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An iterative algorithm to compute the Bott-Duffin inverse and
generalized Bott-Duffin inverse

Xingping Shenga

aSchool of Mathematics and Computational Science in Fuyang Normal College, Fuyang Anhui, P.R. China

Abstract. Let L be a subspace of Cn and PL be the orthogonal projector of Cn onto L. For A ∈ Cn×n, the
generalized Bott-Duffin (B-D) inverse A(†)

(L) is given by A(†)
(L) = PL(APL +PL⊥ )†. In this paper, by defined a non-

standard inner product, a finite formulae is presented to compute Bott-Duffin inverse A(−1)
(L) = PL(APL+PL⊥ )−1

and generalized Bott-Duffin inverse A(†)
(L) = PL(APL+PL⊥ )† under the condition A is L−zero (i.e., AL∩L⊥ = {0}).

By this iterative method, when taken the initial matrix X0 = PLA∗PL, the Bott-duffin inverse A(−1)
(L) and

generalized Bott-duffin inverse A(†)
(L) can be obtained within a finite number of iterations in absence of

roundoff errors. Finally a given numerical example illustrates that the iterative algorithm dose converge.

1. Introduction

The Bott-Duffin (B-D) inverse was first introduced by Bott and Duffin in their famous paper [2]. Many
properties and applications of the B-D inverse have been developed in [1, 11]. Later, Chen in his paper [5]
defined the generalized B-D inverse of a square matrix and gave some properties and applications. Wang
and Wei in [10] and Wei and Xu in [12] discussed the perturbation theory for the B-D inverse and showed
the B-D condition number KBD(A) =∥ A ∥ · ∥ A(−1)

(L) ∥ to be minimum in the inequality of error analysis
and the perturbation bound of the solution of the constrained system. Recently, in [6], Liu et al. use the
projection methods, which is an applications of the generalization of the Bott-Duffin inverse, for solving
sparse linear systems. Chen et al. in [3, 4], Xue and Chen in [13], and Zhang et al. in [14], established the
perturbation theory of the generalized B-D inverse A†(L) under L− zero matrices, presented the expression
of A†(L) and point the A†(L) under L− zero matrices popularize that in [5].

The authors also did some works on the computation of generalized inverses. In [8], the authors gave a
full-rank representation and the minor of the generalized inverse A(2)

T,S. In [9], they obtain a representation of

A(2)
T,S based on Gaussian elimination. Until now, we could not see using finite iterative algorithm to compute

the B-D inverse and generalized B-D inverse. In this paper, we will first introduce a non-standard inner
product and then develop a finite iterative formulae for the the Bott-duffin inverse A(−1)

(L) and generalized
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Bott-duffin inverse A(†)
(L). In the end of the paper, a numerical example demonstrate that the iterative method

is quite efficient.

2. Notations and preliminaries

Throughout the paper, let Cn×n (resp. Cm×n) denote the set of all n × n (resp. m × n) matrices over C.
L is a subspace of Cn and PL is the orthogonal projector onto L. For any A ∈ Cn×n, we write R(A) for its
range, N(A) for its nullspace. A∗ and r(A) stand for the conjugate transpose and the rank of A, respectively.
Recall that the Bott-Duffin inverse of A ∈ Cn×n is the matrix by A(−1)

(L) = PL(APL + PL⊥)−1 = (PLAPL)† when

APL + PL⊥ is nonsingular. The generalized Bott-Duffin inverse of A is A(†)
(L) = PL(APL + PL⊥)†. When A is

L-zero A(†)
(L) = (PLAPL)†.

Let L be a subspace of Cn, The restricted conjugate transpose on L of a complex matrix A is defined as
A∗L = PLA∗PL. In the same way, in the space Cn×n, a restricted inner product on the subspace L is defined as
< A,B >L=< PLAPL,B >= tr(PLA∗PLB) for all A,B ∈ Cn×n, which is called non-standard inner product. Then
the restricted norm on L of a matrix A generated by this inner product is the Frobenius norm of the matrix
PLAPL denoted by ∥ A ∥L.

For a complex matrix A ∈ Cm×n, the Moore-Penrose inverse A† is defined to be unique solution of the
following four Penrose equations

(1) AXA = A, (2) XAX = X, (3) (AX)∗ = AX, (4) (XA)∗ = XA.

A matrix X is called {i, j, . . . , k} inverse of A if it satisfies (i), ( j), . . . , (k) from among the equations (1) − (4).
The {2} inverse of a matrix A ∈ Cm×n with range T and nullspace S is defined as following:
Let A ∈ Cm×n be of rank r, T be a subspace of Cn of dimension s ≤ r and S be a subspace of Cm of

dimension m − s. If X satisfies XAX = X, R(X) = T and N(X) = S, then X is called the generalized inverse
A(2)

T,S of A. When s = r, A(2)
T,S = A(1,2)

T,S .
In this paper the following Lemmas are needed in what follows:

Lemma 2.1. ([1]) Let A ∈ Cm×n be of rank r, any two of the following three statements imply the third:

X ∈ A{1}
X ∈ A{2}

rankA = rankX.

Lemma 2.2. ([1]) Let A ∈ Cn×n, L be a subspace of Cn. If APL + PL⊥ is nonsingular, then
(1) A(−1)

(L) = (APL)(1,2)
L,L⊥ = (PLA)(1,2)

L,L⊥ = (PLAPL)(1,2)
L,L⊥ ,

(2) (A(−1)
(L) )(−1)

(L) = PLAPL.

Lemma 2.3. ([4]) Let L be a subspace of Cn with dimL = k ≤ r(A) and let the columns of n × k matrix U form an
orthogonal basis for L. The following statements are equivalent:

(1) AL ∩ L⊥ = {0}, i.e., A is L-zero;
(2) N(A) ∩ L = N(AL), i.e., N(PLAPL) = N(APL);
(3) A(†)

(L) = (PLAPL)† = (PLAPL)(1,2)
R(PLA∗PL),N(PLA∗PL);

(4) r(AU) = r(U∗AU).

Lemma 2.4. ([1]) Let L and M be complementary subspaces of Cn, the projector PL,M has the following properies
(1) PL,MA = A if and only if R(A) ⊂ L ,
(2) APL,M = A if and only if N(A) ⊃M.

Throughout the paper, we assume that APL + PL⊥ is nonsingular or AL ∩ L⊥ = {0} (i.e., A is L-zero).
About the restricted inner product on subspace L, we have the following property.
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Lemma 2.5. Let L be the subspace of Cn, A,B ∈ Cn×n, then we have:

< A,B >L=< A,PLBPL >=< PLAPL,BPL >= < B,A >L =< B∗,PLA∗PL > .

According to the definition and the properties of inner product, the above equalities are right.

3. Iterative method for computing A(†)
(L)

and A(−1)
(L)

In this section we first introduce an iterative method to obtain a solution of the matrix equation
PLAXAPL = PLAPL, where A ∈ Cn×n. We then show that if APL + PL⊥ is nonsingular or APL + PL⊥ is
singular but A is L-zero, then for any initial matrix X0 with R(X0) ⊂ PLA∗, the matrix sequence {Xk} gene-
rated by the iterative method converges to its a solution within at most n2 iteration steps in absence of the
roundoff errors. We also show that if let the initial matrix X0 = PLA∗PL, then the solution X∗ obtained by
the iterative method is the generalized Bott-Duffin inverse A(†)

(L).
First we present the iteration method for solving the matrix equation PLAXAPL = PLAPL, the iteration

method as follows:

Algorithm 3.1:
1. Input matrices A ∈ Cn×n, PL ∈ Cn×n and X0 ∈ Cn×n with R(X0) ⊂ R(PLA∗);
2. Calculate

R0 = A − AX0A; P0 = A(R0)∗LA; k := 0.

3. If PLRk = 0, then stop; otherwise, k := k + 1;
4. Calculate

Xk = Xk−1 +
∥ Rk−1 ∥2L
∥ Pk−1 ∥2L

(Pk−1)∗L;

Rk = A − AXkA = Rk−1 −
∥ Rk−1 ∥2L
∥ Pk−1 ∥2L

A(Pk−1)∗LA;

Pk = A(Rk)∗LA +
∥ Rk ∥2L
∥ Rk−1 ∥2L

Pk−1;

5. Goto step 3.

About Algorithm 3.1, we have the following basic properties.

Theorem 3.2. In Algorithm 3.1, if we take the initial matrix X0 = A∗L, then the sequences {Xk} and {Pk} generalized
by it such that

(1) R(Xk) ⊂ R(PLA∗PL), N(Xk) ⊃ N(PLA∗PL) and R(Pk) ⊂ R(APL), N(Pk) ⊃ N(PLA);
(2) if PLRkPL = 0, APL + PL⊥ is singular and A is L-zero, then Xk = A(†)

(L);

(3) if PLRkPL = 0 and APL + PL⊥ is nonsingular, then Xk = A(−1)
(L) .

Proof. (1) To prove the conclusion, we use the induction.
When s = 0, we have X0 = A∗L = PLA∗PL and P0 = A(R0)∗LA = APLR∗0PLA. This implies the conclusion is

right.
When s = 1, we have

X1 = X0+
∥ R0 ∥2L
∥ P0 ∥2L

PLA∗PLR0PLA∗PL = PLA∗PL

(
PL +

∥ R0 ∥2L
∥ P0 ∥2L

PLR0PLA∗PL

)
=

(
PL +

∥ R0 ∥2L
∥ P0 ∥2L

PLA∗PLR0PL

)
PLA∗PL
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and

P1 = APLR∗1PLA +
∥ R1 ∥2L
∥ R0 ∥2L

P0 = APL

(
PLR∗1PLA +

∥ R1 ∥2L
∥ R0 ∥2L

PLR∗0PLA
)
=

(
APLR∗1PL +

∥ R1 ∥2L
∥ R0 ∥2L

APLR∗0PL

)
PLA.

Assume that conclusion holds for all s (0 < s < k). Then there exist matrices U, V, W, and Y such that
Xs = PLA∗PLU = VPLA∗PL and Ps = APLW = YPLA.

Further, we have that

Xs+1 = Xs +
∥ Rs ∥2L
∥ Ps ∥2L

PLP∗sPL = PLA∗PL

(
U +

∥ Rs ∥2L
∥ Ps ∥2L

Y∗PL

)
=

(
V +
∥ Rs ∥2L
∥ Ps ∥2L

PLW∗
)

PLA∗PL

and

Ps+1 = APLR∗s+1PLA +
∥ Rs+1 ∥2L
∥ Rs ∥2L

Ps = APL

(
PLR∗s+1PLA +

∥ Rs+1 ∥2L
∥ Rs ∥2L

W
)
=

(
APLR∗s+1PL +

∥ Rs+1 ∥2L
∥ Rs ∥2L

Y
)

PLA.

This implies that R(Xs+1) ⊂ R(PLA∗PL) and N(Xs+1) ⊃ N(PLA∗PL), and R(Ps+1) ⊂ R(APL) and N(Ps+1) ⊃
N(PLA).

By the principle of induction, the conclusion holds for all k = 0, 1, · · ·
(2) According to Algorithm 3.1 and the results in (1) , we know that, if PLRkPL = 0, then we have Xk ∈

(PLAPL){1}. This implies r(Xk) ≥ r(PLAPL), then by the conclusion of (1), we can easy get r(Xk) = r(PLAPL).
From Lemma 2.1 we know Xk ∈ (PLAPL){1, 2}with range R(PLA∗PL) and null space N(PLA∗PL). If APL + PL⊥

is singular and A is L-zero, by Lemma 2.3 we know Xk = A(†)
(L).

(3) If APL + PL⊥ is nonsingular, then r(PLAPL) = r(APL) = dimL. It is not difficult to deduce R(PLA) =
R(PL) = L and N(A∗PL) = L⊥. This means Xk ∈ (PLAPL){1, 2}with range L and null space L⊥. By Lemma 2.2,
Xk = A(−1)

(L) . �

Theorem 3.3. Let X̃ be an solution of matrix equation PLAXAPL = PLAPL with R(X̃) ⊂ L and N(X̃) ⊂ L⊥, then for
any initial matrix X0 with R(X0) ⊂ L and N(X0) ⊂ L⊥, the sequences {Xi}, {Ri} and {Pi} generalized by Algorithm
3.1 satisfy < Pi,PL(X̃ − Xi)∗PL >L=∥ Ri ∥2L, (i = 0, 1, 2, · · · ).

Proof. First by Lemma 2.4 and the properties of X̃, we have PLX̃PL = X̃.
Next we prove the conclusion by induction. By Algorithm 3.1 and Lemma 2.4, when i = 0, we have

< P0,PL(X̃ − X0)∗PL >L = < PLP0PL,PL(X̃ − X0)∗PL >

= < P0,PL(X̃ − X0)∗PL >

= < APLR∗0PLA, (X̃ − X0)∗ >

= < PLR∗0PL,A∗(X̃ − X0)∗A∗ >

= < R∗0,PLA∗(X̃ − X0)∗A∗PL >

= < R∗0,PLR∗0PL >=∥ R0 ∥2L .

And when i = 1, we have

< P1,PL(X̃ − X1)∗PL >L = < PLP1PL,PL(X̃ − X1)∗PL >

= < P1,PL(X̃ − X1)∗PL >

= < P1, (X̃ − X1)∗ >
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=

⟨
APLR∗1PLA +

∥ R1 ∥2L
∥ R0 ∥2L

P0, (X̃ − X1)∗
⟩

= < APLR∗1PLA, (X̃ − X1)∗ > +
∥ R1 ∥2L
∥ R0 ∥2L

< P0, (X̃ − X1)∗ >

= < PLR∗1PL,R∗1 > +
∥ R1 ∥2L
∥ R0 ∥2L

< P0, (X̃ − X0)∗ > −
∥ R1 ∥2L
∥ P0 ∥2L

< P0, (PLP∗0PL)∗ >

= ∥ R1 ∥2L .

Assume that the conclusion holds for i = s(s > 0), that < Ps,PL(X̃ − Xs)∗PL >L=∥ Rs ∥2L, then i = s + 1, we
have

< Ps+1,PL(X̃ − Xs+1)∗PL >L = < PLPs+1PL,PL(X̃ − Xs+1)∗PL >

= < Ps+1,PL(X̃ − Xs+1)∗PL >

= < Ps+1, (X̃ − Xs+1)∗ >

=

⟨
APLR∗s+1PLA +

∥ Rs+1 ∥2L
∥ Rs ∥2L

Ps, (X̃ − Xs+1)∗
⟩

= < APLR∗s+1PLA, (X̃ − Xs+1)∗ > +
∥ Rs+1 ∥2L
∥ Rs ∥2L

< Ps, (X̃ − Xs+1)∗ >

= < PLR∗s+1PL,R∗s+1 > +
∥ Rs+1 ∥2L
∥ Rs ∥2L

< Ps, (X̃ − Xs)∗ > −
∥ Rs+1 ∥2L
∥ Ps ∥2L

< Ps,PLPsPL >

= ∥ Rs+1 ∥2L .

By the principle of induction, the conclusion < Pi,PL(X̃ − Xi)∗PL >L=∥ Ri ∥2L holds for all i = 0, 1, 2, · · · �
Remark 1. From Theorem 2.3 we know that if PLRiPL , 0, then PLPiPL , 0. This result shows that if
PLRiPL , 0, then Algorithm 3.1 can not be terminated.

Theorem 3.4. For the sequences {Ri} and {Pi} generated by Algorithm 3.1 with the X0 = PLA∗PL, if there exists a
positive number k such that Ri , 0 for all i = 0, 1, 2, · · · k, then we have

< Ri,R j >L= 0, < Pi,P j >L= 0, (i , j, i, j = 0, 1, · · · , k).

Proof. According to Lemma 2.5, we know that < A,B >L= < B,A >L holds for all matrices A and B in Cn×n,
so we only need prove the conclusion hold for all 0 ≤ i < j ≤ k. Using induction and two steps are required.

Step1. Show that < Ri,Ri+1 >L= 0 and < Pi,Pi+1 >L= 0 for all i = 0, 1, 2, · · · , k. To prove this conclusion,
we also use induction. According to Lemma 2.5 and Algorithm 3.1, when i = 0, we have

< R0,R1 >L=< PLR0PL,R1 > =

⟨
PLR0PL,R0 −

∥ R0 ∥2L
∥ P0 ∥2L

APLP∗0PLA
⟩

= < PLR0PL,R0 > −
∥ R0 ∥2L
∥ P0 ∥2L

< PLR0PL,APLP∗0PLA >

= ∥ R0 ∥2L −
∥ R0 ∥2L
∥ P0 ∥2L

< A∗PLR0PLA∗,PLP∗0PL >

= ∥ R0 ∥2L −
∥ R0 ∥2L
∥ P0 ∥2L

< P∗0,PLP∗0PL >

= ∥ R0 ∥2L −
∥ R0 ∥2L
∥ P0 ∥2L

∥ P0 ∥2L= 0
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and

< P0,P1 >L=< PLP0PL,P1 > =

⟨
PLP0PL,APLR∗1PLA +

∥ R1 ∥2L
∥ R0 ∥2L

P0

⟩
= < PLP0PL,APLR∗1PLA > +

∥ R1 ∥2L
∥ R0 ∥2L

< PLP0PL,P0 >

= < A∗PLP0PLA∗,PLR∗1PL > +
∥ R1 ∥2L
∥ R0 ∥2L

∥ P0 ∥2L

=
∥ P0 ∥2L
∥ R0 ∥2L

< (R0 − R1)∗,PLR∗1PL > +
∥ R1 ∥2L
∥ R0 ∥2L

∥ P0 ∥2L= 0.

Assume that conclusion holds for all i ≤ s(0 < s < k). Then

< Rs,Rs+1 >L = < PLRsPL,Rs+1 >

=

⟨
PLRsPL,Rs −

∥ Rs ∥2L
∥ Ps ∥2L

APLP∗sPLA
⟩

= < PLRsPL,Rs > −
∥ Rs ∥2L
∥ Ps ∥2L

< PLRsPL,APLP∗sPLA >

= ∥ Rs ∥2L −
∥ Rs ∥2L
∥ Ps ∥2L

< A∗PLRsPLA∗,PLP∗sPL >

= ∥ Rs ∥2L −
∥ Rs ∥2L
∥ Ps ∥2L

⟨
(Ps −

∥ Rs ∥2L
∥ Rs−1 ∥2L

Ps−1)∗,PLP∗sPL

⟩
= ∥ Rs ∥2L −

∥ Rs ∥2L
∥ Ps ∥2L

∥ Ps ∥2L= 0

and

< Ps,Ps+1 >L=< PLPsPL,Ps+1 > =

⟨
PLPsPL,APLR∗s+1PLA +

∥ Rs+1 ∥2L
∥ Rs ∥2L

Ps

⟩
= < A∗PLPsPLA∗,PLR∗s+1PL > +

∥ Rs+1 ∥2L
∥ Rs ∥2L

< PLPsPL,Ps >

=
∥ Ps ∥2L
∥ Rs ∥2L

< (Rs − Rs+1)∗,PL(R∗s+1PL > +
∥ Rs+1 ∥2L
∥ Rs ∥2L

∥ Ps ∥2L

= −
∥ Ps ∥2L
∥ Rs ∥2L

∥ Rs+1 ∥2L +
∥ Rs+1 ∥2L
∥ Rs ∥2L

∥ Ps ∥2L= 0.

By the principle of induction, < Ri,Ri+1 >L= 0, and < Pi,Pi+1 >L= 0, hold for all i = 0, 1, · · · , k.
Step2. Assume that < Ri,Ri+l >L= 0, and < Pi,Pi+l >L= 0, hold for all 0 ≤ i ≤ k and 1 < l < k, show that

< Ri,Ri+l+1 >L= 0, and < Pi,Pi+l+1 >L= 0.

< Ri,Ri+l+1 >L=< PLRiPL,Ri+l+1 > =

⟨
PLRiPL,Ri+l −

∥ Ri+l ∥2L
∥ Pi+l ∥2L

APLP∗i+lPLA
⟩

= −
∥ Ri+l ∥2L
∥ Pi+l ∥2L

< PLRiPL,APLP∗i+lPLA >

= −
∥ Ri+l ∥2L
∥ Pi+l ∥2L

< A∗PLRiPLA∗,PLP∗i+lPL > .
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If i = 0, we have A∗PLR0PLA∗ = P∗0. Then the above equation becomes

−
∥ Ri+l ∥2L
∥ Pi+l ∥2L

< A∗PLRiPLA∗,PLP∗i+lPL >= −
∥ Rl ∥2L
∥ Pl ∥2L

< P0∗,PLP∗l PL >= 0.

If i ≥ 1, we have

−
∥ Ri+l ∥2L
∥ Pi+l ∥2L

< A∗PLRiPLA∗,PLP∗i+lPL >= −
∥ Ri+l ∥2L
∥ Pi+l ∥2L

⟨
Pi −

∥ Ri ∥2L
∥ Ri−1 ∥2L

Pi−1,PLPi+lPL

⟩
= 0

and

< Pi,Pi+l+1 >L=< PLPiPL,Pi+l+1 > =

⟨
PLPiPL,APLR∗i+l+1PLA +

∥ Ri+l+1 ∥2L
∥ Ri+l ∥2L

Pi+l

⟩
= < PLPiPL,APLR∗i+l+1PLA > +

∥ Ri+l+1 ∥2L
∥ Ri+l ∥2L

< PLPiPL,Pi+l >

= < A∗PLPiPLA∗,PLR∗i+l+1PL >

=
∥ Pi ∥2L
∥ Ri ∥2L

< (Ri+1 − Ri)∗,PLR∗i+l+1PL >= 0.

From step 1 and step 2, we have by principle induction that < Ri,R j >L= 0, and < Pi,P j >L= 0, hold for
all i, j = 0, 1, · · · , k, i , j. �

Remark 2. Theorem 3.4 implies that, for an initial matrix X0 = PLA∗PL, since the R0,R1, · · · are orthogonal
each other, based on restricted inner product on subspace L, in the finite dimension matrix space Cn×n, it
is certain there exists a positive number k ≤ n2 such that ∥ Rk ∥L= 0. Then by Theorem 2.2, the Bott-duffin
inverse A(−1)

(L) and generalized Bott-duffin inverse A(†)
(L) can be obtained within at most n2 iteration steps.

4. Numerical examples

In this section, we will give some numerical examples to illustrate our results. All the tests are
performed by MATLAB6.1 and the initial iterative matrices are chosen as X0 = PLA∗PL. Because of the
influence of the error of roundoff, we regard the matrix PLAPL as zero matrix if ∥ A ∥L< 10−10.

Example 3.1. Given matrices A and L as follows.

A =

 1 1 1
0 0 0
0 0 0

 , L = span


 1

0
1

 ,
 2

1
−2




If we set

U =


1√
2

2
3

0 − 1
3

1√
2
− 2

3

 ,
then r(AU) = r(U∗AU) = 1 so that A is L-zero by Lemma 2.3. By computing

PL = UU∗ =


17
18

2
9

1
18

2
9

1
9 − 2

9
1

18 − 2
9

17
18

 , PLA∗PL =
1
81


187
2 22 11

2
2 1 −2
7
2 −14 119

2

 .
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Using Algorithm 3.1 and iterate 3 steps, we have X3 as follow:

X3 =

 0.57894736842105 0.13622291021672 0.03405572755418
0.05263157894737 0.01238390092879 0.00309597523220
0.36842105263158 0.08668730650155 0.02167182662539


with

∥ R3 ∥2L=∥ A − AX3A ∥2L= 9.830326866758750 × 10−32

On other hand, by computing, we obtain that

A(†)
(L) =


11
19

44
323

11
323

1
19

4
323

1
323

7
19

28
323

7
322


Then from the above data, we can find that the iterative sequence{Xk} converges to A(†)

(L).
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