Filomat 26:3 (2012), 511–518 DOI 10.2298/FIL1203511M Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

A note on some sequence spaces of weighted means

Eberhard Malkowsky^a, Faruk Özger^a

^aDepartment of Mathematics, Faculty of Arts and Sciences, Fatih University, Büyükçekmece 34500, Istanbul, Turkey

Abstract. We show that the sequence spaces a_0^r , a_c^r and a_{∞}^r are equal to the sets of all sequences whose Cesàro means of order 1 converge to 0, converge and are bounded. As a consequence of this, we are able to considerably simplify the known results and their proofs in [1, 2], and to add the characterisations of some more classes of matrix transformations.

1. Introduction, notations and known results

Aydın and Başar defined the sequence spaces a_0^r , a_c^r , $a_0^r(\Delta)$ and $a_c^r(\Delta)$ for 0 < r < 1 in [1, 2]. They determined some Schauder bases for their spaces, found the α -, β - and γ -duals, and characterised some classes of matrix transformations on them. Furthermore, various classes of compact matrix operators on the spaces a_0^r , a_c^r , $a_0^r(\Delta)$ and $a_c^r(\Delta)$ were characterised in [3, 4, 7]. We include the sets a_{∞}^r and $a_{\infty}^r(\Delta)$ in our studies, and show that the sets a_0^r , a_c^r and a_{∞}^r are equal to the matrix domains of the Cesàro matrix of order 1 in the sets c_0 , c and ℓ_{∞} of null, convergent and bounded sequences. Applying this result and using known results on the spaces of generalised weighted means established in [6] and [8], we are able to considerably simplify the results and their proofs in [1] and [2], and add the characterisations of some more classes of matrix transformations; in particular, the sets $a_0^r(\Delta)$, $a_c^r(\Delta)$ and $a_{\infty}^r(\Delta)$ reduce to simple special cases of the spaces s_{α}^0 , s_{α} and $s_{\alpha}^{(c)}$ in [5].

Now we recall the most important notations, definitions and results needed in this paper.

A sequence $(b_n)_{n=0}^{\infty}$ in a linear metric space X is called a Schauder basis if, for each $x \in X$, there exists a unique sequence $(\lambda_n)_{n=0}^{\infty}$ of scalars such that $x = \sum_{n=0}^{\infty} \lambda_n b_n$.

By ω and ϕ we denote the set of all complex sequences $x = (x_k)_{k=0}^{\infty}$ and all finite sequences. We write *bs* and *cs* for the sets of all bounded and convergent series; also let $\ell_p = \{x \in \omega : \sum_{k=0}^{\infty} |x_k|^p < \infty\}$ for $1 \le p < \infty$. As usual, *e* and $e^{(n)}$ (n = 0, 1, ...) are the sequences with $e_k = 1$ for all *k*, and $e_n^{(n)} = 1$ and $e_k^{(n)} = 0$ for $k \ne n$.

A subspace *X* of ω is said to be a *BK* space if it is a Banach space with continuous coordinates $P_n : X \to \mathbb{C}$ (n = 0, 1, ...) where $P_n(x) = x_n$ for all $x \in X$. A *BK* space $X \supset \phi$ is said to have *AK* if every sequence $x = (x_k)_{k=0}^{\infty} \in X$ has a unique representation $x = \lim_{m \to \infty} x^{[m]}$ where $x^{[m]} = \sum_{n=0}^{m} x_n e^{(n)}$ is the *m*th section of the sequence *x*.

If *x* and *y* are sequences and *X* and *Y* are subsets of ω , then we write $x \cdot y = (x_k y_k)_{k=0}^{\infty}$, $x^{-1} * Y = \{a \in \omega : a \cdot x \in Y\}$ and $M(X, Y) = \bigcap_{x \in X} x^{-1} * Y = \{a : \omega : a \cdot x \in Y \text{ for all } x \in X\}$ for the multiplier space of *X* and *Y*; in

²⁰¹⁰ Mathematics Subject Classification. Primary 40H05; Secondary 46H05

Keywords. Generalised weighted means, dual spaces, matrix transformations

Received: 21 October 2011; Accepted: 24 November 2011

Communicated by Dragan S. Djordjević

Research of Malkowsky supported by the research project #174025 of the Serbian Ministry of Science, Technology and Development *Email addresses:* Eberhard.Malkowsky@math.uni-giessen.de (Eberhard Malkowsky), fozger@fatih.edu.tr (Faruk Özger)

particular, we use the notations $x^{\alpha} = x^{-1} * \ell_1$, $x^{\beta} = x^{-1} * cs$ and $x^{\gamma} = x^{-1} * bs$, and $X^{\alpha} = M(X, \ell_1)$, $X^{\beta} = M(X, cs)$ and $X^{\gamma} = M(X, bs)$ for the α -, β - and γ -duals of X.

Given any infinite matrix $A = (a_{nk})_{n,k=0}^{\infty}$ of complex numbers and any sequence x, we write $A_n = (a_{nk})_{k=0}^{\infty}$ for the sequence in the n^{th} row of A, $A_n x = \sum_{k=0}^{\infty} a_{nk} x_k$ (n = 0, 1, ...) and $Ax = (A_n x)_{n=0}^{\infty}$, provided $A_n \in x^{\beta}$ for all n. If X and Y are subsets of ω , then $X_A = \{a \in \omega : Ax \in X\}$ denotes the matrix domain of A in X and (X, Y) is the class of all infinite matrices that map X into Y; so $A \in (X, Y)$ if and only if $X \subset Y_A$. A matrix A is said to be regular, if $A \in (c, c)$ and $\lim_{n\to\infty} A_n x = \lim_{k\to\infty} x_k$ for all $x \in c$.

An infinite matrix $T = (t_{nk})_{n,k=0}^{\infty}$ is said to be a triangle if $t_{nk} = 0$ (k > n) and $t_{nn} \neq 0$ for all n. We write \mathcal{U} for the set of all sequences u with $u_k \neq 0$ for all k; if $u \in \mathcal{U}$ then $1/u = (1/u_k)_{k=0}^{\infty}$. Let $\mathbf{n} + \mathbf{1} = (n+1)_{n=0}^{\infty}$. We define the matrices Σ , Δ , Δ^+ and $C^{(1)}$ by $\Sigma_{nk} = 1$ ($0 \le k \le n$), $\Sigma_{nk} = 0$ (n > k), $\Delta_{nn} = \Delta_{nn}^+ = 1$, $\Delta_{n-1,n} = \Delta_{n,n+1}^+ = -1$, $\Delta_{n,k} = \Delta_{nk}^+ = 0$ (otherwise) and $C_{nk}^{(1)} = (1/(n+1))\Sigma_{nk}$ for all $n, k = 0, 1, \ldots$. Let $u, v \in \mathcal{U}$ and X be a subset of ω . The sets $W(u, v; X) = v^{-1} * (u^{-1} * X)_{\Sigma}$ of generalised weighted means

Let $u, v \in \mathcal{U}$ and X be a subset of ω . The sets $W(u, v; X) = v^{-1} * (u^{-1} * X)_{\Sigma}$ of generalised weighted means were defined and studied in [6] and [8]. In particular, $W(1/(\mathbf{n} + \mathbf{1}), e, c_0) = (c_0)_{C^{(1)}}, W(1/(\mathbf{n} + \mathbf{1}), e, c) = c_{C^{(1)}}$ and $W(1/(\mathbf{n} + \mathbf{1}), e, \ell_{\infty}) = (\ell_{\infty})_{C^{(1)}}$ are the spaces of all sequences that are summable to 0, summable, and bounded by the Cesàro method $C^{(1)}$ of order 1; we write $C_0 = (c_0)_{C^{(1)}}, C = c_{C^{(1)}}$ and $C_{\infty} = (\ell_{\infty})_{C^{(1)}}$, for short.

Let 0 < r < 1 and $A^{(r)} = (a_{nk}^{(r)})_{n,k=0}^{\infty}$ be the triangle with $a_{nk}^r = (1 + r^k)/(n + 1)$ $(0 \le k \le n; n = 0, 1, ...)$. Aydın and Başar defined the spaces $a_0^r = (c_0)_{A^{(r)}}$ and $a_c^r = c_{A^{(r)}}$ in [1]. We also define $a_{\infty}^r = (\ell_{\infty})_{A^{(r)}}$, write $\tilde{\mathbf{r}} = (1 + r^k)_{k=0}^{\infty}$, and observe $a_0^r = \tilde{\mathbf{r}}^{-1} * C_0 = W(1/(\mathbf{n} + 1), \tilde{\mathbf{r}}, c_0)$, $a_c^r = \tilde{\mathbf{r}}^{-1} * C = W(1/(\mathbf{n} + 1), \tilde{\mathbf{r}}, c)$ and $a_{\infty}^r = \tilde{\mathbf{r}}^{-1} * C_{\infty} = W(1/(\mathbf{n} + 1), \tilde{\mathbf{r}}, c)$ and $a_{\infty}^r = \tilde{\mathbf{r}}^{-1} * C_{\infty} = W(1/(\mathbf{n} + 1), \tilde{\mathbf{r}}, \ell_{\infty})$. The spaces $a_0^r(\Delta) = (a_0^r)_{\Delta}$ and $a_c^r(\Delta) = (a_c^r)_{\Delta}$ were studied by the same authors in [2]; we will also consider the space $a_{\infty}^r(\Delta) = (a_{\infty}^r)_{\Delta}$.

We remark that since the matrices $A^{(r)}$ and Δ are triangles, ℓ_{∞} , c and c_0 are BK spaces with respect to their natural norms defined by $||x||_{\infty} = \sup_k |x_k|$ ([10, p. 55]), c_0 is a closed subspace of c and c is a closed subspace of ℓ_{∞} ([10, Corollary 4.2.4]), the spaces a_{∞}^r , a_c^r and a_0^r are BK spaces with their natural norms defined by $||x||_{a_{\infty}^r} = ||A^{(r)}x||_{\infty} = \sup_n |A_n^rx|$ by [10, Theorem 4.3.12], a_0^r is a closed subspace of a_c^r , and a_c^r is a closed subspace of a_{∞}^r by [10, Theorem 4.3.14]; similarly $a_{\infty}^r(\Delta)$, $a_c^r(\Delta)$ and $a_0^r(\Delta)$ are BK spaces with their natural norms defined by $||x||_{a_{\infty}^r(\Delta)} = ||\Delta x||_{a_{\infty}^r}$, $a_0^r(\Delta)$ is a closed subspace of $a_c^r(\Delta)$, and $a_c^r(\Delta)$ is a closed subspace of $a_{\infty}^r(\Delta)$. These results contain [1, Theorem 2.1] and [2, Theorem 2.1].

Schauder bases for a_0^r and a_c^r were determined in [1, Theorem 3.1 (a) and (b)], and for $a_0^r(\Delta)$ and $a_c^r(\Delta)$ in [2, Theorem 3.1 (a) and (b)]. We observe that, since c_0 has AK and $(e, e^{(0)}, e^{(1)}, ...)$ is a Schauder basis for c, the statements in [1, Theorem 3.1 (a) and (b)] are an immediate consequence of the first part of [6, Theorem 2.2], and an application of the second part of [6, Theorem 2.2] to the bases of a_0^r and a_c^r yields the statements in [2, Theorem 3.1 (a) and (b)]. We remark that, since matrix multiplication is associative for triangles by [10, Corollary 1.4.5], putting $B^{(r)} = A^{(r)} \cdot \Delta$, we obtain $a_0^r(\Delta) = (c_0)_{B^{(r)}}$ and $a_c^r(\Delta) = c_{B^{(r)}}$ and [2, Theorem 3.1 (a) and (b)] would also be an immediate consequence of [7, Corollary 2.3 (a) and (b)].

2. The main results

First, we determine simpler Schauder bases for the spaces a_0^r , a_c^r , a_0^r (Δ) and a_c^r (Δ).

If *y* is any sequence, we write $\sigma_n(y) = C_n^{(1)} y$ for the $n^{th} C^{(1)}$ mean of *y*.

Theorem 2.1. Let 0 < r < 1. Then a_0^r has AK. Every sequence $x = (x_k)_{k=0}^{\infty} \in a_c^r$ has a unique representation

$$x = \xi \cdot e + \sum_{k=0}^{\infty} (x_k - \xi) e^{(k)} \text{ where } \xi = \lim_{n \to \infty} \sigma_n (x \cdot \tilde{\mathbf{r}}).$$
(1)

Proof. Since $a_0^r = \tilde{\mathbf{r}}^{-1} * C_0$ and C_0 obviously is a *BK* space with the norm defined by $||x||_{C_{\infty}} = \sup_n |\sigma_n(x)|$, it suffices to show by [10, Theorem 4.3.6] that C_0 has *AK*.

First, we observe that $\phi \subset C_0$, since $e^{(n)} \in c_0$ for all n and the $C^{(1)}$ matrix is regular. Let $\varepsilon > 0$ and $x \in C_0$ be given. Then there exists $N_0 \in \mathbb{N}_0$ such that

$$|\sigma_n(x)| < \frac{\varepsilon}{2} \text{ for all } n \ge N_0.$$
⁽²⁾

Now let $m \ge N_0$ be given. Then we have for all $n \ge m + 1$ by (2)

$$\left|\sigma_n\left(x-x^{[m]}\right)\right| = \left|\frac{1}{n+1}\sum_{k=m+1}^n x_k\right| \le |\sigma_n(x)| + |\sigma_m(x)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$$

whence $||x - x^{[m]}||_{C_{\infty}} \le \varepsilon$ for all $m \ge N_0$. This shows $x = \lim_{m \to \infty} x^{[m]}$. It is clear that this representation is unique.

Let $x \in a_c^r$ be given. Then there is a unique $\xi \in \mathbb{C}$ such that $\lim_{n \to \infty} \sigma_n(x \cdot \tilde{\mathbf{r}}) = \xi$. It follows that

$$0 \le |\sigma_n((x-\xi \cdot e) \cdot \tilde{\mathbf{r}})| \le |\sigma_n(x \cdot \tilde{\mathbf{r}}) - \xi| + |\sigma_n(\xi \cdot (e-\tilde{\mathbf{r}}))|$$

$$\le |\sigma_n(x \cdot \tilde{\mathbf{r}}) - \xi| + \frac{|\xi|}{n+1} \sum_{k=0}^n r^k \le |\sigma_n(x \cdot \tilde{\mathbf{r}}) - \xi| + \frac{|\xi|}{(n+1)(1-r)} \text{ for all } n.$$

Letting $n \to \infty$, we conclude $\lim_{n\to\infty} \sigma_n((x-\xi \cdot e)\tilde{\mathbf{r}}) = 0$. Thus, if $x \in a_c^r$ then there is a unique $\xi \in \mathbb{C}$ such that $x^{(0)} = x - \xi \cdot e \in a_0^r$. Since a_0^r has AK, as we have just shown, it follows that $x^{(0)}$ has a unique representation $x^{(0)} = \sum_{k=0}^{\infty} x_k^{(0)} e^{(k)} = \sum_{k=0}^{\infty} (x_k - \xi) e^{(k)}$, hence $x = \xi \cdot e + x^{(0)}$ has the unique representation in (1). \Box

Remark 2.2. We put $d^{(n)} = e - \sum_{k=0}^{n-1} e^{(k)}$ for n = 0, 1, ... and define the sequence $d^{(-1)}$ by $d_k^{(-1)} = (k + 1)$ (k = 0, 1, ...). Then it follows from [7, Corollary 2.3 (a)] and Theorem 2.1 that every sequence $x \in a_0^r(\Delta)$ has a unique representation $x = \sum_{n=0}^{\infty} (x_n - x_{n+1})d^{(n)}$. Since $a_c^r(\Delta) = (a_0^r \oplus e)_{\Delta}$, it follows from (1) and [7, Corollary 2.3 (c)] that every sequence $x \in a_c^r(\Delta)$ has a unique representation $x = \xi \cdot d^{(-1)} + \sum_{n=0}^{\infty} (x_n - x_{n+1} - \xi)d^{(n)}$, where ξ is the uniquely determined complex number such that $\Delta x - \xi e \in a_0^r$. These results will be simplified in Remark 2.6.

We need the following lemma to establish a result which is fundamental in the simplification of the results in [1] and [2].

Lemma 2.3. Let $a \in \ell_1$ and b = e + a. Then we have $X_{C^{(1)}} \subset b^{-1} * X_{C^{(1)}}$ for $X = \ell_{\infty}, c, c_0$.

Proof. First we prove the statement for X = c.

We assume $x \in C$. Let $\varepsilon > 0$ be given. It is well known that $x \in C$ implies $x_n/(n + 1) \to 0$ $(n \to \infty)$ ([9, Theorem I.1]). So there exist a complex number ξ and an integer N_0 such that

$$|\sigma_n(x) - \xi| < \frac{\varepsilon}{3} \text{ and } \left| \frac{x_n}{n+1} \right| < \frac{\varepsilon}{3(||a||_1 + 1)} \text{ for all } n \ge N_0, \tag{3}$$

where $||a||_1 = \sum_{k=0}^{\infty} |a_k|$ is the natural norm on ℓ_1 . Now we choose an integer $N_1 > N_0$ so large that

$$\left|\frac{1}{n+1}\sum_{k=0}^{N_0}a_kx_k\right| < \frac{\varepsilon}{3} \text{ for all } n \ge N_1.$$
(4)

Then we obtain for all $n \ge N_1$ by (3) and (4)

$$\begin{aligned} |\sigma_n(x \cdot b) - \xi| &\le |\sigma_n(x) - \xi| + \left| \frac{1}{n+1} \sum_{k=0}^{N_0} x_k a_k \right| + \left| \frac{1}{n+1} \sum_{k=N_0+1}^n x_k a_k \right| \\ &< \frac{2\varepsilon}{3} + \frac{\varepsilon}{3(||a||_1 + 1)} \cdot \sum_{k=N_0+1}^n |a_k| \le \frac{2\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon, \end{aligned}$$

that is, $x \cdot b \in C$, hence $x \in b^{-1} * C$. Thus we have shown $C \subset b^{-1} * C$. The same proof with $\xi = 0$ yields the statement for $X = c_0$. Finally, if $x \in C_{\infty}$ then there is a constant *M* such that $|\sigma_n(x)| \le M$ for all *n* and we obtain

$$\left|\frac{x_n}{n+1}\right| = \frac{1}{n+1} \left| (n+1)\sigma_n(x) - n\sigma_{n-1}(x) \right| \le |\sigma_n(x)| + \frac{n}{n+1} \cdot |\sigma_{n-1}(x)| \le 2 \cdot M \text{ for all } n,$$

and so

$$|\sigma_n(x \cdot b)| \le |\sigma_n(x)| + |\sigma_n(x \cdot a)| \le M + \sup_k \frac{|x_k|}{k+1} \sum_{k=0}^n |a_k| \le (1+2||a||_1)M \text{ for all } n,$$

that is, $x \cdot b \in C_{\infty}$, hence $x \in b^{-1} * C_{\infty}$.

Thus we have shown $C_{\infty} \subset b^{-1} * C_{\infty}$. \Box

Theorem 2.4. We have $X_{A^{(r)}} = X_{C^{(1)}}$ for $X = \ell_{\infty}, c, c_0$.

Proof. We put $a_k = r^k$ for $k = 0, 1, ..., a = (a_k)_{k=0}^{\infty}$ and b = e + a. Since clearly $a \in \ell_1$, Lemma 2.3 yields $X_{C^{(1)}} \subset b^{-1} * X_{C^{(1)}} = X_{A^{(r)}}$. We also have

$$1/b = \left(\frac{1}{1+r^k}\right)_{k=0}^{\infty} = e + a' \text{ where } a'_k = -\frac{r^k}{1+r^k} \text{ for all } k \text{ and } a' \in \ell_1.$$

Now if $y \in X_{A^{(r)}}$, then $z = b \cdot y \in X_{C^{(1)}}$ and, applying Lemma 2.3 with 1/b, we obtain $y = (1/b) \cdot z \in X_{C^{(1)}}$. Thus we also have $X_{A^{(r)}} \subset X_{C^{(1)}}$. \Box

Now we simplify the spaces $a_{\infty}^{r}(\Delta)$, $a_{c}^{r}(\Delta)$ and $a_{0}^{r}(\Delta)$.

Corollary 2.5. Let 0 < r < 1 and $B^{(r)} = A^{(r)} \cdot \Delta$. Then we have

$$X_{B^{(r)}} = (1/(\mathbf{n}+\mathbf{1}))^{-1} * X \text{ for } X = \ell_{\infty}, c, c_0.$$
(5)

Proof. Since matrix multiplication of triangles is associative, it follows from Theorem 2.4 that $X_{B^{(r)}} = X_{(A^{(r)}\cdot\Delta)} = (X_{A^{(r)}})_{\Delta} = (X_{C^{(1)}})_{\Delta}$. We also have for all $x \in \omega$ and all $n \in \mathbb{N}_0$

$$C_n^{(1)}(\Delta x) = \frac{1}{n+1} \sum_{k=0}^n (x_k - x_{k-1}) = \frac{x_n}{n+1}$$

which immediately yields (5). \Box

We observe that, by (5), the spaces $a_0^r(\Delta)$, $a_c^r(\Delta)$ and $a_{\infty}^r(\Delta)$ are equal to s_{α}^0 , s_{α} and $s_{\alpha}^{(c)}$ for $\alpha = (\mathbf{n} + \mathbf{1})$ of [5]. Now we give bases for $a_0^r(\Delta)$ and $a_c^r(\Delta)$.

Remark 2.6. Let 0 < r < 1. Since c_0 has AK and $a_0^r(\Delta) = (1/(\mathbf{n} + \mathbf{1}))^{-1} * c_0$ by (5), $a_0^r(\Delta)$ has AK by [10, Theorem 4.3.6].

If $x \in a_c^r(\Delta) = (1/(\mathbf{n} + \mathbf{1}))^{-1} * c$ by (5), then there exists a unique $\xi \in \mathbb{C}$ such that

$$\lim_{n\to\infty}\frac{x_n}{n+1}=\xi, \text{ and so } \lim_{n\to\infty}\frac{x_n-(n+1)\xi}{n+1}=0.$$

Therefore we have $x^{(0)} = x - (\mathbf{n} + \mathbf{1})\xi \in a_0^r(\Delta)$, and since $a_0^r(\Delta)$ has *AK*, we obtain

$$x = (\mathbf{n} + \mathbf{1})\xi + \sum_{n=0}^{\infty} (x_n - (n+1)\xi)e^{(n)}.$$

Now we determine the α -, β - and γ -duals of the spaces a_0^r , a_c^r and a_{∞}^r . We need the following known result which we state here for the reader's convenience.

Proposition 2.7. ([6, Theorem 3.1]) Let $u, v \in \mathcal{U}$. We write $b = (1/u)\Delta^+(a/v)$ for $a \in \omega$ and $S(u, v) = \{a \in \omega : b \in \ell_1\}$. Then we have

(a) $(W(u, v, X))^{\alpha} = S(u, v) \cap [(1/(uv))^{-1} * \ell_1]$ for $X = \ell_{\infty}, c, c_0$; (b) $(W(u, v, \ell_{\infty}))^{\beta} = S(u, v) \cap [(1/(uv))^{-1} * c_0]$, $(W(u, v, c))^{\beta} = S(u, v) \cap [(1/(uv))^{-1} * c]$ and $(W(u, v, c_0))^{\beta} = S(u, v) \cap [(1/(uv))^{-1} * \ell_{\infty}]$; (c) $(W(u, v, X)^{\gamma} = S(u, v) \cap [(1/(uv))^{-1} * \ell_{\infty}]$ for $X = \ell_{\infty}, c, c_0$.

Corollary 2.8. *Let* 0 < r < 1*. We put*

$$S_1 = S(1/(\mathbf{n} + \mathbf{1}), e) = \left\{ a \in \omega : ((n+1)\Delta_n^+ a)_{n=0}^\infty \in \ell_1 \right\}$$
$$= \left\{ a \in \omega : \sum_{n=0}^\infty (n+1)|a_n - a_{n+1}| < \infty \right\}.$$

Then we have

 $\begin{array}{l} (a) \ (a_{\infty}^{r})^{\alpha} = (a_{c}^{r})^{\alpha} = (a_{0}^{r})^{\alpha} = (\mathbf{n} + \mathbf{1})^{-1} * \ell_{1}; \\ (b) \ (a_{\infty}^{r})^{\beta} = S_{1} \cap [(\mathbf{n} + \mathbf{1})^{-1} * c_{0}], \ (a_{c}^{r})^{\beta} = S_{1} \cap [(\mathbf{n} + \mathbf{1})^{-1} * c], \ (a_{0}^{r})^{\beta} = S_{1} \cap [(\mathbf{n} + \mathbf{1})^{-1} * \ell_{\infty}; \\ (c) \ (a_{\infty}^{r})^{\gamma} = (a_{c}^{r})^{\gamma} = (a_{0}^{r})^{\gamma} = S_{1} \cap [(\mathbf{n} + \mathbf{1})^{-1} * \ell_{\infty}]. \end{array}$

Proof. Since $X_{A^{(r)}} = X_{C^{(1)}}$ for $X = \ell_{\infty}, c, c_0$ by Theorem 2.4, we apply Proposition 2.7 (b) and (c) with u = 1/(n + 1) and v = e, and immediately obtain Parts (b) and (c).

(a) Proposition 2.7 (a) yields that $(X_{C^{(1)}})^{\alpha} = S_1 \cap [(\mathbf{n} + \mathbf{1})^{-1} * \ell_1]$. Since

$$\sum_{n=0}^{\infty} (n+1)|a_n - a_{n+1}| \le \sum_{n=0}^{\infty} (n+1)|a_n| + \sum_{n=0}^{\infty} (n+2)|a_{n+1}|$$

we have $S_1 \supset (\mathbf{n} + \mathbf{1})^{-1} * \ell_1$. \Box

Remark 2.9. We obviously have $e \in S_1 \setminus [(n + 1)^{-1} * \ell_{\infty}]$. Let $a_n = (-1)^n / (n + 1)^{3/2}$ for n = 0, 1, ... Then $(n + 1)a_n \to 0$ $(n \to \infty)$, that is, $a \in (n + 1)^{-1} * c_0$, but

$$\sum_{n=0}^{\infty} (n+1)|a_n - a_{n+1}| = \sum_{n=0}^{\infty} (n+1) \left(\frac{1}{(n+1)^{3/2}} + \frac{1}{(n+2)^{3/2}} \right) \ge \sum_{n=0}^{\infty} \frac{1}{\sqrt{n+1}} = \infty,$$

that is, $a \notin S_1$. Therefore, the sets in Corollary 2.8 (b) and (c) cannot be reduced in a similar way as those in Part (a).

Remark 2.10. Let $u \in \mathcal{U}$, X be an arbitrary subset of ω and \dagger denote any of the symbols α , β or γ . Then we obviously have $(u^{-1} * X)^{\dagger} = (1/u)^{-1} * X^{\dagger}$. Since $X^{\dagger} = \ell_1$ for $X = \ell_{\infty}$, c, c_0 , it follows from Corollary 2.5 that $(a_{\infty}^r(\Delta))^{\dagger} = (a_c^r(\Delta))^{\dagger} = (\mathbf{n} + \mathbf{1})^{-1} * \ell_1$.

We now retrieve [1, Theorems 4.4 and 4.5].

Remark 2.11. In view of Theorem 2.4, it suffices to compare the conditions in Corollary 2.8 (b) and (c) with those of [1, Theorems 4.4 and 4.5] with *r* replaced by 0. Then the conditions are obviously identical in each case except for C^{β} .

By Corollary 2.8, we have $a \in C^{\beta}$ if and only if

 $a \in S_1$ and $\lim_{n \to \infty} (n+1)a_n$ exists,

whereas the corresponding conditions in [1, Theorems 4.4] are

$$a \in S_1 \text{ and } a \in cs.$$
 (7)

Applying Abel's summation by parts

$$\sum_{k=0}^{n} x_k y_k = x_n Y_n + \sum_{k=0}^{n-1} Y_k (x_k - x_{k+1}) \text{ where } Y_k = \sum_{j=0}^{k} y_j \ (k = 0, 1, \dots, n)$$

with x = a and y = e, we see that the conditions in (6) and (7) are equivalent.

The following remark concerns the α -duals of a_0^r and a_c^r given in [1, Theorem 4.3]; as before, we may replace *r* by 0.

Remark 2.12. As would be logical from the proof given there, the correct condition in [1, Theorem 4.3] for $a \in (X_{C^{(1)}})^{\alpha}$ seems to be

$$\sup_{\substack{K \subset \mathbb{N}_0 \\ K \text{ finite}}} \left(\sum_{n=0}^{\infty} \left| a_n \sum_{k \in K \cap \{n-1,n\}} (-1)^{n-k} (k+1) \right| \right) < \infty$$
(8)

instead of

$$\sup_{\substack{K \subset \mathbb{N}_0 \\ K \text{ finite}}} \left(\sum_{n=0}^{\infty} \left| a_n \sum_{k \in K} (-1)^{n-k} (k+1) \right| \right) < \infty.$$
(9)

It is easy to see that the condition in (8) is equivalent to that in Corollary 2.8 (a) for $a \in (X_{C^{(1)}})^{\alpha}$ when $X = c_0, c, \ell_{\infty}$.

On the other hand, if we define the sequence $a = (a_n)_{n=0}^{\infty}$ by $a_n = (n+1)^{-5/2}$ (n = 0, 1, ...), then clearly $a \in (\mathbf{n} + \mathbf{1})^{-1} * \ell_1$, but, for each given $m \in \mathbb{N}_0$ and $K_m = \{0, 2, \dots, 2m\}$, we obtain

$$\sum_{n=0}^{2m} |a_n| \cdot \left| \sum_{k=0}^m (-1)^{n-2k} (2k+1) \right| = \sum_{n=0}^{2m} |a_n| (m+1)^2 \ge \frac{1}{4} \cdot \sum_{n=0}^{2m} |a_n| (n+1)^2 = \frac{1}{4} \sum_{n=0}^{2m} \frac{1}{\sqrt{n+1}},$$

and so the sequence a does not satisfy the condition in (9).

Finally, we retrieve [2, Theorems 4.5, 4.6 and 4.7].

Remark 2.13. In view of Theorem 2.4 and Remark 2.10, it suffices to compare the conditions in Remark 2.10 (b) and (c) with those of [2, Theorem 4.5, 4.6 and 4.7] with *r* replaced by 0. By [2, Theorem 4.5], we have $a \in (a_0^0(\Delta))^{\alpha} = (a_c^0(\Delta))^{\alpha}$ if and only if

$$\sup_{\substack{K \subset \mathbb{N}_0 \\ K \text{ finite}}} \sum_{n=0}^{\infty} \left| a_n \sum_{k \in K} c_{nk}^0 \right| < \infty \text{ where } C^0 \text{ is the diagonal matrix with } c_{nn}^0 = (n+1);$$

this condition obviously is equivalent to $a \in (\mathbf{n} + \mathbf{1})^{-1} * \ell_1$.

Furthermore, by [2, Theorem 4.6], we have $a \in (a_0^0(\Delta))^{\beta}$ if and only if

$$\sup_{n} \sum_{k=0}^{\infty} |e_{nk}^{0}| < \infty, \text{ where } E^{0} \text{ is the triangle with } e_{nk}^{0} = (k+1)a_{k} \text{ for } 0 \le k \le n,$$
(10)

and

$$\sum_{j=k}^{\infty} a_j \text{ exists for all } j.$$
(11)

Obviously the condition in (10) implies that in (11) and the condition in (10) is equivalent to $a \in (\mathbf{n} + \mathbf{1})^{-1} * \ell_1$. We also have by [2, Theorem 4.6] that $a \in (a_c^0(\Delta))^{\beta}$ if and only if $a \in (a_c^0)^{\beta}$ and

$$\lim_{n \to \infty} \sum_{k=0}^{n} (k+1)a_k \text{ exists.}$$
(12)

Since the condition in (10) obviously implies that in (12), the conditions in [2, Theorem 4.6] for $a \in (a_c^0(\Delta))^{\beta}$ are again equivalent to $a \in (\mathbf{n} + \mathbf{1})^{-1} * \ell_1$.

Finally, by [2, Theorem 4.6], we have $a \in (a_0^0(\Delta))^{\gamma} = (a_c^0(\Delta))^{\gamma}$ if and only if the condition in (10) holds which is equivalent to $a \in (\mathbf{n} + \mathbf{1})^{-1} * \ell_1$, as we have seen above.

We close with a few remarks on some characterisations of matrix transformations.

Remark 2.14. (a) The necessary and sufficient conditions for $A \in (W(u, v, X); Y)$ for arbitrary sequences $u, v \in \mathcal{U}$ were given in [6, Theorem 3.3] when $X = \ell_p$ $(1 \le p \le \infty)$, $X = c_0$ or X = c and $Y = \ell_{\infty}, c_0, c$ or $Y = \ell_r$ $(1 < r < \infty; \text{only for } X = \ell_1)$. In particular, putting $u = 1/\mathbf{n} + \mathbf{1}$ and v = e and applying Theorem 2.4, we observe that the characterisations of the classes $(a_c^r, \ell_1), (a_c^r, \ell_p)$ (1 <math>([1, Theorem 5.3]) and (a_c^r, c) ([1, Theorem 5.4]) would be special cases of [6, Theorem 3.3 (12.), (19.), (9.), (11.)]. In the same way we would obtain the characterisations of the classes $(a_c^r, c_0) (a_0^r, c_0), (a_0^r, \ell_\infty), (a_\infty^r, c_0), (a_\infty^r, c)$ and $(a_\infty^r, \ell_\infty)$ from [6, Theorem 3.3, (10.), (6.), (7.), (5.), (14.), (15.) and (13.)]. Furthermore, by [6, Remark 3.1] the necessary and sufficient conditions for *C* to map any of the above spaces into a_0^r, a_c^r or a_∞^r can immediately be obtained from the respective one for *A* mapping into c_0, c or ℓ_∞ by replacing the entries a_{nk} of *A* by $c_{nk} = (1/(n+1)) \sum_{j=0}^k a_{nk} (n, k = 0, 1, ...)$ in the corresponding conditions.

(b) Let $u, v \in \mathcal{U}$. Then it is clear that

$$A \in (u^{-1} * X, v^{-1} * Y)$$
 if and only if $B \in (X, Y)$ where $b_{nk} = \frac{v_n a_{nk}}{u_k}$ for all n, k .

Applying this result with $u = 1/\mathbf{n} + \mathbf{1}$ and v = e, and Corollary 2.5, we immediately obtain the characterisations of the classes $(a_c^r(\Delta), \ell_1), (a_c^r(\Delta), \ell_p) (1 and <math>(a_c^r(\Delta), c) ([2, Theorems 5.3 and 5.4])$ from the well–known characterisations of the classical classes $(c, \ell_1), (c, \ell_p) (1 and <math>(c, c)$ in [10, 8.4.9A, 8.4.8A, 8.4.5A, 8.4.5A]. Similarly, putting $u = v = 1/\mathbf{n} + \mathbf{1}$ the characterisations of the classes (X, Y) where X and Y are any of the spaces $a_0^r(\Delta), a_c^r(\Delta)$ or $a_\infty^r(\Delta)$ can easily be obtained from the well-known characterisations of the classes of matrix transformations between the spaces c_0, c and ℓ_∞ that can be found in [10].

References

- [1] C. Aydın, F. Başar, On the new sequence spaces which include the spaces c_0 and c, Hokkaido Mathematical Journal 33 (2004) 383–398.
- [2] C. Aydın, F. Başar, Some new difference sequence spaces, Applied Mathematics and Computation 157 (2004) 677–693.

- [3] I. Djolović, Compact operators on the spaces $a_0^r(\Delta)$ and $a_c^r(\Delta)$, J. Math. Anal. Appl. 318 (2006) 658–666. [4] I. Djolović, E. Malkowsky, A note on compact operators on matrix J. Math. Anal. Appl. 340 (2008) 291–303.
- [5] B. de Malafosse, V. Rakočević, Application of measure of noncompactness in operators on the spaces s_{α} , s_{α}^{0} , ε_{α}^{p} , ℓ_{α}^{p} , J. Math. Anal. Appl. 323 (1) (2006) 131-145.
- [6] E. Malkowsky, Linear operators between some matrix domains, Rend. Circ. Mat. Palermo II 68 (2002) 641-655.
- [7] E. Malkowsky, V. Rakočević, On matrix domains of triangles, Applied Mathematics and Computation 189 (2007) 1148–1163.
- [8] E. Malkowsky, E. Savaş, Matrix transformations between spaces of generalised weighted means, Applied Mathematics and Computation 147 (2004) 333-345.
- [9] A. Peyerimhoff, Lectures on Summability, Lecture Notes in Mathematics 107, Springer-Verlag, Berlin, Heidelberg, New York, 1969.
- [10] A. Wilansky, Summability through Functional Analysis, North–Holland Mathematics Studies 85, Amsterdam, New York, Oxford, 1984.