{n=1}^{m} n^{\delta k-1} (u_n^{\alpha})^k = O(X_m) \quad as \quad m \to \infty,$$
(10)

then the series $\sum a_n \lambda_n$ is summable $| C, \alpha; \delta |_k, k \ge 1$ and $0 \le \delta < \alpha \le 1$.

Remark 1.2. It may be noted that the condition " $(\lambda_n) \in \mathcal{BV}$ " should be added in the statement of Theorem 1.1.

2. The main result

The aim of this paper is to generalize Theorem 1.1 using a new class of power increasing sequences. For this purpose, we need the concept of a quasi-f-power increasing sequence. A positive sequence $X = (X_n)$ is said to be a quasi-f-power increasing sequence, if there exists a constant $K = K(X, f) \ge 1$ such that $Kf_nX_n \ge f_mX_m$, holds for $n \ge m \ge 1$, where $f = (f_n) = [n^{\sigma}(\log n)^{\gamma}, \gamma \ge 0, 0 < \sigma < 1]$ (see [8]). It should be noted that if we take $\gamma=0$, then we get a quasi- σ -power increasing sequence.

Now, we shall prove the following more general theorem.

Theorem 2.1. Let $(\lambda_n) \in \mathcal{BV}$ and (X_n) be a quasi-*f*-power increasing sequence. If the conditions from (4) to (7) and (10) are satisfied, then the series $\sum a_n \lambda_n$ is summable $|C, \alpha; \delta|_k$, $k \ge 1$ and $0 \le \delta < \alpha \le 1$.

We need the following lemmas for the proof of our theorem.

Lemma 2.2. Except for the condition $(\lambda_n) \in \mathcal{BV}$, under the conditions on (X_n) , (β_n) and (λ_n) as expressed in the statement of the theorem, the following conditions hold

$$\sum_{n=1}^{\infty} \beta_n X_n < \infty.$$
⁽¹¹⁾

$$nX_n\beta_n = O(1),\tag{12}$$

Proof. Since $\beta_n \to 0$, then we have $\Delta \beta_n \to 0$, and hence

$$\begin{split} \sum_{n=1}^{\infty} \beta_n X_n &\leq \sum_{n=1}^{\infty} X_n \sum_{v=n}^{\infty} |\Delta\beta_v| = \sum_{v=1}^{\infty} |\Delta\beta_v| \sum_{n=1}^{v} X_n \\ &= \sum_{v=1}^{\infty} |\Delta\beta_v| \sum_{n=1}^{v} n^{\sigma} (\log n)^{\gamma} X_n n^{-\sigma} (\log n)^{-\gamma} \\ &= O(1) \sum_{v=1}^{\infty} |\Delta\beta_v| v^{\sigma} (\log v)^{\gamma} X_v \sum_{n=1}^{v} n^{-\sigma} (\log n)^{-\gamma} \\ &= O(1) \sum_{v=1}^{\infty} |\Delta\beta_v| v^{\sigma} (\log v)^{\gamma} X_v \sum_{n=1}^{v} n^{\epsilon} (\log n)^{-\gamma} n^{-\sigma-\epsilon}, \quad 0 < \epsilon < \sigma + \epsilon < 1 \\ &= O(1) \sum_{v=1}^{\infty} |\Delta\beta_v| v^{\sigma} X_v (\log v)^{\gamma} v^{\epsilon} (\log v)^{-\gamma} \sum_{n=1}^{v} n^{-\sigma-\epsilon} \\ &= O(1) \sum_{v=1}^{\infty} |\Delta\beta_v| v^{\sigma+\epsilon} X_v \int_0^{v} x^{-\sigma-\epsilon} dx \\ &= O(1) \sum_{v=1}^{\infty} |\Delta\beta_v| v^{\sigma+\epsilon} X_v v^{1-\sigma-\epsilon} \\ &= O(1) \sum_{v=1}^{\infty} v |\Delta\beta_v| X_v = O(1). \end{split}$$

Again, we have that

$$\begin{split} n\beta_n X_n &= nX_n \sum_{v=n}^{\infty} \Delta\beta_v \le nX_n \sum_{v=n}^{\infty} |\Delta\beta_v| \\ &= n^{1-\sigma} (\log n)^{-\gamma} n^{\sigma} (\log n)^{\gamma} X_n \sum_{v=n}^{\infty} |\Delta\beta_v| \\ &\le n^{1-\sigma} (\log n)^{-\gamma} \sum_{v=n}^{\infty} v^{\sigma} (\log v)^{\gamma} X_v |\Delta\beta_v| \\ &\le \sum_{v=n}^{\infty} v^{1-\sigma} (\log v)^{-\gamma} X_v v^{\sigma} (\log v)^{\gamma} |\Delta\beta_v| \\ &= \sum_{v=1}^{\infty} v X_v |\Delta\beta_v| = O(1). \end{split}$$

This completes the proof of Lemma 2.2. \Box

Lemma 2.3. ([4]) *If* $0 < \alpha \le 1$ *and* $1 \le v \le n$ *, then*

$$|\sum_{p=0}^{v} A_{n-p}^{\alpha-1} a_{p}| \leq \max_{1 \leq m \leq v} |\sum_{p=0}^{m} A_{m-p}^{\alpha-1} a_{p}|.$$
(13)

Proof Theorem 2.1. Let (T_n^{α}) be the n-th (C, α) , with $0 < \alpha \le 1$, mean of the sequence $(na_n\lambda_n)$. Then, by (1), we have

$$T_n^{\alpha} = \frac{1}{A_n^{\alpha}} \sum_{v=1}^n A_{n-v}^{\alpha-1} v a_v \lambda_v.$$
(14)

Applying Abel's transformation first and then using Lemma 2.3, we have that

$$\begin{split} T_{n}^{\alpha} &= \frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n-1} \Delta \lambda_{v} \sum_{p=1}^{v} A_{n-p}^{\alpha-1} p a_{p} + \frac{\lambda_{n}}{A_{n}^{\alpha}} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} v a_{v}, \\ |T_{n}^{\alpha}| &\leq \frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n-1} |\Delta \lambda_{v}| |\sum_{p=1}^{v} A_{n-p}^{\alpha-1} p a_{p}| + \frac{|\lambda_{n}|}{A_{n}^{\alpha}} |\sum_{v=1}^{n} A_{n-v}^{\alpha-1} v a_{v}| \\ &\leq \frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n-1} A_{v}^{\alpha} u_{v}^{\alpha} |\Delta \lambda_{v}| + |\lambda_{n}| u_{n}^{\alpha} \\ &= T_{n,1}^{\alpha} + T_{n,2}^{\alpha}. \end{split}$$

Since

$$|T_{n,1}^{\alpha} + T_{n,2}^{\alpha}|^{k} \leq 2^{k} (|T_{n,1}^{\alpha}|^{k} + |T_{n,2}^{\alpha}|^{k}),$$

to complete the proof of the theorem, by (3), it is enough to show that

$$\sum_{n=1}^{\infty} n^{\delta k-1} \mid T^{\alpha}_{n,r} \mid^{k} < \infty, \quad for \quad r = 1, 2.$$

Now, when k > 1, applying Hölder's inequality with indices k and k', where $\frac{1}{k} + \frac{1}{k'} = 1$, we get

$$\begin{split} \sum_{n=2}^{m+1} n^{\delta k-1} |T_{n,1}^{\alpha}|^{k} &\leq \sum_{n=2}^{m+1} n^{\delta k-1} (A_{n}^{\alpha})^{-k} \{\sum_{v=1}^{n-1} (A_{v}^{\alpha})^{k} (u_{v}^{\alpha})^{k} | \Delta \lambda_{v} |\} \times \{\sum_{v=1}^{n-1} | \Delta \lambda_{v} |\}^{k-1} \\ &= O(1) \sum_{n=2}^{m+1} n^{\delta k-\alpha k-1} \{\sum_{v=1}^{n-1} v^{\alpha k} (u_{v}^{\alpha})^{k} \beta_{v} \} \\ &= O(1) \sum_{v=1}^{m} v^{\alpha k} (u_{v}^{\alpha})^{k} \beta_{v} \sum_{n=v+1}^{m+1} \frac{1}{n^{1+\alpha k-\delta k}} \\ &= O(1) \sum_{v=1}^{m} v^{\alpha k} (u_{v}^{\alpha})^{k} \beta_{v} \int_{v}^{\infty} \frac{dx}{x^{1+\alpha k-\delta k}} \\ &= O(1) \sum_{v=1}^{m} v^{\delta k} (u_{v}^{\alpha})^{k} \beta_{v} = O(1) \sum_{v=1}^{m} v \beta_{v} v^{\delta k-1} (u_{v}^{\alpha})^{k} \\ &= O(1) \sum_{v=1}^{m-1} \Delta (v \beta_{v}) \sum_{r=1}^{v} r^{\delta k-1} (u_{r}^{\alpha})^{k} + O(1) m \beta_{m} \sum_{v=1}^{m} v^{\delta k-1} (u_{v}^{\alpha})^{k} \\ &= O(1) \sum_{v=1}^{m-1} | \Delta (v \beta_{v}) | X_{v} + O(1) m \beta_{m} X_{m} \\ &= O(1) \sum_{v=1}^{m-1} | (v+1) \Delta \beta_{v} - \beta_{v} | X_{v} + O(1) m \beta_{m} X_{m} \\ &= O(1) \sum_{v=1}^{m-1} v | \Delta \beta_{v} | X_{v} + O(1) \sum_{v=1}^{m-1} \beta_{v} X_{v} + O(1) m \beta_{m} X_{m} \\ &= O(1) \sum_{v=1}^{m-1} v | \Delta \beta_{v} | X_{v} + O(1) \sum_{v=1}^{m-1} \beta_{v} X_{v} + O(1) m \beta_{m} X_{m} \\ &= O(1) \sum_{v=1}^{m-1} v | \Delta \beta_{v} | X_{v} + O(1) \sum_{v=1}^{m-1} \beta_{v} X_{v} + O(1) m \beta_{m} X_{m} \\ &= O(1) as m \to \infty, \end{split}$$

by virtue of the hypotheses of the theorem and Lemma 2.2. Finally, we have that

$$\sum_{n=1}^{m} n^{\delta k-1} | T_{n,2}^{\alpha} |^{k} = \sum_{n=1}^{m} |\lambda_{n}|^{k-1} |\lambda_{n}| n^{\delta k-1} (u_{n}^{\alpha})^{k}$$

$$= O(1) \sum_{n=1}^{m} |\lambda_{n}| n^{\delta k-1} (u_{n}^{\alpha})^{k}$$

$$= O(1) \sum_{n=1}^{m-1} \Delta |\lambda_{n}| \sum_{v=1}^{n} v^{\delta k-1} (u_{v}^{\alpha})^{k} + O(1) |\lambda_{m}| \sum_{n=1}^{m} n^{\delta k-1} (u_{n}^{\alpha})^{k}$$

$$= O(1) \sum_{n=1}^{m-1} |\Delta \lambda_{n}| X_{n} + O(1) |\lambda_{m}| X_{m}$$

$$= O(1) \sum_{n=1}^{m-1} \beta_{n} X_{n} + O(1) |\lambda_{m}| X_{m} = O(1) \quad as \quad m \to \infty,$$

by virtue of the hypotheses of the theorem and Lemma 2.2. This completes the proof of the theorem.

It should be noted that, if we take $\delta = 0$ (resp. $\alpha = 1$), then we get a new result for $|C, \alpha|_k$ (resp. $|C, 1; \delta|_k$) summability. Also, if we take (X_n) as an almost increasing sequence, then we obtain a result of Bor [2] (in this case the condition $(\lambda_n) \in \mathcal{BV}$ is not needed). If we take $\gamma = 0$, then we get Theorem 1.1.

References

- N. K. Bari, S. B. Stečkin, Best approximation and differential proprerties of two conjugate functions, Trudy Moskov. Mat. Obšč. 5 (1956) 483–522 (in Russian).
- [2] H. Bor, An application of almost increasing sequences, Math. Inequal. Appl. 5 (2002) 79-83.
- [3] H. Bor, An application of quasi power increasing sequences, Aust. J. Math. Anal. Appl. 1 (2004), Art.6, 5 pp (electronic).
- [4] L. S. Bosanquet, A mean value theorem, J. London Math. Soc. 16 (1941) 146–148.
- [5] T. M. Flett, Some more theorems concerning the absolute summability of Fourier series, Proc. London Math. Soc. 8 (1958) 357–387.
- [6] L. Leindler, A new application of quasi power increasing sequences, Publ. Math. Debrecen 58 (2001) 791–796.
- [7] T. Pati, The summability factors of infinite series, Duke Math. J. 21 (1954) 271-284.
- [8] W. T. Sulaiman, Extension on absolute summability factors of infinite series, J. Math. Anal. Appl. 322 (2006) 1224–1230.