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Growth properties of the Fourier transform

William O. Braya, Mark A. Pinskyb

aUniversity of Maine
bNorthwestern University

Abstract. In a recent paper by the authors, growth properties of the Fourier transform on Euclidean space
and the Helgason Fourier transform on rank one symmetric spaces of non-compact type were proved and
expressed in terms of a modulus of continuity based on spherical means. The methodology employed first
proved the result on Euclidean space and then, via a comparison estimate for spherical functions on rank
one symmetric spaces to those on Euclidean space, we obtained the results on symmetric spaces. In this
note, an analytically simple, yet overlooked refinement of our estimates for spherical Bessel functions is
presented which provides significant improvement in the growth property estimates.

In memory of Časlav V. Stanojević as teacher, mentor and friend

1. Euclidean space

In a paper by the authors [1], we proved the following result providing a growth property of the
Euclidean Fourier transform.

Theorem 1.1. Let 1 ≤ p ≤ 2 and n ≥ 2. Then there is a constant C = C(p,n) such that the following hold:

1. If f ∈ Lp(Rn) and 1 < p ≤ 2, then(∫
Rn

min
{

1,
( |ξ|

r

)2q}
| f̂ (ξ)|qdξ

)1/q

≤ CΩp[ f ]
(1

r

)
.

2. If f ∈ L1(Rn), then

sup
ξ

[
min

{
1,

( |ξ|
r

)2}
| f̂ (ξ)|

]
≤ CΩ1[ f ]

(1
r

)
.

Here the modulus of continuity was defined as

Ωp[ f ](r) = sup
0≤t≤r
∥Mt f − f ∥p,
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and Mt f is the usual spherical mean of f ,

Mt f (x) =
1
ωn−1

∫
Sn−1

f (x + tω) dω,

Sn−1 is the unit sphere in Rn, ωn−1 its total surface measure with respect to the usual induced measure
dω. In essence, the proof of this theorem is based on three things: (1) the Fourier transform identity
M̂t f (ξ) = f̂ (ξ) j n−2

2
(t|ξ|), where jα(r) is normalized spherical Bessel function of order α,

jα(r) = 2αΓ(α + 1)r−αJα(r),

(2) the Hausdorff-Young theorem, and (3) a careful estimate of (see [1], Lemma 6) I(λ/r, z) = 1 − jα(λz/r) of
the form,

C1,αmin
{
1,

(
λ
r

)2
}
≤

∫ 1

0
I
(
λ
r , z

)
dz ≤ sup

0≤z≤1
I
(
λ
r , z

)
≤ C2,αmin

{
1,

(
λ
r

)2
}
. (1)

Here, Ck,α are positive constants.
A technically simple refinement of this estimate leads to the following generalization; a result of the

same form as Theorem 1.1, yet dispenses with the need for the supremum in the spherical modulus of
continuity.

Theorem 1.2. Let 1 ≤ p ≤ 2 and n ≥ 2. Then there exists a constant C = C(p,n) such that the following hold.

1. If 1 < p < 2 and f ∈ Lp(Rn), then(∫
Rn

min
{
1, (t|ξ|)2q

}
| f̂ (ξ)|qdξ

)1/q

≤ C ∥Mt f (·) − f (·)∥p.

2. If f ∈ L1(Rn), then

sup
ξ

[
min

{
1, (t|ξ|)2

}]
| f̂ (ξ)| ≤ C ∥Mt f (·) − f (·)∥1.

3. If f ∈ L2(Rn), then the result takes sharper form:(∫
Rn

min{1, (t|ξ|)4}| f̂ (ξ)|2dξ
)1/2

≍ ∥Mt f (·) − f (·)∥2.

(r(t) ≍ s(t) means the left hand side is bounded above and below by positive constants times the right hand side)

The sharper form in the the case p = 2 is because the inequality in the Hausdorff-Young theorem for
p < 2 becomes equality in the Plancherel theorem. The proof of this result follows the same method as for
Theorem 1.1, with the estimate for spherical Bessel functions given above (Lemma 6 in [1]) replaced by the
following.

Lemma 1.3. Let α > − 1
2 . Then there are positive constants c1,α and c2,α such that

c1,αmin{1, (λt)2} ≤ 1 − jα(λt) ≤ c2,αmin{1, (λt)2} (2)

for all λ > 0.

Proof. The proof makes use the the Mehler formula for the spherical Bessel function given by

jα(λt) =
2Γ(α + 1)√
πΓ(α + 1

2 )

∫ 1

0
(1 − y2)α−

1
2 cos(λty) dy.
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It follows that

1 − jα(λt) =
4Γ(α + 1)√
πΓ(α + 1

2 )

∫ 1

0
(1 − y2)α−

1
2 sin2

(
λty

2

)
dy.

Since, sin λty
2 ≥

λty
π , provided λt ≤ π, it follows that

1 − jα(λt) ≥ 4Γ(α + 1)
π3/2Γ(α + 1

2 )
(λt)2

∫ 1

0
(1 − y2)α−

1
2 y2dy =

(λt)2

π(α + 1)
,

the last step by evaluating the beta integral and simplifying the resulting gamma functions. For all λt > 0,
| jα(λt)| < 1. Hence, for λt ≥ π, there is a constant c > 0 such that 1 − jα(λt) ≥ c. Combining the estimates
gives the left hand side of (2). The right hand side follows by similar technique.

The following corollary represents a quantified Riemann-Lebesgue lemma and is an extension/variant of
results in one dimension given in Titchmarsh [11, page 117].

Corollary 1.4. Let 1 ≤ p < 2 and n ≥ 2. Then there is a positive constant C = C(p,n) such that the following hold.

1. If 1 < p < 2 and f ∈ Lp(Rn), then(∫
|ξ|>1/t

| f̂ (ξ)|qdξ
)1/q

≤ C ∥Mt f (·) − f (·)∥p.

2. If f ∈ L1(Rn), then

sup
|ξ|>1/t

| f̂ (ξ)| ≤ C ∥Mt f (·) − f (·)∥1.

3. If f ∈ L2(Rn), then(∫
|ξ|>1/t

| f̂ (ξ)|2dξ
)1/2

≈ ∥Mt f (·) − f (·)∥2.

Remark 1.5. Theorem 1.2 was also obtained by Ditzian [2] as a consequence of a rather technical result in
approximation theory. Our proof lies completely within the framework of harmonic analysis and lends its
self to the extensions described below.

2. Rank one symmetric spaces

In this section we follow the notation given in [1]; basic references for the background material are
Helgason’s books [5, 6] and Koornwinder’s survey paper on Jacobi functions [7]. Let X = G/K where G is
a connected non-compact semisimple Lie group with finite center and real rank one and K is a maximal
compact subgroup. At the Lie algebra level, the Cartan decomposition has form g = k + p, where k is the
Lie algebra of K. The Iwasawa decomposition takes the form g = k + a + n, where a is a maximal abelian
subalgebra of p and n is a nilpotent subalgebra of g. The rank one condition is that dim a = 1. The nilpotent
subalgebra n has root space decomposition n = nγ + n2γ, where γ and 2γ are the positive roots. Let mγ and
m2γ be the respective root space dimensions and set ρ = 1

2 (mγ + 2m2γ). Choose H0 ∈ a such that γ(H0) = 1.
This allows identifying awithR by the mapR ∋ t→ tH0 ∈ a, and on the dual side, a∗

C
with C. At the group

level, the Iwasawa decomposition has form G = KAN, and we write G ∋ 1 = k exp(H(1)) n, where H(1) ∈ a
and exp is the exponential function. Because of the above identification, we often write at = exp(H(1)),
t ∈ R being identified with H(1).

The polar decomposition of G takes the form G = KA+K, where A+ = {at : t ≥ 0}. Following standard
practice, functions f on X are identified with right K−invariant functions on G and write f (x) = f (1), where
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x = 1K. In terms of this decomposition, the invariant measure dx on X has the form dx = ∆(t) dtdk, where
∆(t) = ∆(α,β)(t) = (2 sinh t)2α+1(2 cosh t)2β+1, α = (mγ + m2γ − 1)/2 and β = (m2γ − 1)/2, and dk is normalized
Haar measure on K. The Laplacian on X is denoted L and its radial part is given by

Lr =
d2

dt2 +
∆′(t)
∆(t)

d
dt
.

The spherical function on X is the unique radial solution to the equation

Lu = −(λ2 + ρ2)u

which is one at the origin of X. Let M be the centralizer of A in K and set B = K/M. For x = 1K ∈ X
and b = kM ∈ B, let A(x, b) = −H(1−1k) (called the horocycle distance function). Then the Harish-Chandra
formula for the spherical function is

ϕλ(x) =
∫

B
e(iλ+ρ)A(x,b)db,

where db is normalized measure on B. If we write x = katK, then it is well known thatϕλ(x) = ϕ(α,β)
λ (t), where

ϕ
(α,β)
λ (t) is Jacobi function of the first kind. Key properties of Jacobi functions are given in the following

three bullet items [7].

• |ϕ(α,β)
µ+iη(t)| ≤ ϕ

(α,β)
iη (t) ≤ 1 for µ ∈ R and |η| ≤ ρ.

• |ϕ(α,β)
µ+iη(t)| ≤ e|η|tϕ(α,β)

0 (t) ≤ C(1 + t)e(|η|−ρ)t.

• Let 1 < p < 2, and define Dp = {λ = µ + iη : |η| < ( 2
p − 1)ρ}. Then

λ ∈ Dp =⇒ ϕ
(α,β)
λ ∈ Lq(R+,∆(α,β)(t)dt),

where q is the Hölder conjugate index: 1
p +

1
q = 1.

In sharp contrast to the Euclidean space setting, the third property written out for symmetric space states:
for λ ∈ Dp, the spherical function ϕλ ∈ Lq(X).

In [1], we proved the following result.

Lemma 2.1. Let α > −1/2, −1/2 ≤ β ≤ α, and let t0 > 0. Then for |η| ≤ ρ, there exists a positive constant
C = C(α, β, t0) such that

|1 − ϕ(α,β)
µ+iη(t)| ≥ C [1 − jα(µt)],

for all 0 ≤ t ≤ t0.

In the symmetric space realm, the above gives a local estimate involving the spherical function on X with
that for the spherical function on the Euclidean tangent space to X at the origin and is the technical heart
of the extension of Theorem 1.2 to symmetric spaces. The following example illustrates the essential ideas
underlying this estimate.

Example 2.2. Consider the case α = 1
2 , β = − 1

2 . Then the Jacobi function is elementary

ϕλ(t) = ϕ
(1/2,−1/2)
λ (t) =

sinλt
λ sinh t

,

and gives the spherical function on three dimensional real hyperbolic space SOe(1, 3)/SO(3). Using the
fundamental theorem of calculus

1 − ϕλ(t) =
1

sinh t

∫ t

0
[cosh s − cosλs]ds.
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Substituting λ = µ + iη, applying the addition theorem for the cosine function, and the fact that modulus
dominates the real part, we obtain∣∣∣1 − ϕλ(t)∣∣∣ ≥ 1

sinh t

∫ t

0
[cosh s − cosh ηs cosµs]ds.

It follows that∣∣∣1 − ϕλ(t)∣∣∣ ≥ 1
sinh t

∫ t

0

[
1 − cosh ηs

cosh s
cosµs

]
ds

≥ t
sinh t

1
t

∫ t

0
[1 − cosµs]ds

=
t

sinh t
[
1 − j1/2(µt)

]
.

For fixed t0 > 0, the ratio t
sinh t ≥ C for all 0 ≤ t ≤ t0, which gives the proof of the lemma for this example.

The proof in the general case is based on more elaborate estimates applied to the Mehler identity for the
Jacobi functions (the Mehler identity for the example is straightforward via the fundamental theorem of
calculus).

As a consequence of the second bullet item above,

lim
t→∞
ϕ

(α,β)
λ (t) = 0

uniformly on any strip of the form {λ = µ + iη : µ ∈ R, |η| ≤ η0 < ρ}. Combining the above lemma and this
fact with (2) gives the following estimate.

Lemma 2.3. Let α > −1/2, −1/2 ≤ β ≤ α, and let 0 < η0 < ρ. Then there exists a positive constant C = C(α, β, η0)
such that

|1 − ϕ(α,β)
µ+iη(t)| ≥ C min{1, (µt)2}

for all µ ∈ R , |η| ≤ η0, and t > 0.

The Helgason Fourier transform for functions defined on X is given by

f̂ (λ, b) =
∫

X
f (x) e(−iλ+ρ)A(x,b)dx.

The following estimate due to Sarkar and Sitaram [10] for this transform provides one avenue for developing
an analog of Theorem 1.2 in symmetric spaces; it is a direct consequence of the aforementioned integrability
property of Jacobi functions.

Lemma 2.4. Let 1 ≤ p < 2 and f ∈ Lp(X). Then for λ = µ + iη ∈ Dp, f̂ (λ, b) is defined a.e. (b) and∫
B
| f̂ (µ + iη, b)| db ≤ cp(|η|) ∥ f ∥p, (3)

where cp(·) is a positive function defined on [0, ( 2
p − 1)ρ).

Group theoretically, the spherical mean of a function f on X is given by

Mt f (1) =
∫

K
f (1kat) dk.

The main result generalizing Theorem 12 of [1] is the following.
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Theorem 2.5. Let 1 ≤ p < 2 and f ∈ Lp(X). Then for |η| < (2/p − 1) and t > 0, there exists a positive function
cp(|η|) such that

sup
µ

[
min{1, (tµ)2}

∫
B
| f̂ (µ + iη, b)| db

]
≤ cp(|η|) ∥Mt f (·) − f (·)∥p.

Proof. For completeness, we sketch the proof. From the operational property

M̂t f (λ, b) = ϕλ(at) f̂ (λ, b)

and Lemma 2.4 we have∣∣∣1 − ϕµ+iη(at)
∣∣∣ ∫

B

∣∣∣∣ f̂ (µ + iη, b)
∣∣∣∣ db ≤ cp(|η|)∥Mt f (·) − f (·)∥p.

The result then follows by applying Lemma 2.3.

Corollary 2.6. Let 1 ≤ p < 2 and f ∈ Lp(X). Then for |η| < (2/p − 1)ρ and t > 0, there exists a positive function
cp(|η|) such that

sup
|µ|>1/t

∫
B
| f̂ (µ + iη, b)| db ≤ cp(|η|) ∥Mt f (·) − f (·)∥p.

In the case p = 2, the inequalities above breakdown. However, one can resort to the known Plancherel
theorem for the Helgason Fourier transform and obtain a direct analog of Theorem 1.2. The following result
generalizes Theorem 14 of [1].

Theorem 2.7. Let f ∈ L2(X). Then there exists a positive constant C such that(∫
R

min{1, (λt)4}
∫

B
| f̂ (λ, b)|2db |cX(λ)|−2dλ

)1/2

≤ C ∥Mt f (·) − f (·)∥2,

where cX(λ) is the Harish-Chandra c−function for X.

Remark 2.8. At the time of writing [1], a Hausdorff-Young inequality for the Helgason Fourier transform
was known only in the case of radial functions. Hence the analog of Theorem 11 for the case f ∈ Lp(X),
1 ≤ p < 2 was left as conjecture. In the same time frame as [1], Ray and Sarkar [9] proved the Hausdorff-
Young theorem and provided nice generalizations to the inequality (3) in the context of Lorentz spaces
using complex interpolation techniques. This has been applied in [4] to obtain corresponding exten-
sions/refinements of Theorems 2.5 and 2.7 in the context of harmonic NA−groups. The latter include the
rank one symmetric spaces as special cases.
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