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Abstract. The atom–bond connectivity index (ABC) is a vertex–degree based graph invariant, put forward
in the 1990s, having applications in chemistry. Let G = (V,E) be a graph, di the degree of its vertex i , and
i j the edge connecting the vertices i and j . Then ABC =

∑
i j∈E

√
(di + d j − 2)/(di d j) . Upper bounds and

Nordhaus–Gaddum type results for ABC are established.

1. Introduction

Several graph invariants found applications and are currently used in chemistry, pharmacology, envi-
ronmental sciences, etc. [10, 15, 16]. One of these is the so-called “atom–bond connectivity index” (ABC). It is
defined as follows [6].

Let G = (V(G),E(G)) be a graph with n = |V(G)| vertices and m = |E(G)| edges. The degree (= number of
first neighbors) of a vertex i ∈ V(G) is denoted by di . The edge connecting the vertices i and j is denoted by
i j . Then

ABC = ABC(G) =
∑

i j∈E(G)

√
di + d j − 2

di d j
. (1)

In [6] it was shown that ABC can be used for modeling thermodynamic properties of organic chemical
compounds. However, this paper did not receive much attention. In 2008, Estrada published another
paper, applying ABC as tool for explaining the stability of branched alkanes [5]. Contrary to [6], this work
attracted the attention of mathematically oriented scholars, resulting in a remarkable number of researches
on the mathematical properties of the ABC index [1–4, 7–9, 12, 17–19]. In the present paper we report a few
more, hitherto unpublished, results on ABC.

We first define the graph theoretic notions that will be used in the subsequent parts of the paper.
The maximal and minimal vertex degree of the graph G = (V(G),E(G)) is denoted by∆ and δ, respectively.

A vertex i is said to be pendent if di = 1. The minimal degree of a non-pendent vertex is δ1 . An edge of a
graph is said to be pendent if one of its end-vertices is pendent.
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The set of first neighbors of the vertex i is denoted by Ni. Evidently, |Ni| = di .
The Zagreb indices are well-known graph invariants, introduced almost 40 years ago [15, 16], defined

as:

M1 =M1(G) =
∑

i∈V(G)

d2
i and M2 =M2(G) =

∑
i j∈E(G)

di d j .

A recently proposed variant of the second Zagreb index, denoted by M∗
2 and defined as [13]:

M∗
2 =M∗

2(G) =
∑

i j∈E(G)

1
di d j

is known under the name “modified second Zagreb index”.
If V(G) is the disjoint union of two nonempty sets V1(G) and V2(G) such that every vertex in V1(G) has

degree r and every vertex in V2(G) has degree s (r ≤ s) , then G is (r, s)–semiregular. If r = s , then G is said to
be regular. As usual [11], the complete graph, complete bipartite graph, the star, and the path are denoted
as Kn, Kp,q (p + q = n), K1,n−1, and Pn, respectively.

2. Upper bound on ABC index

Upper bounds for the ABC index were earlier obtained in [2, 3]. In particular, inequality (2) was reported
in [3], but without the characterization of the equality cases (which seems to be its most difficult aspect).

Our starting point is the well– known Cauchy–Schwarz inequality:

Lemma 2.1. If ā = (a1, a2, . . . , an) and b̄ = (b1, b2, . . . , bn) are sequences of real numbers, then n∑
i=1

ai bi


2

≤
n∑

i=1

a2
i

n∑
i=1

b2
i

with equality if and only if the sequences ā and b̄ are proportional, i. e., there is a λ ∈ R such that ak = λ bk for each
k ∈ {1, 2, . . . , n} .

Theorem 2.2. Let G be a connected graph with n vertices, p pendent vertices, m edges, maximal degree ∆, and
minimal non-pendent vertex degree δ1. Let M1 and M∗

2 be the first and modified second Zagreb indices of G. Then

ABC(G) ≤ p

√
1 − 1
∆
+

√
[M1 − 2m − p(δ1 − 1)]

(
M∗

2 −
p
∆

)
. (2)

Equality in (2) holds if and only if G is regular or (1,∆)-semiregular or bipartite semiregular.

Recall that for r , s, a graph G is said to be (r, s)-semiregular if its vertex degrees assume only the values
r and s, and if there is at least one vertex of degree r and at least one of degree s. If every vertex of degree r
is adjacent to vertices of degree s and vice versa, then G is bipartite (r, s)-semiregular. In Theorem 2.2, under
“bipartite semiregular” is meant bipartite (r, s)-semiregular with arbitrary r and s.

Proof. Using ai j =
√

di + d j − 2 and bi j = 1/
√

di d j, for each edge i j ∈ E(G), such that both vertex degrees di
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and d j are greater than unity, in Lemma 2.1, we get
∑

i j∈E(G)
di,d j,1

√
di + d j − 2

di d j


2

=


∑

i j∈E(G)
di,d j,1

√
di + d j − 2√

di d j


2

≤
∑

i j∈E(G)
di,d j,1

(di + d j − 2)
∑

i j∈E(G)
di,d j,1

1
di d j

(3)

=


∑

i j∈E(G)

(di + d j − 2) −
∑

i j∈E(G)
di=1

(d j − 1)




∑
i j∈E(G)

1
di d j

−
∑

i j∈E(G)
di=1

1
d j


≤ [

M1 − 2m − p(δ1 − 1)
] (

M∗
2 −

p
∆

)
(4)

since
∑

i j∈E(G)
(di + d j) =M1 and δ1 ≤ di ≤ ∆ . Therefrom inequality (2) follows directly from the definition (1).

The examination of the equality case in (2) is somewhat lengthy.
Suppose that equality holds in (2). Then all inequalities in the above argument must be equalities. We

have to consider two cases (i) p > 0 , (ii) p = 0 .

Case (i): From 1 − 1/d j = 1 − 1/∆ , we get d j = ∆ for viv j ∈ E(G) , di = 1 .

From equality in (4), we get d j = δ1 for viv j ∈ E(G) , di = 1.
From these results follows ∆ = δ1 . Hence G is isomorphic to a (∆, 1)–semiregular graph.

Case (ii): In this case δ = δ1 ≥ 2 . From equality in (3), for any two adjacent edges viv j ∈ E(G), vivk ∈ E(G),√
di d j

√
di + d j − 2 =

√
di dk

√
di + dk − 2

i. e., di d j + d2
j − 2d j = di dk + d2

k − 2dk as di , 0

i. e., (d j − dk)(di + d j + dk − 2) = 0

i. e., d j = dk since di + d j + dk > 2 . (5)

Suppose that di = r. Then by (5), all vertices adjacent to the vertex vi are of the same degree (say, s), and
all vertices adjacent to the vertex v j , viv j ∈ E(G), are of degree r. Using (5) and the fact that G is connected, it
follows that each vertex of degree r is adjacent to vertices of degree s, and each vertex of degree s is adjacent
to vertices of degree r. Thus G is a bipartite semiregular graph or G is a regular graph.

Conversely, let G be a (∆, 1)–semiregular graph. Then, M1(G) = (n− p)∆2 + p , M∗
2(G) = p/∆+ (m− p)/∆2 ,

and (n − p)∆ = 2(m − p) + p . Using these relations, we get

[M1(G) − 2m − p(δ1 − 1)]
[
M∗

2(G) − p
∆

]
=

[
(n − p)∆2 + 2p − 2m − p∆

] (m − p)
∆2 =

2(∆ − 1)
∆2 (m − p)2 .

Hence equality holds in (2).
Let G be an r-regular graph. Then√

(M1(G) − 2m)M∗
2(G) =

√
(nr2 − nr)

m
r2 = m

√
2
r
− 2

r2 = ABC(G)
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since 2m = nr.
Let G be a bipartite (r, s)–semiregular graph. Also, let k be the number of vertices of degree r , and ℓ be

the number of vertices of degree s . Then kr = ℓs = m and we have√
(M1(G) − 2m)M∗

2(G) =

√
(kr2 + ℓs2 − 2m)

m
rs
= m

√
1
r
+

1
s
− 2

rs
= ABC(G)

which completes the proof of Theorem 2.2.

By setting p = 0 in Theorem 2.2, we get:

Corollary 2.3. With the same notation as in Theorem 2.2,

ABC(G) ≤
√

(M1 − 2m) M∗
2 . (6)

Equality in (6) holds if and only if G is regular or bipartite semiregular.

Corollary 2.4. [2] With the same notation as in Theorem 2.2,

ABC(G) ≤ p

√
1 − 1
∆
+

m − p
δ1

√
2(δ1 − 1) . (7)

The case of equality in (7) is complicated and has been determined in [2].

3. Nordhaus–Gaddum–type results for ABC index

Motivated by the seminar work of Noradhaus and Gaddum [14], we report here analogous results for
the ABC index. For this we need:

Lemma 3.1. [2] Let G be a simple connected graph with m edges and maximal vertex degree ∆ . Then

ABC(G) ≥ 27/4 m
√
∆ − 1

∆3/4
(√
∆ +
√

2
) (8)

where equality is attained if and only if G � Pn .

Theorem 3.2. Let G be a simple connected graph of order n with connected complement G . Then

ABC(G) + ABC(G) ≥ 23/4 n(n − 1)
√

k − 1

k3/4
(√

k +
√

2
) (9)

where k = max{∆, n − δ − 1} , and where ∆ and δ are the maximal and minimal vertex degrees of G. Moreover,
equality in (9) holds if and only if G � P4 .

Proof. We start by inequality (8). Let m and ∆ be the number of edges and maximal vertex degree in G.
Then

ABC(G) + ABC(G) ≥ 27/4 m
√
∆ − 1

∆3/4
(√
∆ +
√

2
) + 27/4 m

√
∆ − 1

∆
3/4

(√
∆ +
√

2
)

=
23/4 2m

√
∆ − 1

∆3/4
(√
∆ +
√

2
) + 23/4 (n(n − 1) − 2m)

√
n − δ − 2

(n − δ − 1)3/4
(√

n − δ − 1 +
√

2
) . (10)
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Consider the function

f (x) =

√
x − 1

x3/4
(√

x +
√

2
)

for which one can easily show that it monotonically decreases in the interval [2,∞] . Thus

√
∆ − 1

∆3/4 (
√
∆ +
√

2)
≥

√
k − 1

k3/4 (
√

k +
√

2)
≤

√
n − δ − 2

(n − δ − 1)3/4 (
√

n − δ − 1 +
√

2)
(11)

since k ≥ ∆ and k ≥ n − δ − 1. Since 2m = n(n − 1) − 2m , combining the above results with (10), we arrive at
(9).

It remains to examine the equality case. It is easy to check that equality in (9) holds if G � P4 . Suppose
now that equality holds in (9). Then all inequalities in (11) must be equalities, and we get k = ∆ = n− 1− δ .
Equality in (10) implies G � Pn and G � Pn . Hence G � P4 . By this the proof of Theorem 3.2 has been
completed.

Theorem 3.3. Let G be a simple connected graph of order n with connected complement G . Then

ABC(G) + ABC(G) ≤ (
p + p

) √
n − 3
n − 2

1 −
√

2
n − 2

 + (
n
2

)√
2
k
− 2

k2 (12)

where p , p and δ1 , δ1 are the number of pendent vertices and minimal non–pendent vertex degrees in G and G,
respectively, and k = min{δ1, δ1} . Equality holds in (12) if and only if G � P4 or G is an r-regular graph of order
2r + 1 .

Proof. We have ∆ ≤ n − 2 , as G and G are connected, and hence

1 − 1
∆
≤ n − 3

n − 2
and

2
δ1
− 2
δ2

1

≥ 2(n − 3)
(n − 2)2 .

Bearing in mind (7), we get

ABC(G) ≤ p

√
n − 3
n − 2

− p

√
2(n − 3)
(n − 2)2 +m

√
2
δ1
− 2
δ2

1

= p

√
n − 3
n − 2

1 −
√

2
n − 2

 +m

√
2
δ1
− 2
δ2

1

(13)

from which there holds

ABC(G) + ABC(G) ≤ (
p + p

) √
n − 3
n − 2

1 −
√

2
n − 2

 +m

√
2
δ1
− 2
δ2

1

+m

√
2

δ1

− 2

δ
2
1

(14)

≤ (p + p)

√
n − 3
n − 2

1 −
√

2
n − 2

 + (m +m)

√
2
k
− 2

k2 (15)

as k ≤ δ1, δ1.
Since m +m =

(n
2
)

, from (15), we get the required result (12).
We now examine the equality case.
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Suppose that equality holds in (12). Then all inequalities in the above argument must be equalities.
From equality in (13) we get ∆ = δ1 = n − 2 , p , 0, that is, G � P4 or G is isomorphic to a regular graph, by
Lemma 2.4.

Equality in (14) implies that (i) G � P4 or G is isomorphic to a regular graph and (ii) G � P4 or G is
isomorphic to a regular graph.

From equality in (15), we get δ1 = δ1.
Using the above results, and recalling that P4 � P4 , we conclude that G � P4 or G is isomorphic to an

r-regular graph with n = 2r + 1.
Conversely, one can easily see that equality in (12) holds for the path P4 and for an r-regular graph of

order 2r + 1 .
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