# A note on convergence in measure and selection principles

Dragan Djurčić<sup>a</sup>, Ljubiša D.R. Kočinac<sup>b</sup>

<sup>a</sup>Technical Faculty, Svetog Save 65, 32000 Čačak, Serbia <sup>b</sup>University of Niš, Faculty of Sciences and Mathematics, 18000 Niš, Serbia

**Abstract.** It is proved that some classes of sequences of measurable functions satisfy certain selection principles related to special modes of convergence (convergence in measure, almost everywhere convergence, almost uniform convergence, mean convergence).

## 1. Introduction

By  $\mathbb{N}$ ,  $\mathbb{R}$  and  $\mathbb{R}$  we denote the set of natural numbers, real numbers, and the extended real line  $\mathbb{R} \cup \{-\infty, \infty\}$ , respectively.

Throughout this note (X, M,  $\mu$ ), or shortly X, denotes a measure space with a complete measure  $\mu$  :  $\mathcal{M} \to \overline{\mathbb{R}}$  (and  $\mathcal{M}$  a  $\sigma$ -algebra of subsets of X measurable with respect to  $\mu$ ). E is always an element in  $\mathcal{M}$  such that  $\mu(E) < \infty$ . All functions are measurable and finite almost everywhere on E.

Our notation and terminology concerning measure spaces are standard and follow [2, 8, 9, 13–15].

The paper deals with the following problem. Let a sequence  $(S_n : n \in \mathbb{N})$  of sequences of measurable functions, all converging (in a mode of convergence) to a function f, be given. Apply a selection procedure  $\pi$  to find a sequence s constructed by choosing elements from each  $S_n$  using  $\pi$ , and converging to f in the same or different mode of convergence.

We begin with the following definition of the selection principle we basically consider in this article.

Let  $\mathcal{A}$  and  $\mathcal{B}$  be collections of sequences of measurable functions from a measure space (X,  $\mathcal{M}$ ,  $\mu$ ) into  $\mathbb{R}$  or  $\overline{\mathbb{R}}$ . Then:

The symbol  $S_1(\mathcal{A}, \mathcal{B})$  denotes the selection principle:

For each sequence  $(A_n : n \in \mathbb{N})$  of elements of  $\mathcal{A}$  there is a sequence  $b = (b_n : n \in \mathbb{N}) \in \mathcal{B}$  such that  $b_n \in A_n$  for each  $n \in \mathbb{N}$ .

For more information on selection principles (and corresponding infinitely long games) see the survey papers [10, 12] and references therein.

In a number of papers by the authors that appeared recently in the literature it was demonstrated that some classes  $\mathcal{A}$  and  $\mathcal{B}$  of sequences of positive real numbers have certain nice selection properties ([3–7]).

In this article our selections are related to special modes of convergence of sequences of measurable functions which converge in measure, or are (uniformly) almost everywhere convergent to a function.

<sup>2010</sup> Mathematics Subject Classification. Primary 40A30; Secondary 28A99

*Keywords*. Selection principles, convergence in measure, almost everywhere convergence, almost uniform convergence, Egorov's theorem.

Received: 04 October 2011; Accepted: 12 October 2011

Communicated by Vladimir Rakočević

Research supported by MES RS.

Email addresses: dragandj@tfc.kg.ac.rs (Dragan Djurčić), lkocinac@gmail.com (Ljubiša D.R. Kočinac)

## 2. Definitions

Let  $(X, \mathcal{M}, \mu)$  be a measure space. A function  $f : E \to \overline{\mathbb{R}}$  is almost everywhere finite on E if  $\mu(\{x \in E : f(x) = \infty \text{ or } f(x) = -\infty\}) = 0$ .

A function  $f : E \to \overline{\mathbb{R}}$  is a *measurable function* if for each  $c \in \overline{\mathbb{R}}$ ,  $\{x \in A : f(x) > c\} \in \mathcal{M}$  or, equivalently,  $f^{\leftarrow}(B) \in \mathcal{M}$  for each  $B \in \mathfrak{B}_{\overline{\mathbb{R}}}$ , where  $\mathfrak{B}_{\overline{\mathbb{R}}} = \{E \subset \overline{\mathbb{R}} : E \cap \mathbb{R} \in \mathfrak{B}_{\mathbb{R}}\}$  is the  $\sigma$ -algebra of Borel sets in  $\overline{\mathbb{R}}$ .

Let  $E \in \mathcal{M}$  and let  $f_n : E \to \overline{\mathbb{R}}$ ,  $n \in \mathbb{N}$ , be measurable and almost everywhere finite functions, and  $f : E \to \overline{\mathbb{R}}$ . Then:

1.  $(f_n)_{n \in \mathbb{N}}$  converges almost everywhere to f on E, denoted  $(f_n)_{n \in \mathbb{N}} \xrightarrow{a.e.} f$ , if  $\mu(\{x \in E : (f_n(x))_{n \in \mathbb{N}} \twoheadrightarrow f(x)\}) = 0$ .

2.  $(f_n)_{n \in \mathbb{N}}$  converges *in measure* (or  $\mu$ -converges) to f on E, denoted  $(f_n)_{n \in \mathbb{N}} \xrightarrow{\mu} f$ , if for each  $\varepsilon > 0$  it holds  $\lim_{n \to \infty} \mu(\{x \in E : f_n(x) \text{ finite } \forall n \in \mathbb{N} \text{ and } |f_n(x) - f(x)| \ge \varepsilon\}) = 0.$ 

3.  $(f_n)_{n \in \mathbb{N}}$  converges *almost uniformly* to f on E, denoted  $(f_n)_{n \in \mathbb{N}} \xrightarrow{a.u.} f$ , if for each  $\varepsilon > 0$  there is a measurable subset  $E_{\varepsilon} \subset E$  with  $\mu(E_{\varepsilon}) < \varepsilon$  such that  $(f_n(x))_{n \in \mathbb{N}} \rightrightarrows f(x)$  on  $E \setminus E_{\varepsilon}$ .

Notice the fact that in each of the above three kinds of convergence the function f is measurable and almost everywhere finite on E.

Clearly, almost uniform convergence on *E* implies almost everywhere convergence (without assumption  $\mu(E) < \infty$ ).

If  $\mu(E) < \infty$  and  $f, f_n : E \to \overline{\mathbb{R}}$  for each  $n \in \mathbb{N}$ , then according to the well-known theorems in measure theory, the following holds:

**a.e.** convergence  $\Leftrightarrow$  **a.u.** convergence  $\Rightarrow \mu$  convergence  $\uparrow$   $\uparrow$ pointwise convergence  $\Leftarrow$  uniform convergence

#### Notation

Let  $(X, \mathcal{M}, \mu)$  be a measure space,  $E \in \mathcal{M}$ ,  $\mu(E) < \infty$ , and f a function measurable and finite a.e. on E. Then:

 $\Sigma_f^{a.e.}(E) = \{ (f_n)_{n \in \mathbb{N}} : (f_n)_{n \in \mathbb{N}} \xrightarrow{a.e.} f \text{ on } E \} = \{ (f_n)_{n \in \mathbb{N}} : (f_n)_{n \in \mathbb{N}} \xrightarrow{a.u.} f \text{ on } E \}.$  $\Sigma_f^{\mu}(E) = \{ (f_n)_{n \in \mathbb{N}} : (f_n)_{n \in \mathbb{N}} \xrightarrow{\mu} f \text{ on } E \}.$ 

#### 3. Results

Throughout this section, as we mentioned in Introduction,  $(X, \mathcal{M}, \mu)$  will be always a measure space, and *E* an element in  $\mathcal{M}$  such that  $\mu(E) < \infty$ .

We prove first a theorem which is, in a sense, a selective version of the celebrated Egorov theorem [2, Theorem 2.2.1].

**Theorem 3.1.** The selection principle  $S_1(\Sigma_f^{a.e.}(E), \Sigma_f^{a.e.}(E))$  is satisfied.

*Proof.* Let  $(S_n = (f_n^m)_{m \in \mathbb{N}} : n \in \mathbb{N})$  be a sequence of elements from  $\Sigma_f^{a.e.}(E)$ . Let  $\delta > 0$  ( $\delta \le \mu(E)$ ). For each  $n \in \mathbb{N}$  we have  $(f_n^m)_{m \in \mathbb{N}} \xrightarrow{a.u.} f$  on E, and thus for each  $n \in \mathbb{N}$  there is a measurable set  $E_n \subset E$  such that  $\mu(E_n) < \frac{\delta}{2^n}$  and  $(f_n^m)_{m \in \mathbb{N}}$  uniformly converges to f on  $E \setminus E_n$ . Let  $E_{\delta} = \bigcup_{n \in \mathbb{N}} E_n$ . Then  $E_{\delta}$  is measurable,  $\mu(E_{\delta}) > 0$ , and

$$\mu(E_{\delta}) \leq \sum_{n=1}^{\infty} \mu(E_n) < \sum_{n=1}^{\infty} \frac{\delta}{2^n} = \delta.$$

Also, for each  $n \in \mathbb{N}$ ,  $(f_n^m)_{m \in \mathbb{N}}$  uniformly converges to f on  $E \setminus E_{\delta}$ , so that there are  $m_n \in \mathbb{N}$ ,  $n \in \mathbb{N}$ , such that  $|f_n^m(x) - f(x)| < \frac{1}{2^n}$  for each  $x \in E \setminus E_{\delta}$  and each  $m \ge m_n$ .

Construct now the sequence  $(g_n)_{n \in \mathbb{N}}$  of functions defined on  $E \setminus E_{\delta}$  in the following way:

$$g_n(x) = f_n^{m_n^*}(x)$$
, for some  $m_n^* \ge m_n$ ,  $n \in \mathbb{N}$ .

In this way, we have constructed a sequence of functions defined on *E* (we can redefine functions  $g_n$  on the set  $E_{\delta}$ ) which uniformly converges to *f* on the set  $E \setminus E_{\delta}$ .

We prove that the sequence  $(g_n : n \in \mathbb{N})$  is a required selector for  $(S_n : n \in \mathbb{N})$ . Let  $\varepsilon > 0$ . Consider two cases:

Case 1:  $\varepsilon \geq \delta$ .

Then, by the construction of functions  $g_n$ ,  $n \in \mathbb{N}$ , we conclude that  $E_{\delta}$  is the subset of E with  $\mu(E_{\delta}) < \varepsilon$  such that  $(g_n)_{n \in \mathbb{N}}$  uniformly converges to f on  $E \setminus E_{\delta}$ .

Case 2:  $\varepsilon < \delta$ .

There is  $n_0 \in \mathbb{N}$  such that  $\sum_{n=n_0}^{\infty} \frac{\delta}{2^n} < \varepsilon$ . Set  $E_{\varepsilon} = \bigcup_{n=n_0}^{\infty} E_n$ . Then  $\mu(E_{\varepsilon}) < \varepsilon$  (and  $\mu(E_{\varepsilon}) > 0$ ), and for each  $n \ge n_0$  it holds  $|g_n(x) - f(x)| < 2^{-n}$  for each  $x \in E \setminus E_{\varepsilon}$ . This means that  $(g_n)_{n \in \mathbb{N}} \xrightarrow{a.u.} f$  on E. This completes the proof.  $\Box$ 

**Remark 3.2.** Notice that this theorem remains true if  $f_n^m$ ,  $n, m \in \mathbb{N}$ , and f are functions from E into a separable metric space Y, and  $f_n^{m's}$  are measurable with respect to  $\mathcal{M}$  and the Borel  $\sigma$ -algebra  $\mathcal{B}(Y)$  (see [2, Theorem 7.1.12]).

**Remark 3.3.** Theorem 3.1 holds also for the sets *E* with infinite measure provided there is a  $\mu$ -integrable function  $\varphi$  such that  $|f_n^m| \le \varphi$  for all  $m, n \in \mathbb{N}$  (see [2, 2.12.45]).

¿From Theorem 3.1 we obtain the following corollary.

**Corollary 3.4.** The selection principle  $S_1(\Sigma_f^{a.e.}(E), \Sigma_f^{\mu}(E))$  is satisfied.

Also, we have the following result.

**Theorem 3.5.** The selection principle  $S_1(\Sigma_f^{\mu}(E), \Sigma_f^{a.e.}(E))$  is satisfied.

*Proof.* Let  $(S_n : n \in \mathbb{N})$ ,  $S_n = (f_n^m)_{m \in \mathbb{N}}$ , be a sequence of elements from  $\Sigma_f^{\mu}(E)$ . By the Riesz theorem (see [2, Theorem 2.2.5], [15, Theorem 6.24]) for each  $n \in \mathbb{N}$  the sequence  $S_n$  contains a subsequence  $s_n$  converging to f almost everywhere. Apply now Theorem 3.1 to the sequence  $(s_n : n \in \mathbb{N})$  to conclude that there are functions  $h_n \in s_n$ , hence  $h_n \in S_n$ ,  $n \in \mathbb{N}$ , such that  $(h_n)_{n \in \mathbb{N}} \xrightarrow{a.e.} f$ , i.e. the sequence  $(h_n : n \in \mathbb{N})$  witnesses for  $(S_n : n \in \mathbb{N})$  that  $S_1(\Sigma_f^{\mu}(E), \Sigma_f^{a.e.}(E))$  is true.  $\Box$ 

The next theorem shows that for  $\mu$ -convergence we have something more.

First, we define the following selection principle (see [11, 12] for general case, and [1] for special case when  $\mathcal{A}$  and  $\mathcal{B}$  are both the collection  $\Sigma_x$  of sequences in a topological space converging to a point x in the space).

Let  $\mathcal{A}$  and  $\mathcal{B}$  be as above. Then the symbol  $\alpha_1(\mathcal{A}, \mathcal{B})$  denotes the selection hypothesis that for each sequence  $(a_n : n \in \mathbb{N})$  of elements of  $\mathcal{A}$  there is an element  $b \in \mathcal{B}$  such that for each  $n \in \mathbb{N}$  the set  $a_n \setminus b$  is finite. (A space *X* satisfying  $\alpha_1(\Sigma_x, \Sigma_x)$  for each  $x \in X$  is called an  $\alpha_1$ -space.)

**Theorem 3.6.** The selection principle  $\alpha_1(\Sigma_f^{\mu}(E), \Sigma_f^{\mu}(E))$  is true.

*Proof.* Let  $(S_n : n \in \mathbb{N})$ ,  $S_n = (f_n^m)_{m \in \mathbb{N}}$ , be a sequence of elements from  $\Sigma_f^{\mu}(E)$  and let  $\varepsilon > 0$ . For all  $m, n \in \mathbb{N}$  let

$$E_n^m = \{x \in E : |f_n^m(x) - f(x)| \ge \frac{\varepsilon}{n}\}.$$

In this way, for each  $n \in \mathbb{N}$  the sequence  $s_n = (\mu(E_n^m))_{m \in \mathbb{N}}$  of real numbers corresponds to the sequence  $S_n$  of functions. By definition of  $\mu$ -convergence we have actually the sequence  $(s_n : n \in \mathbb{N})$  of real sequences each converging to 0. Since  $\mathbb{R}$  (as each first countable space) satisfies the  $\alpha_1$  property, there is a sequence s in  $\mathbb{R}$  converging to 0 and such that for each n the set  $s_n \setminus s$  is finite. Associate to s the sequence S of corresponding functions from sequences  $S_n$ ,  $n \in \mathbb{N}$ . Then  $S_n \setminus S$  is finite for each  $n \in \mathbb{N}$  and  $S \xrightarrow{\mu} f$ , i.e.  $\alpha_1(\Sigma_f^{\mu}(E), \Sigma_f^{\mu}(E))$  is satisfied.  $\Box$ 

If we take from the sequence *s* in the proof of the previous theorem a subsequence  $t = (t_k)_{k \in \mathbb{N}}$  such that  $t_k \in S_k$  for each  $k \in \mathbb{N}$ , we obtain the following corollary.

**Corollary 3.7.** The selection principle  $S_1(\Sigma_f^{\mu}(E), \Sigma_f^{\mu}(E))$  is true.

Recall now another mode of convergence. A sequence  $(f_n)_{n \in \mathbb{N}}$  of *integrable* functions defined on a subset *E* of a measure space  $(X, \mathcal{M}, \mu)$  is said to *converge in mean* (or that it is *mean convergent*) to a function *f*, denoted  $(f_n)_{n \in \mathbb{N}} \xrightarrow{L_1} f$ , if

 $\lim_{n\to\infty}\|f_n-f\|_1=0,$ 

where  $||f||_1 = \int_F f d\mu$  is the  $L^1$ -norm.

Denote by  $\Sigma_{f}^{L_{1}}(E)$  the set of all sequences of integrable functions which mean converge to a function *f*.

It is known that mean convergence implies convergence in measure (due to the Chebyshev inequality). Thus from Corollary 3.7 we obtain:

**Corollary 3.8.** The selection principle  $S_1(\Sigma_f^{L_1}(E), \Sigma_f^{\mu}(E))$  is true.

On the other hand, Theorem 3.1 and the Lebesgue dominated convergence theorem [2, Theorem 2.8.1] imply the following theorem.

**Theorem 3.9.** Let  $(S_n = (f_n^m)_{m \in \mathbb{N}} : n \in \mathbb{N})$  be a sequence of elements of  $\Sigma_f^{a.e.}(E)$  such that there is a  $\mu$ -integrable function  $\varphi$  with  $|f_n^m| \le \varphi$  for all  $n, m \in \mathbb{N}$ . Then there is a sequence  $s = (f_n^{m_n} : n \in \mathbb{N})$  which mean converges to f.

If  $\mathcal{A}$  and  $\mathcal{B}$  are as above, then the symbol  $\alpha_4(\mathcal{A}, \mathcal{B})$  denotes the selection hypothesis that for each sequence  $(a_n : n \in \mathbb{N})$  of elements from  $\mathcal{A}$  there is a sequence  $b \in \mathcal{B}$  such that  $a_n \cap b \neq \emptyset$  for infinitely many  $n \in \mathbb{N}$  (see, for example, [12])

By Corollary 3.8 for each sequence  $(S_n : n \in \mathbb{N})$  of elements of  $\Sigma_f^{L_1}(E)$ , there are elements  $g_n \in S_n$ ,  $n \in \mathbb{N}$ , such that  $(g_n)_{n \in \mathbb{N}}$  converges in measure to f. By the Riesz theorem there is a subsequence  $(g_{n_k}) = (h_k)$  of  $(g_n)$  converging almost everywhere to f. But this means that for infinitely many n we have chosen  $h_n \in S_n$  so that  $(h_n)$  almost everywhere converges to f. Therefore, we have the following result:

**Theorem 3.10.** The selection principles  $\alpha_4(\Sigma_f^{L_1}(E), \Sigma_f^{a.e}(E))$  is satisfied.

### References

- A.V. Arhangel'skiĭ, The frequency spectrum of a topological space and the classification of spaces, Soviet Math. Doklady 13 (1972) 1185–1189.
- [2] V.I. Bogachev, Measure Theory, Vol. I-II, Springer, 2007, pp. xvii+500, xiii+575.
- [3] G. Di Maio, D. Djurčić, Lj.D.R. Kočinac, M.R. Žižović, Statistical convergence, selection principles and asymptotic analysis, Chaos, Solitons & Fractals 42 (2009) 2815–2821.
- [4] D. Djurčić, Lj.D.R. Kočinac, M.R. Žižović, Some properties of rapidly varying sequences, J. Math. Anal. Appl. 327 (2007) 1297–1306.
- [5] D. Djurčić, Lj.D.R. Kočinac, M.R. Žižović, Relations between sequences and selection properties, Abstract Appl. Anal. vol. 2007 (2007), Article ID 43081, 8 pages.
- [6] D. Djurčić, Lj.D.R. Kočinac, M.R. Žižović, Rapidly varying sequences and rapid convergence, Topology Appl. 155 (2008) 2143– 2149.
- [7] D. Djurčić, Lj.D.R. Kočinac, M.R. Žižović, A few remarks on divergent sequences: rates of divergence II, J. Math. Anal. Appl. 367 (2010) 705–709.
- [8] D. Fremlin, Measure Theory, Vol. 1-5, University of Essex, Colchester, 2000-2003.
- [9] P. Halmos, Measure Theory, Van Nostrand, New York, 1950, pp. xi+304.
- [10] Lj.D.R. Kočinac, Selected results on selection principles, In: Proc. Third Sem. Geom. Topology (July 15–17, 2004, Tabriz, Iran), 2004, pp. 71–104.
- [11] Lj.D.R. Kočinac, Selection principles related to  $\alpha_i$ -properties, Taiwanese J. Math. 12 (2008) 561–571.
- [12] Lj.D.R. Kočinac, On the  $\alpha_i$ -selection principles and games, Cont. Math. 533 (2011) 107–124.
- [13] M.M. Rao, Measure Theory and Integration, John Wiley & Sons, New York, 1987, pp. xiv+540; 2nd edition, Marcel Dekker, New York, 2004, pp. xx+761.
- [14] J.C. Taylor, An Introduction to Measure and Probability, Springer-Verlag, New York, 1997, pp. xviii+299.
- [15] J. Yeh, Real Analysis: Theory of Measure and Integration, 2nd revised ed., World Scientific, 2006, pp. 738.