A note on some sequence spaces of weighted means

Eberhard Malkowsky ${ }^{\text {a }}$, Faruk Özger ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematics, Faculty of Arts and Sciences, Fatih University, Büyükçekmece 34500, Istanbul, Turkey

Abstract

We show that the sequence spaces a_{0}^{r}, a_{c}^{r} and a_{∞}^{r} are equal to the sets of all sequences whose Cesàro means of order 1 converge to 0 , converge and are bounded. As a consequence of this, we are able to considerably simplify the known results and their proofs in [1,2], and to add the characterisations of some more classes of matrix transformations.

1. Introduction, notations and known results

Aydın and Başar defined the sequence spaces $a_{0}^{r}, a_{c}^{r}, a_{0}^{r}(\Delta)$ and $a_{c}^{r}(\Delta)$ for $0<r<1$ in [1, 2]. They determined some Schauder bases for their spaces, found the $\alpha-, \beta$ - and γ-duals, and characterised some classes of matrix transformations on them. Furthermore, various classes of compact matrix operators on the spaces $a_{0}^{r}, a_{c}^{r}, a_{0}^{r}(\Delta)$ and $a_{c}^{r}(\Delta)$ were characterised in $[3,4,7]$. We include the sets a_{∞}^{r} and $a_{\infty}^{r}(\Delta)$ in our studies, and show that the sets a_{0}^{r}, a_{c}^{r} and a_{∞}^{r} are equal to the matrix domains of the Cesàro matrix of order 1 in the sets c_{0}, c and ℓ_{∞} of null, convergent and bounded sequences. Applying this result and using known results on the spaces of generalised weighted means established in [6] and [8], we are able to considerably simplify the results and their proofs in [1] and [2], and add the characterisations of some more classes of matrix transformations; in particular, the sets $a_{0}^{r}(\Delta), a_{c}^{r}(\Delta)$ and $a_{\infty}^{r}(\Delta)$ reduce to simple special cases of the spaces $s_{\alpha}^{0}, s_{\alpha}$ and $s_{\alpha}^{(c)}$ in [5].

Now we recall the most important notations, definitions and results needed in this paper.
A sequence $\left(b_{n}\right)_{n=0}^{\infty}$ in a linear metric space X is called a Schauder basis if, for each $x \in X$, there exists a unique sequence $\left(\lambda_{n}\right)_{n=0}^{\infty}$ of scalars such that $x=\sum_{n=0}^{\infty} \lambda_{n} b_{n}$.

By ω and ϕ we denote the set of all complex sequences $x=\left(x_{k}\right)_{k=0}^{\infty}$ and all finite sequences. We write $b s$ and cs for the sets of all bounded and convergent series; also let $\ell_{p}=\left\{x \in \omega: \sum_{k=0}^{\infty}\left|x_{k}\right| p^{p}<\infty\right\}$ for $1 \leq p<\infty$. As usual, e and $e^{(n)}(n=0,1, \ldots)$ are the sequences with $e_{k}=1$ for all k, and $e_{n}^{(n)}=1$ and $e_{k}^{(n)}=0$ for $k \neq n$.

A subspace X of ω is said to be a $B K$ space if it is a Banach space with continuous coordinates $P_{n}: X \rightarrow \mathbb{C}$ $(n=0,1, \ldots)$ where $P_{n}(x)=x_{n}$ for all $x \in X$. A $B K$ space $X \supset \phi$ is said to have $A K$ if every sequence $x=\left(x_{k}\right)_{k=0}^{\infty} \in X$ has a unique representation $x=\lim _{m \rightarrow \infty} x^{[m]}$ where $x^{[m]}=\sum_{n=0}^{m} x_{n} e^{(n)}$ is the $m^{\text {th }}$ section of the sequence x.

If x and y are sequences and X and Y are subsets of ω, then we write $x \cdot y=\left(x_{k} y_{k}\right)_{k=0}^{\infty}, x^{-1} * Y=\{a \in \omega$: $a \cdot x \in Y\}$ and $M(X, Y)=\bigcap_{x \in X} x^{-1} * Y=\{a: \omega: a \cdot x \in Y$ for all $x \in X\}$ for the multiplier space of X and Y; in

[^0]particular, we use the notations $x^{\alpha}=x^{-1} * \ell_{1}, x^{\beta}=x^{-1} * c s$ and $x^{\gamma}=x^{-1} * b s$, and $X^{\alpha}=M\left(X, \ell_{1}\right), X^{\beta}=M(X, c s)$ and $X^{\gamma}=M(X, b s)$ for the $\alpha-, \beta$ - and γ-duals of X.

Given any infinite matrix $A=\left(a_{n k}\right)_{n, k=0}^{\infty}$ of complex numbers and any sequence x, we write $A_{n}=\left(a_{n k}\right)_{k=0}^{\infty}$ for the sequence in the $n^{\text {th }}$ row of $A, A_{n} x=\sum_{k=0}^{\infty} a_{n k} x_{k}(n=0,1, \ldots)$ and $A x=\left(A_{n} x\right)_{n=0}^{\infty}$, provided $A_{n} \in x^{\beta}$ for all n. If X and Y are subsets of ω, then $X_{A}=\{a \in \omega: A x \in X\}$ denotes the matrix domain of A in X and (X, Y) is the class of all infinite matrices that map X into Y; so $A \in(X, Y)$ if and only if $X \subset Y_{A}$. A matrix A is said to be regular, if $A \in(c, c)$ and $\lim _{n \rightarrow \infty} A_{n} x=\lim _{k \rightarrow \infty} x_{k}$ for all $x \in c$.

An infinite matrix $T=\left(t_{n k}\right)_{n, k=0}^{\infty}$ is said to be a triangle if $t_{n k}=0(k>n)$ and $t_{n n} \neq 0$ for all n. We write \mathcal{U} for the set of all sequences u with $u_{k} \neq 0$ for all k; if $u \in \mathcal{U}$ then $1 / u=\left(1 / u_{k}\right)_{k=0}^{\infty}$. Let $\mathbf{n}+\mathbf{1}=(n+1)_{n=0}^{\infty}$. We define the matrices $\Sigma, \Delta, \Delta^{+}$and $C^{(1)}$ by $\Sigma_{n k}=1(0 \leq k \leq n), \Sigma_{n k}=0(n>k), \Delta_{n n}=\Delta_{n n}^{+}=1, \Delta_{n-1, n}=\Delta_{n, n+1}^{+}=-1$, $\Delta_{n, k}=\Delta_{n k}^{+}=0$ (otherwise) and $C_{n k}^{(1)}=(1 /(n+1)) \Sigma_{n k}$ for all $n, k=0,1, \ldots$

Let $u, v \in \mathcal{U}$ and X be a subset of ω. The sets $W(u, v ; X)=v^{-1} *\left(u^{-1} * X\right)_{\Sigma}$ of generalised weighted means were defined and studied in [6] and [8]. In particular, $W\left(1 /(\mathbf{n}+\mathbf{1}), e, c_{0}\right)=\left(c_{0}\right)_{C^{(1)}}, W(1 /(\mathbf{n}+\mathbf{1}), e, c)=c_{C^{(1)}}$ and $W\left(1 /(\mathbf{n}+\mathbf{1}), e, \ell_{\infty}\right)=\left(\ell_{\infty}\right)_{C^{(1)}}$ are the spaces of all sequences that are summable to 0 , summable, and bounded by the Cesàro method $C^{(1)}$ of order 1 ; we write $C_{0}=\left(c_{0}\right)_{C^{(1)}}, C=c_{C^{(1)}}$ and $C_{\infty}=\left(\ell_{\infty}\right)_{C^{(1)}}$, for short.

Let $0<r<1$ and $A^{(r)}=\left(a_{n k}^{(r)}\right)_{n, k=0}^{\infty}$ be the triangle with $a_{n k}^{r}=\left(1+r^{k}\right) /(n+1)(0 \leq k \leq n ; n=0,1, \ldots)$. Aydın and Başar defined the spaces $a_{0}^{r}=\left(c_{0}\right)_{A^{(r)}}$ and $a_{c}^{r}=c_{A^{(r)}}$ in [1]. We also define $a_{\infty}^{r}=\left(\ell_{\infty}\right)_{A^{(r)}}$, write $\tilde{\mathbf{r}}=\left(1+r^{k}\right)_{k=0}^{\infty}$, and observe $a_{0}^{r}=\tilde{\mathbf{r}}^{-1} * C_{0}=W\left(1 /(\mathbf{n}+\mathbf{1}), \tilde{\mathbf{r}}, c_{0}\right), a_{c}^{r}=\tilde{\mathbf{r}}^{-1} * C=W(1 /(\mathbf{n}+\mathbf{1}), \tilde{\mathbf{r}}, c)$ and $a_{\infty}^{r}=$ $\tilde{\mathbf{r}}^{-1} * C_{\infty}=W\left(1 /(\mathbf{n}+\mathbf{1}), \tilde{\mathbf{r}}, \ell_{\infty}\right)$. The spaces $a_{0}^{r}(\Delta)=\left(a_{0}^{r}\right)_{\Delta}$ and $a_{c}^{r}(\Delta)=\left(a_{c}^{r}\right)_{\Delta}$ were studied by the same authors in [2]; we will also consider the space $a_{\infty}^{r}(\Delta)=\left(a_{\infty}^{r}\right)_{\Delta}$.

We remark that since the matrices $A^{(r)}$ and Δ are triangles, ℓ_{∞}, c and c_{0} are $B K$ spaces with respect to their natural norms defined by $\|x\|_{\infty}=\sup _{k}\left|x_{k}\right|([10, \mathrm{p} .55]), c_{0}$ is a closed subspace of c and c is a closed subspace of ℓ_{∞} ([10, Corollary 4.2.4]), the spaces $a_{\infty}^{r}, a_{c}^{r}$ and a_{0}^{r} are $B K$ spaces with their natural norms defined by $\|x\|_{a_{\infty}^{r}}=\left\|A^{(r)} x\right\|_{\infty}=\sup _{n}\left|A_{n}^{r} x\right|$ by [10, Theorem 4.3.12], a_{0}^{r} is a closed subspace of a_{c}^{r}, and a_{c}^{r} is a closed subspace of a_{∞}^{r} by [10, Theorem 4.3.14]; similarly $a_{\infty}^{r}(\Delta), a_{c}^{r}(\Delta)$ and $a_{0}^{r}(\Delta)$ are $B K$ spaces with their natural norms defined by $\|x\|_{a_{\infty}^{r}(\Delta)}=\|\Delta x\|_{a_{\infty}^{r}} a_{0}^{r}(\Delta)$ is a closed subspace of $a_{c}^{r}(\Delta)$, and $a_{c}^{r}(\Delta)$ is a closed subspace of $a_{\infty}^{r}(\Delta)$. These results contain [1, Theorem 2.1] and [2, Theorem 2.1].

Schauder bases for a_{0}^{r} and a_{c}^{r} were determined in [1, Theorem 3.1 (a) and (b)], and for $a_{0}^{r}(\Delta)$ and $a_{c}^{r}(\Delta)$ in [2, Theorem 3.1 (a) and (b)]. We observe that, since c_{0} has $A K$ and $\left(e, e^{(0)}, e^{(1)}, \ldots\right)$ is a Schauder basis for c, the statements in [1, Theorem 3.1 (a) and (b)] are an immediate consequence of the first part of [6, Theorem 2.2], and an application of the second part of [6, Theorem 2.2] to the bases of a_{0}^{r} and a_{c}^{r} yields the statements in [2, Theorem 3.1 (a) and (b)]. We remark that, since matrix multiplication is associative for triangles by [10, Corollary 1.4.5], putting $B^{(r)}=A^{(r)} \cdot \Delta$, we obtain $a_{0}^{r}(\Delta)=\left(c_{0}\right)_{B^{(r)}}$ and $a_{c}^{r}(\Delta)=c_{B^{(r)}}$ and [2, Theorem 3.1 (a) and (b)] would also be an immediate consequence of [7, Corollary 2.3 (a) and (b)].

2. The main results

First, we determine simpler Schauder bases for the spaces $a_{0}^{r}, a_{c}^{r}, a_{0}^{r}(\Delta)$ and $a_{c}^{r}(\Delta)$.
If y is any sequence, we write $\sigma_{n}(y)=C_{n}^{(1)} y$ for the $n^{\text {th }} C^{(1)}$ mean of y.
Theorem 2.1. Let $0<r<1$. Then a_{0}^{r} has AK. Every sequence $x=\left(x_{k}\right)_{k=0}^{\infty} \in a_{c}^{r}$ has a unique representation

$$
\begin{equation*}
x=\xi \cdot e+\sum_{k=0}^{\infty}\left(x_{k}-\xi\right) e^{(k)} \text { where } \xi=\lim _{n \rightarrow \infty} \sigma_{n}(x \cdot \tilde{\mathbf{r}}) \tag{1}
\end{equation*}
$$

Proof. Since $a_{0}^{r}=\tilde{\mathbf{r}}^{-1} * C_{0}$ and C_{0} obviously is a $B K$ space with the norm defined by $\|x\|_{C_{\infty}}=\sup _{n}\left|\sigma_{n}(x)\right|$, it suffices to show by [10, Theorem 4.3.6] that C_{0} has $A K$.
First, we observe that $\phi \subset C_{0}$, since $e^{(n)} \in c_{0}$ for all n and the $C^{(1)}$ matrix is regular.
Let $\varepsilon>0$ and $x \in C_{0}$ be given. Then there exists $N_{0} \in \mathbb{N}_{0}$ such that

$$
\begin{equation*}
\left|\sigma_{n}(x)\right|<\frac{\varepsilon}{2} \text { for all } n \geq N_{0} \tag{2}
\end{equation*}
$$

Now let $m \geq N_{0}$ be given. Then we have for all $n \geq m+1$ by (2)

$$
\left|\sigma_{n}\left(x-x^{[m]}\right)\right|=\left|\frac{1}{n+1} \sum_{k=m+1}^{n} x_{k}\right| \leq\left|\sigma_{n}(x)\right|+\left|\sigma_{m}(x)\right|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
$$

whence $\left\|x-x^{[m]}\right\|_{C_{\infty}} \leq \varepsilon$ for all $m \geq N_{0}$. This shows $x=\lim _{m \rightarrow \infty} x^{[m]}$. It is clear that this representation is unique.

Let $x \in a_{c}^{r}$ be given. Then there is a unique $\xi \in \mathbb{C}$ such that $\lim _{n \rightarrow \infty} \sigma_{n}(x \cdot \tilde{\mathbf{r}})=\xi$. It follows that

$$
\begin{aligned}
0 & \leq\left|\sigma_{n}((x-\xi \cdot e) \cdot \tilde{\mathbf{r}})\right| \leq\left|\sigma_{n}(x \cdot \tilde{\mathbf{r}})-\xi\right|+\left|\sigma_{n}(\xi \cdot(e-\tilde{\mathbf{r}}))\right| \\
& \leq\left|\sigma_{n}(x \cdot \tilde{\mathbf{r}})-\xi\right|+\frac{|\xi|}{n+1} \sum_{k=0}^{n} r^{k} \leq\left|\sigma_{n}(x \cdot \tilde{\mathbf{r}})-\xi\right|+\frac{|\xi|}{(n+1)(1-r)} \text { for all } n .
\end{aligned}
$$

Letting $n \rightarrow \infty$, we conclude $\lim _{n \rightarrow \infty} \sigma_{n}((x-\xi \cdot e) \tilde{\mathbf{r}})=0$. Thus, if $x \in a_{c}^{r}$ then there is a unique $\xi \in \mathbb{C}$ such that $x^{(0)}=x-\xi \cdot e \in a_{0}^{r}$. Since a_{0}^{r} has $A K$, as we have just shown, it follows that $x^{(0)}$ has a unique representation $x^{(0)}=\sum_{k=0}^{\infty} x_{k}^{(0)} e^{(k)}=\sum_{k=0}^{\infty}\left(x_{k}-\xi\right) e^{(k)}$, hence $x=\xi \cdot e+x^{(0)}$ has the unique representation in (1).

Remark 2.2. We put $d^{(n)}=e-\sum_{k=0}^{n-1} e^{(k)}$ for $n=0,1, \ldots$ and define the sequence $d^{(-1)}$ by $d_{k}^{(-1)}=(k+1)$ $(k=0,1, \ldots)$. Then it follows from [7, Corollary 2.3 (a)] and Theorem 2.1 that every sequence $x \in a_{0}^{r}(\Delta)$ has a unique representation $x=\sum_{n=0}^{\infty}\left(x_{n}-x_{n+1}\right) d^{(n)}$. Since $a_{c}^{r}(\Delta)=\left(a_{0}^{r} \oplus e\right)_{\Delta}$, it follows from (1) and [7, Corollary 2.3 (c)] that every sequence $x \in a_{c}^{r}(\Delta)$ has a unique representation $x=\xi \cdot d^{(-1)}+\sum_{n=0}^{\infty}\left(x_{n}-x_{n+1}-\xi\right) d^{(n)}$, where ξ is the uniquely determined complex number such that $\Delta x-\xi e \in a_{0}^{r}$. These results will be simplified in Remark 2.6.

We need the following lemma to establish a result which is fundamental in the simplification of the results in [1] and [2].

Lemma 2.3. Let $a \in \ell_{1}$ and $b=e+a$. Then we have $X_{C^{(1)}} \subset b^{-1} * X_{C^{(1)}}$ for $X=\ell_{\infty}, c, c_{0}$.
Proof. First we prove the statement for $X=c$.
We assume $x \in C$. Let $\varepsilon>0$ be given. It is well known that $x \in C$ implies $x_{n} /(n+1) \rightarrow 0(n \rightarrow \infty)([9$, Theorem I.1]). So there exist a complex number ξ and an integer N_{0} such that

$$
\begin{equation*}
\left|\sigma_{n}(x)-\xi\right|<\frac{\varepsilon}{3} \text { and }\left|\frac{x_{n}}{n+1}\right|<\frac{\varepsilon}{3\left(\|a\|_{1}+1\right)} \text { for all } n \geq N_{0} \tag{3}
\end{equation*}
$$

where $\|a\|_{1}=\sum_{k=0}^{\infty}\left|a_{k}\right|$ is the natural norm on ℓ_{1}. Now we choose an integer $N_{1}>N_{0}$ so large that

$$
\begin{equation*}
\left|\frac{1}{n+1} \sum_{k=0}^{N_{0}} a_{k} x_{k}\right|<\frac{\varepsilon}{3} \text { for all } n \geq N_{1} \tag{4}
\end{equation*}
$$

Then we obtain for all $n \geq N_{1}$ by (3) and (4)

$$
\begin{aligned}
\left|\sigma_{n}(x \cdot b)-\xi\right| & \leq\left|\sigma_{n}(x)-\xi\right|+\left|\frac{1}{n+1} \sum_{k=0}^{N_{0}} x_{k} a_{k}\right|+\left|\frac{1}{n+1} \sum_{k=N_{0}+1}^{n} x_{k} a_{k}\right| \\
& <\frac{2 \varepsilon}{3}+\frac{\varepsilon}{3\left(\|a\|_{1}+1\right)} \cdot \sum_{k=N_{0}+1}^{n}\left|a_{k}\right| \leq \frac{2 \varepsilon}{3}+\frac{\varepsilon}{3}=\varepsilon
\end{aligned}
$$

that is, $x \cdot b \in C$, hence $x \in b^{-1} * C$.
Thus we have shown $C \subset b^{-1} * C$.

The same proof with $\xi=0$ yields the statement for $X=c_{0}$.
Finally, if $x \in C_{\infty}$ then there is a constant M such that $\left|\sigma_{n}(x)\right| \leq M$ for all n and we obtain

$$
\left|\frac{x_{n}}{n+1}\right|=\frac{1}{n+1}\left|(n+1) \sigma_{n}(x)-n \sigma_{n-1}(x)\right| \leq\left|\sigma_{n}(x)\right|+\frac{n}{n+1} \cdot\left|\sigma_{n-1}(x)\right| \leq 2 \cdot M \text { for all } n,
$$

and so

$$
\left|\sigma_{n}(x \cdot b)\right| \leq\left|\sigma_{n}(x)\right|+\left|\sigma_{n}(x \cdot a)\right| \leq M+\sup _{k} \frac{\left|x_{k}\right|}{k+1} \sum_{k=0}^{n}\left|a_{k}\right| \leq\left(1+2\|a\|_{1}\right) M \text { for all } n,
$$

that is, $x \cdot b \in C_{\infty}$, hence $x \in b^{-1} * C_{\infty}$.
Thus we have shown $C_{\infty} \subset b^{-1} * C_{\infty}$.
Theorem 2.4. We have $X_{A^{(r)}}=X_{C^{(1)}}$ for $X=\ell_{\infty}, c, c_{0}$.
Proof. We put $a_{k}=r^{k}$ for $k=0,1, \ldots, a=\left(a_{k}\right)_{k=0}^{\infty}$ and $b=e+a$.
Since clearly $a \in \ell_{1}$, Lemma 2.3 yields $X_{C^{(1)}} \subset b^{-1} * X_{C^{(1)}}=X_{A^{(r)}}$.
We also have

$$
1 / b=\left(\frac{1}{1+r^{k}}\right)_{k=0}^{\infty}=e+a^{\prime} \text { where } a_{k}^{\prime}=-\frac{r^{k}}{1+r^{k}} \text { for all } k \text { and } a^{\prime} \in \ell_{1}
$$

Now if $y \in X_{A^{(1)}}$, then $z=b \cdot y \in X_{C^{(1)}}$ and, applying Lemma 2.3 with $1 / b$, we obtain $y=(1 / b) \cdot z \in X_{C^{(1)}}$. Thus we also have $X_{A^{(r)}} \subset X_{C^{(1)}}$.

Now we simplify the spaces $a_{\infty}^{r}(\Delta), a_{c}^{r}(\Delta)$ and $a_{0}^{r}(\Delta)$.
Corollary 2.5. Let $0<r<1$ and $B^{(r)}=A^{(r)} \cdot \Delta$. Then we have

$$
\begin{equation*}
X_{B^{(r)}}=(1 /(\mathbf{n}+\mathbf{1}))^{-1} * X \text { for } X=\ell_{\infty}, c, c_{0} . \tag{5}
\end{equation*}
$$

Proof. Since matrix multiplication of triangles is associative, it follows from Theorem 2.4 that $X_{B^{(r)}}=X_{\left(A^{(r)} \cdot \Delta\right)}=$ $\left(X_{A^{(r)}}\right)_{\Delta}=\left(X_{C^{(1)}}\right)_{\Delta}$. We also have for all $x \in \omega$ and all $n \in \mathbb{N}_{0}$

$$
C_{n}^{(1)}(\Delta x)=\frac{1}{n+1} \sum_{k=0}^{n}\left(x_{k}-x_{k-1}\right)=\frac{x_{n}}{n+1},
$$

which immediately yields (5).
We observe that, by (5), the spaces $a_{0}^{r}(\Delta), a_{c}^{r}(\Delta)$ and $a_{\infty}^{r}(\Delta)$ are equal to $s_{\alpha}^{0}, s_{\alpha}$ and $s_{\alpha}^{(c)}$ for $\alpha=(\mathbf{n}+\mathbf{1})$ of [5]. Now we give bases for $a_{0}^{r}(\Delta)$ and $a_{c}^{r}(\Delta)$.

Remark 2.6. Let $0<r<1$. Since c_{0} has $A K$ and $a_{0}^{r}(\Delta)=(1 /(\mathbf{n}+\mathbf{1}))^{-1} * c_{0}$ by (5), $a_{0}^{r}(\Delta)$ has $A K$ by [10, Theorem 4.3.6].

If $x \in a_{c}^{r}(\Delta)=(1 /(\mathbf{n}+\mathbf{1}))^{-1} * c$ by (5), then there exists a unique $\xi \in \mathbb{C}$ such that

$$
\lim _{n \rightarrow \infty} \frac{x_{n}}{n+1}=\xi, \text { and so } \lim _{n \rightarrow \infty} \frac{x_{n}-(n+1) \xi}{n+1}=0
$$

Therefore we have $x^{(0)}=x-(\mathbf{n}+\mathbf{1}) \xi \in a_{0}^{r}(\Delta)$, and since $a_{0}^{r}(\Delta)$ has $A K$, we obtain

$$
x=(\mathbf{n}+\mathbf{1}) \xi+\sum_{n=0}^{\infty}\left(x_{n}-(n+1) \xi\right) e^{(n)} .
$$

Now we determine the $\alpha-, \beta$ - and γ-duals of the spaces a_{0}^{r}, a_{c}^{r} and a_{∞}^{r}. We need the following known result which we state here for the reader's convenience.

Proposition 2.7. ([6, Theorem 3.1]) Let $u, v \in \mathcal{U}$. We write $b=(1 / u) \Delta^{+}(a / v)$ for $a \in \omega$ and $S(u, v)=\{a \in \omega: b \in$ $\left.\ell_{1}\right\}$. Then we have
(a) $(W(u, v, X))^{\alpha}=S(u, v) \cap\left[(1 /(u v))^{-1} * \ell_{1}\right]$ for $X=\ell_{\infty}, c, c_{0}$;
(b) $\left(W\left(u, v, \ell_{\infty}\right)\right)^{\beta}=S(u, v) \cap\left[(1 /(u v))^{-1} * c_{0}\right],(W(u, v, c))^{\beta}=S(u, v) \cap\left[(1 /(u v))^{-1} * c\right]$ and $\left(W\left(u, v, c_{0}\right)\right)^{\beta}=$ $S(u, v) \cap\left[(1 /(u v))^{-1} * \ell_{\infty}\right] ;$
(c) $\left(W(u, v, X)^{\gamma}=S(u, v) \cap\left[(1 /(u v))^{-1} * \ell_{\infty}\right]\right.$ for $X=\ell_{\infty}, c, c_{0}$.

Corollary 2.8. Let $0<r<1$. We put

$$
\begin{aligned}
S_{1}=S(1 /(\mathbf{n}+\mathbf{1}), e) & =\left\{a \in \omega:\left((n+1) \Delta_{n}^{+} a\right)_{n=0}^{\infty} \in \ell_{1}\right\} \\
& =\left\{a \in \omega: \sum_{n=0}^{\infty}(n+1)\left|a_{n}-a_{n+1}\right|<\infty\right\} .
\end{aligned}
$$

Then we have
(a) $\left(a_{\infty}^{r}\right)^{\alpha}=\left(a_{c}^{r}\right)^{\alpha}=\left(a_{0}^{r}\right)^{\alpha}=(\mathbf{n}+\mathbf{1})^{-1} * \ell_{1}$;
(b) $\left(a_{\infty}^{r}\right)^{\beta}=S_{1} \cap\left[(\mathbf{n}+\mathbf{1})^{-1} * c_{0}\right],\left(a_{c}^{r}\right)^{\beta}=S_{1} \cap\left[(\mathbf{n}+\mathbf{1})^{-1} * c\right],\left(a_{0}^{r}\right)^{\beta}=S_{1} \cap\left[(\mathbf{n}+\mathbf{1})^{-1} * \ell_{\infty}\right.$;
(c) $\left(a_{\infty}^{r}\right)^{\gamma}=\left(a_{c}^{r}\right)^{\gamma}=\left(a_{0}^{r}\right)^{\gamma}=S_{1} \cap\left[(\mathbf{n}+\mathbf{1})^{-1} * \ell_{\infty}\right]$.

Proof. Since $X_{A^{(r)}}=X_{C^{(1)}}$ for $X=\ell_{\infty}, c, c_{0}$ by Theorem 2.4, we apply Proposition 2.7 (b) and (c) with $u=1 /(\mathbf{n}+\mathbf{1})$ and $v=e$, and immediately obtain Parts (b) and (c).
(a) Proposition 2.7 (a) yields that $\left(X_{C^{(1)}}\right)^{\alpha}=S_{1} \cap\left[(\mathbf{n}+\mathbf{1})^{-1} * \ell_{1}\right]$. Since

$$
\sum_{n=0}^{\infty}(n+1)\left|a_{n}-a_{n+1}\right| \leq \sum_{n=0}^{\infty}(n+1)\left|a_{n}\right|+\sum_{n=0}^{\infty}(n+2)\left|a_{n+1}\right|,
$$

we have $S_{1} \supset(\mathbf{n}+\mathbf{1})^{-1} * \ell_{1}$.
Remark 2.9. We obviously have $e \in S_{1} \backslash\left[(\mathbf{n}+\mathbf{1})^{-1} * \ell_{\infty}\right]$. Let $a_{n}=(-1)^{n} /(n+1)^{3 / 2}$ for $n=0,1, \ldots$ Then $(n+1) a_{n} \rightarrow 0(n \rightarrow \infty)$, that is, $a \in(\mathbf{n}+\mathbf{1})^{-1} * c_{0}$, but

$$
\sum_{n=0}^{\infty}(n+1)\left|a_{n}-a_{n+1}\right|=\sum_{n=0}^{\infty}(n+1)\left(\frac{1}{(n+1)^{3 / 2}}+\frac{1}{(n+2)^{3 / 2}}\right) \geq \sum_{n=0}^{\infty} \frac{1}{\sqrt{n+1}}=\infty
$$

that is, $a \notin S_{1}$. Therefore, the sets in Corollary 2.8 (b) and (c) cannot be reduced in a similar way as those in Part (a).

Remark 2.10. Let $u \in \mathcal{U}, X$ be an arbitrary subset of ω and \dagger denote any of the symbols α, β or γ. Then we obviously have $\left(u^{-1} * X\right)^{\dagger}=(1 / u)^{-1} * X^{\dagger}$. Since $X^{\dagger}=\ell_{1}$ for $X=\ell_{\infty}, c, c_{0}$, it follows from Corollary 2.5 that $\left(a_{\infty}^{r}(\Delta)\right)^{\dagger}=\left(a_{c}^{r}(\Delta)\right)^{\dagger}=\left(a_{0}^{r}(\Delta)\right)^{\dagger}=(\mathbf{n}+\mathbf{1})^{-1} * \ell_{1}$.

We now retrieve [1, Theorems 4.4 and 4.5].
Remark 2.11. In view of Theorem 2.4, it suffices to compare the conditions in Corollary 2.8 (b) and (c) with those of [1, Theorems 4.4 and 4.5] with r replaced by 0 . Then the conditions are obviously identical in each case except for C^{β}.

By Corollary 2.8, we have $a \in C^{\beta}$ if and only if

$$
\begin{equation*}
a \in S_{1} \text { and } \lim _{n \rightarrow \infty}(n+1) a_{n} \text { exists, } \tag{6}
\end{equation*}
$$

whereas the corresponding conditions in [1, Theorems 4.4] are

$$
\begin{equation*}
a \in S_{1} \text { and } a \in c s \tag{7}
\end{equation*}
$$

Applying Abel's summation by parts

$$
\sum_{k=0}^{n} x_{k} y_{k}=x_{n} Y_{n}+\sum_{k=0}^{n-1} Y_{k}\left(x_{k}-x_{k+1}\right) \text { where } Y_{k}=\sum_{j=0}^{k} y_{j}(k=0,1, \ldots, n)
$$

with $x=a$ and $y=e$, we see that the conditions in (6) and (7) are equivalent.
The following remark concerns the α-duals of a_{0}^{r} and a_{c}^{r} given in [1, Theorem 4.3]; as before, we may replace r by 0 .

Remark 2.12. As would be logical from the proof given there, the correct condition in [1, Theorem 4.3] for $a \in\left(X_{C^{(1)}}\right)^{\alpha}$ seems to be

$$
\begin{equation*}
\sup _{\substack{K \subset \mathbb{N}_{0} \\ K \text { finite }}}\left(\sum_{n=0}^{\infty}\left|a_{n} \sum_{k \in K \cap\{n-1, n\}}(-1)^{n-k}(k+1)\right|\right)<\infty \tag{8}
\end{equation*}
$$

instead of

$$
\begin{equation*}
\sup _{\substack{K \subset \mathbb{N}_{0} \\ K \text { finite }}}\left(\sum_{n=0}^{\infty}\left|a_{n} \sum_{k \in K}(-1)^{n-k}(k+1)\right|\right)<\infty \tag{9}
\end{equation*}
$$

It is easy to see that the condition in (8) is equivalent to that in Corollary 2.8 (a) for $a \in\left(X_{C^{(1)}}\right)^{\alpha}$ when $X=c_{0}, c, \ell_{\infty}$.

On the other hand, if we define the sequence $a=\left(a_{n}\right)_{n=0}^{\infty}$ by $a_{n}=(n+1)^{-5 / 2}(n=0,1, \ldots)$, then clearly $a \in(\mathbf{n}+\mathbf{1})^{-1} * \ell_{1}$, but, for each given $m \in \mathbb{N}_{0}$ and $K_{m}=\{0,2, \cdots, 2 m\}$, we obtain

$$
\sum_{n=0}^{2 m}\left|a_{n}\right| \cdot\left|\sum_{k=0}^{m}(-1)^{n-2 k}(2 k+1)\right|=\sum_{n=0}^{2 m}\left|a_{n}\right|(m+1)^{2} \geq \frac{1}{4} \cdot \sum_{n=0}^{2 m}\left|a_{n}\right|(n+1)^{2}=\frac{1}{4} \sum_{n=0}^{2 m} \frac{1}{\sqrt{n+1}}
$$

and so the sequence a does not satisfy the condition in (9).
Finally, we retrieve [2, Theorems 4.5, 4.6 and 4.7].
Remark 2.13. In view of Theorem 2.4 and Remark 2.10, it suffices to compare the conditions in Remark 2.10 (b) and (c) with those of [2, Theorems 4.5, 4.6 and 4.7] with r replaced by 0.

By [2, Theorem 4.5], we have $a \in\left(a_{0}^{0}(\Delta)\right)^{\alpha}=\left(a_{c}^{0}(\Delta)\right)^{\alpha}$ if and only if

$$
\sup _{\substack{K \subset \mathbb{N}_{0} \\ K \text { finite }}} \sum_{n=0}^{\infty}\left|a_{n} \sum_{k \in K} c_{n k}^{0}\right|<\infty \text { where } C^{0} \text { is the diagonal matrix with } c_{n n}^{0}=(n+1) ;
$$

this condition obviously is equivalent to $a \in(\mathbf{n}+\mathbf{1})^{-1} * \ell_{1}$.

Furthermore, by [2, Theorem 4.6], we have $a \in\left(a_{0}^{0}(\Delta)\right)^{\beta}$ if and only if

$$
\begin{equation*}
\sup _{n} \sum_{k=0}^{\infty}\left|e_{n k}^{0}\right|<\infty \text {, where } E^{0} \text { is the triangle with } e_{n k}^{0}=(k+1) a_{k} \text { for } 0 \leq k \leq n, \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{j=k}^{\infty} a_{j} \text { exists for all } j \tag{11}
\end{equation*}
$$

Obviously the condition in (10) implies that in (11) and the condition in (10) is equivalent to $a \in(\mathbf{n}+\mathbf{1})^{-1} * \ell_{1}$. We also have by [2, Theorem 4.6] that $a \in\left(a_{c}^{0}(\Delta)\right)^{\beta}$ if and only if $a \in\left(a_{c}^{0}\right)^{\beta}$ and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{k=0}^{n}(k+1) a_{k} \text { exists. } \tag{12}
\end{equation*}
$$

Since the condition in (10) obviously implies that in (12), the conditions in [2, Theorem 4.6] for $a \in\left(a_{c}^{0}(\Delta)\right)^{\beta}$ are again equivalent to $a \in(\mathbf{n}+\mathbf{1})^{-1} * \ell_{1}$.

Finally, by [2, Theorem 4.6], we have $a \in\left(a_{0}^{0}(\Delta)\right)^{\gamma}=\left(a_{c}^{0}(\Delta)\right)^{\gamma}$ if and only if the condition in (10) holds which is equivalent to $a \in(\mathbf{n}+\mathbf{1})^{-1} * \ell_{1}$, as we have seen above.

We close with a few remarks on some characterisations of matrix transformations.
Remark 2.14. (a) The necessary and sufficient conditions for $A \in(W(u, v, X) ; Y)$ for arbitrary sequences $u, v \in \mathcal{U}$ were given in [6, Theorem 3.3] when $X=\ell_{p}(1 \leq p \leq \infty), X=c_{0}$ or $X=c$ and $Y=\ell_{\infty}, c_{0}, c$ or $Y=\ell_{r}\left(1<r<\infty\right.$; only for $\left.X=\ell_{1}\right)$. In particular, putting $u=1 / \mathbf{n}+\mathbf{1}$ and $v=e$ and applying Theorem 2.4, we observe that the characterisations of the classes $\left(a_{c}^{r}, \ell_{1}\right),\left(a_{c}^{r}, \ell_{p}\right)(1<p<\infty),\left(a_{c}^{r}, \ell_{\infty}\right)$ ([1, Theorem 5.3]) and $\left(a_{c}^{r}, c\right)$ ($[1$, Theorem 5.4]) would be special cases of [6, Theorem 3.3 (12.), (19.), (9.), (11.)]. In the same way we would obtain the characterisations of the classes $\left(a_{c}^{r}, c_{0}\right)\left(a_{0}^{r}, c_{0}\right),\left(a_{0}^{r}, c\right),\left(a_{0}^{r}, \ell_{\infty}\right),\left(a_{\infty}^{r}, c_{0}\right),\left(a_{\infty}^{r}, c\right)$ and $\left(a_{\infty}^{r}, \ell_{\infty}\right)$ from [6, Theorem 3.3, (10.), (6.), (7.), (5.), (14.), (15.) and (13.)]. Furthermore, by [6, Remark 3.1] the necessary and sufficient conditions for C to map any of the above spaces into a_{0}^{r}, a_{c}^{r} or a_{∞}^{r} can immediately be obtained from the respective one for A mapping into c_{0}, c or ℓ_{∞} by replacing the entries $a_{n k}$ of A by $c_{n k}=(1 /(n+1)) \sum_{j=0}^{k} a_{n k}(n, k=0,1, \ldots)$ in the corresponding conditions.
(b) Let $u, v \in \mathcal{U}$. Then it is clear that

$$
A \in\left(u^{-1} * X, v^{-1} * Y\right) \text { if and only if } B \in(X, Y) \text { where } b_{n k}=\frac{v_{n} a_{n k}}{u_{k}} \text { for all } n, k
$$

Applying this result with $u=1 / \mathbf{n}+\mathbf{1}$ and $v=e$, and Corollary 2.5, we immediately obtain the characterisations of the classes $\left(a_{c}^{r}(\Delta), \ell_{1}\right),\left(a_{c}^{r}(\Delta), \ell_{p}\right)(1<p<\infty),\left(a_{c}^{r}(\Delta), \ell_{\infty}\right)$ and $\left(a_{c}^{r}(\Delta), c\right)$ ([2, Theorems 5.3 and 5.4]) from the well-known characterisations of the classical classes $\left(c, \ell_{1}\right),\left(c, \ell_{p}\right)(1<p<\infty),\left(c, \ell_{\infty}\right)$ and (c, c) in [10, $8.4 .9 \mathrm{~A}, 8.4 .8 \mathrm{~A}, 8.4 .5 \mathrm{~A}, 8.4 .5 \mathrm{~A}]$. Similarly, putting $u=v=1 / \mathbf{n}+\mathbf{1}$ the characterisations of the classes (X, Y) where X and Y are any of the spaces $a_{0}^{r}(\Delta), a_{c}^{r}(\Delta)$ or $a_{\infty}^{r}(\Delta)$ can easily be obtained from the well-known characterisations of the classes of matrix transformations between the spaces c_{0}, c and ℓ_{∞} that can be found in [10].

References

[1] C. Aydın, F. Başar, On the new sequence spaces which include the spaces c_{0} and c, Hokkaido Mathematical Journal 33 (2004) 383-398.
[2] C. Aydın, F. Başar, Some new difference sequence spaces, Applied Mathematics and Computation 157 (2004) 677-693.
[3] I. Djolović, Compact operators on the spaces $a_{0}^{r}(\Delta)$ and $a_{c}^{r}(\Delta)$, J. Math. Anal. Appl. 318 (2006) 658-666.
[4] I. Djolović, E. Malkowsky, A note on compact operators on matrix J. Math. Anal. Appl. 340 (2008) 291-303.
[5] B. de Malafosse, V. Rakočević, Application of measure of noncompactness in operators on the spaces $s_{\alpha}, s_{\alpha}^{0}, s_{\alpha}^{(c)}, \ell_{\alpha}^{p}$, J. Math. Anal. Appl. 323 (1) (2006) 131-145.
[6] E. Malkowsky, Linear operators between some matrix domains, Rend. Circ. Mat. Palermo II 68 (2002) 641-655.
[7] E. Malkowsky, V. Rakočević, On matrix domains of triangles, Applied Mathematics and Computation 189 (2007) 1148-1163.
[8] E. Malkowsky, E. Savaş, Matrix transformations between spaces of generalised weighted means, Applied Mathematics and Computation 147 (2004) 333-345.
[9] A. Peyerimhoff, Lectures on Summability, Lecture Notes in Mathematics 107, Springer-Verlag, Berlin, Heidelberg, New York, 1969.
[10] A. Wilansky, Summability through Functional Analysis, North-Holland Mathematics Studies 85, Amsterdam, New York, Oxford, 1984.

[^0]: 2010 Mathematics Subject Classification. Primary 40H05; Secondary 46H05
 Keywords. Generalised weighted means, dual spaces, matrix transformations
 Received: 21 October 2011; Accepted: 24 November 2011
 Communicated by Dragan S. Djordjević
 Research of Malkowsky supported by the research project\#174025 of the Serbian Ministry of Science, Technology and Development Email addresses: Eberhard.Malkowsky@math.uni-giessen.de (Eberhard Malkowsky), fozger@fatih.edu.tr (Faruk Özger)

