Cyclic contractions and fixed point theorems

Erdal Karapinar ${ }^{\text {a }}$, Inci M. Erhan ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematics, Atilim University 06836, Incek, Ankara, Turkey

Abstract

In this manuscript, the existence and uniqueness of fixed points of a class of cyclic operators defined on a closed subset of a Banach space is discussed. Fixed point theorems for some contractions from this class are introduced and illustrative examples are given.

1. Introduction and preliminaries

The theory of existence and uniqueness of fixed points has been developing since the work of Banach [2] in 1922 and numerous results have been obtained so far (see e.g. [9]-[6]). Recently, the study of best proximity points of cyclic type contractions has been a subject of considerable interest [11]-[17]. Various types of cyclic contractions acting on complete metric spaces have been defined and studied thoroughly from this point of view [1]-[20].

In 1986 , Nova [15] defined a class $D(a, b)$ of operators acting on a subset of a Banach space and proved the existence and uniqueness of fixed points even if the operator is discontinuous.

Definition 1.1. (See [15]) Let K be a subset of a Banach space X. An operator T defined on K is said to belong to class $D(a, b)$ if

$$
\begin{equation*}
\|T x-T y\| \leq a\|x-y\|+b[\|x-T x\|+\|y-T y\|] \tag{1}
\end{equation*}
$$

for all x and y in K, where $0 \leq a, b \leq 1$.
If an operator T is in class $D(k, 0)$ with $0<k<1$, then T is a contraction. with $0<k<1$.

2. Main results

In this section we define a class of cyclic operators and investigate the existence and uniqueness of fixed points of these operators. We also give examples of discontinuous cyclic operators with unique fixed points.

Define a class $D(a, b)$ of cyclic operators on a union of closed subsets of a Banach space as follows.

[^0]Definition 2.1. Let K_{1} and K_{2} be closed subsets of a Banach space X. An operator $T: K_{1} \cup K_{2} \rightarrow K_{1} \cup K_{2}$ with $T\left(K_{1}\right) \subset K_{2}$ and $T\left(K_{2}\right) \subset K_{1}$ is said to belong to class $D(a, b)$ if it satisfies

$$
\begin{equation*}
\|T x-T y\| \leq a\|x-y\|+b[\|x-T x\|+\|y-T y\|] \tag{2}
\end{equation*}
$$

for all $x \in K_{1}$ and $y \in K_{2}$, where $0 \leq a, b \leq 1$.
It is clear that if T belongs to the class $D(k, 0)$ with $0<k<1$, then T is a cyclic contraction [13].
Example 2.2. Let $K_{1}=\left[0, \frac{1}{2}\right]$ and $K_{2}=\left[\frac{1}{3}, 1\right]$. Define the operator T as follows:

$$
T x=\left\{\begin{array}{lll}
\frac{2}{5} & \text { if } & 0 \leq x \leq \frac{1}{2} \\
\frac{2}{3}(1-x) & \text { if } & \frac{1}{2}<x \leq 1
\end{array}\right.
$$

We will show that T is in the class $D\left(\frac{1}{4}, \frac{1}{4}\right)$. Take $x \in\left[0, \frac{1}{2}\right]$ and $y \in\left[\frac{1}{3}, \frac{1}{2}\right]$. Then

$$
\|T x-T y\|=\left|\frac{2}{5}-\frac{2}{5}\right|=0
$$

Now let $x \in\left[0, \frac{1}{2}\right]$ and $y \in\left[\frac{1}{2}, 1\right]$. Then

$$
\begin{aligned}
\|T x-T y\| & =\left|\frac{2}{5}-\frac{2}{3}+\frac{2}{3} y\right|=\left|\frac{2}{3} y-\frac{4}{15}\right| \\
& =\left|\frac{1}{4} x-\frac{1}{4} y+\frac{1}{4} x-\frac{1}{10}+\frac{5}{12} y-\frac{1}{6}\right| \\
& \leq \frac{1}{4}|x-y|+\frac{1}{4}\left[\left|x-\frac{2}{5}\right|+\left|\frac{5}{3} y-\frac{2}{3}\right|\right] \\
& =\frac{1}{4}|x-y|+\frac{1}{4}[|x-T x|+|y-T y|]
\end{aligned}
$$

Observe that T has a unique fixed point $p=\frac{2}{5}$.
In what follows we investigate the existence of fixed points of operators in class $D(a, b)$. The first proposition gives uniqueness conditions of the fixed point of an operator provided that the fixed point exists.

Proposition 2.3. Let K_{1} and K_{2} be closed subsets of a Banach space X. Suppose that the operator $T: K_{1} \cup K_{2} \rightarrow K_{1} \cup K_{2}$ with $T\left(K_{1}\right) \subset K_{2}$ and $T\left(K_{2}\right) \subset K_{1}$ satisfies (2) with $0 \leq a<1,0 \leq b \leq 1$. If

$$
F(T)=\left\{x \in K_{1} \cup K_{2}: T x=x\right\} \neq \emptyset,
$$

then $F(T)$ consists of a single point.
Proof. Assume the contrary, that is, let $z, w \in K_{1} \cup K_{2}$ be two distinct fixed points of T. Then

$$
\|z-w\|=\|T z-T w\| \leq a\|z-w\|+b[\|z-T z\|+\|w-T w\|]=a\|z-w\|
$$

which is possible only if $z=w$, since $a<1$.
Remark 2.4. In the previous proposition, $F(T) \subset K_{1} \cap K_{2}$. Indeed, the case $F(T)=\emptyset$ is trivial. Suppose $F(T) \neq \emptyset$. Take $z \in F(T)$ and without loss of generality take $z \in K_{1}$. Since $T z \in K_{2}$ and $z=T z$ hence $z \in K_{2}$.

Next we discuss the problem of existence of fixed points.
Proposition 2.5. Let K_{1} and K_{2} be closed subsets of a Banach space X. Suppose that the operator $T: K_{1} \cup K_{2} \rightarrow K_{1} \cup K_{2}$ with $T\left(K_{1}\right) \subset K_{2}$ and $T\left(K_{2}\right) \subset K_{1}$ satisfies (2) with $0 \leq a+2 b<1$. Then $\inf _{x \in K_{1} \cup K_{2}}\|x-T x\|=0$.

Proof. Take an arbitrary point $x_{0} \in K_{1}$ and define the sequence of Picard's iterates $x_{n+1}=T x_{n}=T^{n} x_{0}$ for all $n=0,1, \ldots$. Then we have

$$
\begin{aligned}
\left\|x_{n+2}-x_{n+1}\right\| & =\left\|T x_{n+1}-T x_{n}\right\| \\
& \leq a\left\|x_{n+1}-x_{n}\right\|+b\left[\left\|x_{n+1}-T x_{n+1}\right\|+\left\|x_{n}-T x_{n}\right\|\right] \\
& =(a+b)\left\|x_{n+1}-x_{n}\right\|+b\left\|x_{n+1}-x_{n+2}\right\| .
\end{aligned}
$$

This implies $(1-b)\left\|(I-T) x_{n+1}\right\| \leq(a+b)\left\|(I-T) x_{n}\right\|$, which results in

$$
\left\|(I-T) x_{n+1}\right\| \leq\left(\frac{a+b}{1-b}\right)^{n+1}\left\|(I-T) x_{0}\right\|
$$

Since $a+b<1-b$, then $\frac{a+b}{1-b}<1$ and hence, $\left\|x_{n+1}-T x_{n+1}\right\| \rightarrow 0$ as $n \rightarrow \infty$, that is, $\inf _{x \in K_{1} \cup K_{2}}\|x-T x\|=0$.
We now define asymptotically regular operators, for details see [15].
Definition 2.6. Let X be a Banach space, T be a mapping of X into itself and x be a point in X. The mapping T is called asymptotically regular in x if $\left\|T^{n+1} x-T^{n} x\right\| \rightarrow 0$ as $n \rightarrow \infty$.

The next result gives a condition for a cyclic operator to be asymptotically regular.
Proposition 2.7. Let K_{1} and K_{2} be closed subsets of a Banach space X. Suppose that the operator $T: K_{1} \cup K_{2} \rightarrow K_{1} \cup K_{2}$ with $T\left(K_{1}\right) \subset K_{2}$ and $T\left(K_{2}\right) \subset K_{1}$ satisfies (2) with $0 \leq a+2 b<1$. Then T is asymptotically regular at any point $x \in K_{1} \cup K_{2}$.

Proof. Due to Proposition 2.5 we have

$$
\left\|T^{n} x_{0}-T^{n+1} x_{0}\right\|=\left\|x_{n}-x_{n+1}\right\|=\left\|(I-T) x_{n}\right\| \rightarrow 0
$$

as $n \rightarrow 0$ for an arbitrary $x_{0} \in K_{1} \cup K_{2}$ which completes the proof.
The existence and uniqueness of a fixed point of a cyclic operator of class $D(a, b)$ is discussed in the next theorem which gives the necessary and sufficient conditions for the convergence of a sequence of Picard's iterates to the fixed point of the operator.

Theorem 2.8. Let K_{1} and K_{2} be closed subsets of a Banach space X. Suppose that the operator $T: K_{1} \cup K_{2} \rightarrow K_{1} \cup K_{2}$ with $T\left(K_{1}\right) \subset K_{2}$ and $T\left(K_{2}\right) \subset K_{1}$ satisfies (2) with $0 \leq a, b<1$. Then the sequence $\left\{x_{n}\right\}$ in $K_{1} \cup K_{2}$ satisfies

$$
\lim _{n \rightarrow \infty}\left(x_{n}-T x_{n}\right)=0
$$

if and only if the sequence $\left\{x_{n}\right\}$ converges to the unique fixed point of T.
Proof. We proof the necessity first. Let $x_{0} \in K_{1}$. Define $x_{n}=T x_{n-1}=T^{n} x_{0}$. Then

$$
\left\|T x_{n}-T x_{m}\right\| \leq a\left\|x_{n}-x_{m}\right\|+b\left\{\left\|x_{n}-T x_{n}\right\|+\left\|x_{m}-T x_{m}\right\|\right\} .
$$

By the triangle inequality we have

$$
\left\|T x_{n}-T x_{m}\right\| \leq a\left\{\left\|x_{n}-T x_{n}\right\|+\left\|T x_{n}-T x_{m}\right\|+\left\|x_{m}-T x_{m}\right\|\right\}+b\left\{\left\|x_{n}-T x_{n}\right\|+\left\|x_{m}-T x_{m}\right\|\right\}
$$

which implies

$$
\left\|T x_{n}-T x_{m}\right\| \leq \frac{a+b}{1-a}\left\{\left\|x_{n}-T x_{n}\right\|+\left\|x_{m}-T x_{m}\right\|\right\}
$$

Observe that from the hypothesis, the right hand side of the inequality tends to 0 , as $n \rightarrow \infty$, hence $\left\{T x_{n}\right\}$ is a Cauchy sequence. Since $K_{1} \cup K_{2}$ is complete, then then it converges to a limit, say $z \in K_{1} \cup K_{2}$, that is,

$$
\lim _{n \rightarrow \infty} T x_{n}=z
$$

Note that the subsequence $\left\{x_{2 n}\right\} \in K_{1}$ and the subsequence $\left\{x_{2 n+1}\right\} \in K_{2}$. Thus $z \in K_{1} \cap K_{2} \neq \emptyset$. Then we employ the triangle inequality and the fact that $b<1$ to get

$$
\|z-T z\| \leq \frac{1+a}{1-b}\left\|z-x_{n}\right\|+\frac{1+b}{1-b}\left\|x_{n}-T x_{n}\right\|
$$

It follows from $\lim _{n \rightarrow \infty} x_{n}=z$ and $\lim _{n \rightarrow \infty}\left(T x_{n}-x_{n}\right)=0$ that z is the fixed point of T which is unique by the Proposition 2.3.

To prove the sufficiency part, assume that T has a fixed point $z \in K_{1} \cup K_{2}$ such that $\lim _{n \rightarrow \infty} x_{n}=z$ for the sequence $\left\{x_{n}\right\} \in K_{1} \cup K_{2}$. From the triangle inequality it follows that

$$
\left\|T x_{n}-x_{n}\right\|-\left\|x_{n}-z\right\| \leq\left\|T x_{n}-z\right\| \leq a\left\|x_{n}-z\right\|+b\left\|z-x_{n}-T x_{n}\right\| .
$$

This implies

$$
(1-b)\left\|x_{n}-T x_{n}\right\| \leq(1+a)\left\|x_{n}-z\right\| .
$$

Hence, $T x_{n}-x_{n} \rightarrow 0$ as $n \rightarrow \infty$ which completes the proof.
Corollary 2.9. Let K_{1} and K_{2} be closed subsets of a Banach space X. Suppose that the operators $R: K_{1} \rightarrow K_{2}$ and $S: K_{2} \rightarrow K_{1}$ satisfy

$$
\begin{equation*}
\|R x-S y\| \leq a\|x-y\|+b[\| R x-S x]+\|S y-R y\|, x \in K_{1}, \quad y \in K_{2} \tag{3}
\end{equation*}
$$

with $0 \leq a, b<1$. Then the sequence $\left\{x_{n}\right\}$ in $K_{1} \cup K_{2}$ satisfies

$$
\lim _{n \rightarrow \infty}\left(R x_{n}-S x_{n}\right)=0
$$

if and only if the sequence $\left\{x_{n}\right\}$ converges to the unique common fixed point of S and R.
Proof. Let

$$
T x=\left\{\begin{array}{lll}
R x & \text { if } & x \in K_{1} \\
S x & \text { if } & x \in K_{2}
\end{array}\right.
$$

Notice that T is well defined since (3) implies $R x=S x$ if $x \in K_{1} \cap K_{2}$. Thus, Theorem 2.8 yields the required result for $T: K_{1} \cup K_{2} \rightarrow K_{1} \cup K_{2}$.

One can generalize the definition of cyclic operators and state the following corollary which gives conditions for the uniqueness of fixed points of these generalized cyclic operators.

Corollary 2.10. Let $\left\{K_{i}, i=1, \ldots p\right\}$ be non-empty closed subsets of a Banach space X and let $T: \cup_{i=1}^{p} K_{i} \rightarrow \cup_{i=1}^{p} K_{i}$ satisfies the following conditions:
(1) $T\left(K_{i}\right) \subseteq K_{i+1}$ for $1 \leq i \leq p$ and $K_{p+1}=K_{1}$.
(2) There exists $0 \leq a, b<1$ such that

$$
\|T x-T y\| \leq a\|x-y\|+b\{\|T x-x\|+\|T y-y\|\}
$$

for all $x \in K_{i}, y \in K_{i+1}$ and $1 \leq i \leq p$.
Then T has a unique fixed point.
Proof. It is sufficient to prove that for a given $x \in \cup_{i=1}^{p} K_{i}$, infinitely many terms of the sequence $T^{n} x$ lie in each K_{i}. Thus, $\cap_{i=1}^{p} K_{i} \neq \emptyset$. Then the operator

$$
T: \cap_{i=1}^{p} K_{i} \rightarrow \cap_{i=1}^{p} K_{i}
$$

satisfies the conditions of the Theorem 1 in [15].
We generalize the operator defined in Example 1 in the following way:
Example 2.11. Let $K_{1}=\left[0, \frac{1}{2}\right], K_{2}=\left[\frac{1}{4}, \frac{3}{4}\right]$ and $K_{3}=\left[\frac{1}{6}, 1\right]$. Define the operator T as follows:

$$
T x=\left\{\begin{array}{lll}
\frac{2}{5} & \text { if } & 0 \leq x \leq \frac{1}{2} \\
\frac{2}{3}(1-x) & \text { if } & \frac{1}{2}<x \leq 1
\end{array}\right.
$$

Observe that

$$
T\left(K_{1}\right)=\left\{\frac{2}{5}\right\} \subset K_{2}, T\left(K_{2}\right)=\left[\frac{1}{6}, \frac{2}{5}\right] \subset K_{3}, T\left(K_{3}\right)=\left[0, \frac{2}{5}\right] \subset K_{1}
$$

We have shown in Example 1 that this operator T is in class $D\left(\frac{1}{4}, \frac{1}{4}\right)$ and has a unique fixed point.
If we impose an additional condition on the operator, more precisely on the constants a and b we get the following theorem.

Theorem 2.12. Let K_{1} and K_{2} be closed subsets of a Banach space X. Suppose that the operator T : $K_{1} \cup K_{2} \rightarrow K_{1} \cup K_{2}$ with $T\left(K_{1}\right) \subset K_{2}$ and $T\left(K_{2}\right) \subset K_{1}$ satisfies (2) with $0 \leq a+2 b<1$. Then
(i) T has a unique fixed point p in $K_{1} \cap K_{2}$.
(ii) $\|T x-p\|<\|x-p\|$ for all $x \in K_{1} \cup K_{2}$ where p is the fixed point of T.

Proof. (i) Take a point $x_{0} \in K_{1}$. Define $x_{n+1}=T x_{n}$ for $n=0,1,2, \ldots$. Then we have

$$
\left\|x_{n+1}-T x_{n+1}\right\|=\left\|T x_{n}-T x_{n+1}\right\| \leq a\left\|x_{n}-x_{n+1}\right\|+b\left[\left\|x_{n}-T x_{n}\right\|+\left\|x_{n+1}-T x_{n+1}\right\|\right]
$$

This inequality implies

$$
(1-b)\left\|x_{n+1}-T x_{n+1}\right\| \leq\left(\frac{a+b}{1-a}\right)\left\|x_{n}-T x_{n}\right\| \leq \ldots \leq\left(\frac{a+b}{1-a}\right)^{n}\left\|x_{0}-T x_{0}\right\|
$$

Hence, we obtain $\left\|x_{n}-T x_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$, implying that $\lim _{n \rightarrow \infty} x_{n}=p$, where p is the fixed point of T. Since the subsequence $\left\{x_{2 n}\right\} \in K_{1}$ and the subsequence $\left\{x_{2 n+1}\right\} \in K_{2}$, then $p \in K_{1} \cap K_{2}$. The uniqueness follows from Proposition 2.3.
(ii) Let p be the fixed point of T and $x \in K_{1} \cup K_{2}$. Then using (2) and the triangle inequality, we have

$$
\begin{aligned}
\|T x-p\| & \leq\|T x-T p\|+\|T p-p\| \\
& \leq a\|x-p\|+b[\|x-T x\|+\|p-T p\|] \\
& \leq a\|x-p\|+b[\|x-p\|+\|p-T x\|] .
\end{aligned}
$$

This inequality implies

$$
\|T x-p\| \leq\left(\frac{a+b}{1-b}\right)\|x-p\|<\|x-p\|
$$

as $\frac{a+b}{1-b}<1$, which completes the proof.
In our last theorem we give some properties of the set of fixed points of cyclic operators.
Theorem 2.13. Let K_{1} and K_{2} be closed subsets of a Banach space X. Suppose that the operator $T: K_{1} \cup K_{2} \rightarrow K_{1} \cup K_{2}$ with $T\left(K_{1}\right) \subset K_{2}$ and $T\left(K_{2}\right) \subset K_{1}$ satisfies (2) with $0 \leq a, b<1$. Let $F(T)$ be the set of fixed points of the operator T. If $F(T) \neq \emptyset$, then $F(T) \subset K_{1} \cap K_{2}$. Moreover, if T satisfies

$$
\begin{equation*}
\|T x-p\| \leq\|x-p\| \tag{4}
\end{equation*}
$$

for every $x \in K_{1} \cup K_{2}$ and $p \in F(T)$, then $F(T)$ is closed.
Proof. The first part of the theorem follows from the fact that T is cyclic. In other words, let $F(T)=\{p \in$ $\left.K_{1} \cup K_{2} \mid T p=p\right\} \neq \emptyset$ and assume that $F(T)$ is not a subset of $K_{1} \cap K_{2}$. Without loss of generality suppose that there exists $p \in F(T)$ such that $p \in K_{1} \backslash K_{2}$. Since $T\left(K_{1}\right) \subset K_{2}$, then $T p \in K_{2}$, that is $p \in K_{2}$. However, this contradicts our assumption, thus, $F(T) \subset K_{1} \cap K_{2}$.

Now, let $\left\{p_{n}\right\}$ be a convergent sequence in $F(T)$ which converges to a limit p. Using triangle inequality and (4) we have

$$
\|T p-p\| \leq\left\|T p-p_{n}\right\|+\left\|p_{n}-p\right\| \leq 2\left\|p_{n}-p\right\| .
$$

Since $\lim _{n \rightarrow \infty}\left\|p_{n}-p\right\|=0$, then $T p=p$, that is, $p \in F(T)$. Hence, $F(T)$ is closed.
Remark 2.14. If the set $K_{1} \cup K_{2}$ in theorem 2.13 is convex, then the set $F(T)$ of fixed points of T is also convex. The proof can be easily done imitating the proof of Theorem 3 in [6].

References

[1] M.A. Al-Thafai, N.Shahzad, Convergence and existence for best proximity points, Nonlinear Analysis 70(2009) 3665-3671.
[2] S. Banach, Surles operations dans les ensembles abstraits et leur application aux equations itegrales, Fund. Math. 3 (1922) 133-181.
[3] D.W. Boyd, S.W. Wong, On nonlinear contractions, Proc. Amer. Math. Soc. 20 (1969) 458-464.
[4] L.B. Ćirić, On contraction type mappings Math. Balkanica 1 (1971) 52-57.
[5] L.B. Ćirić, On some maps with a nonunique fixed point, Publ. Inst. Math. 17 (1974) 52-58.
[6] W.R. Derrick, L.G. Nova, Fixed point theorems for discontinuous operators, Glasnik Matematićki 24 (1989) 339-348.
[7] A.A. Eldered, P. Veeramani, Proximal pointwise contraction, Topology and its Applications 156 (2009) 2942-2948.
[8] A.A. Eldered, P. Veeramani, Convergence and existence for best proximity points, J. Math. Anal. Appl. 323 (2006) 1001-1006.
[9] R. Kannan, Some results on fixed points II, Amer. Math. Monthly 76 (1969) 405-408.
[10] R. Kannan, Some results on fixed points III, Fund. Math. 70 (1971) 169-177.
[11] E. Karapinar, Some Nonunique Fixed Point Theorems of Ćirić type on Cone Metric Spaces, Abstract and Applied Analysis, Article ID 123094, 14 pages (2010), DOI:10.1155/2010/123094.
[12] E. Karapinar, Best Proximity Points of Kannan Type Cylic Weak ϕ-contractions in ordered metric spaces, (submitted)
[13] W.A. Kirk, P.S. Srinavasan, P. Veeramani, Fixed Points for mapping satisfying cylical contractive conditions Fixed Point Theory 4 (2003) 79-89.
[14] J.J. Nieto, R.L. Pouso, R.Rodriguez-Lopez, Fixed point theorems in ordered abstract spaces Proc. Amer. Math. Soc. 137 (2007) 2505-2517.
[15] L.G. Nova, Fixed point theorems for some discontinuous operators, Pacific J. Math. 123 (1986) 189-196.
[16] G. Petruşhel, Cyclic representations and periodic points, Studia Univ. Babes-Bolyai Math. 50 (2005) 107-112.
[17] G. Petruşhel, I.A. Rus, Fixed point theorems in ordered L-spaces Proc. Amer. Math. Soc. 134 (2006) 411-418.
[18] B.E. Rhoades, Some theorems on weakly contractive maps. Nonlinear Anal. 47(4) (2001) 2683-2693.
[19] Y. Song, Coincidence points for noncommuting f-weakly contractive mappings, Int. J. Comput. Appl. Math. (IJCAM) 2(1) (2007) 51-57.
[20] Y.Song, S. Xu, A note on common fixed-points for Banach operator pairs, Int. J. Contemp. Math. Sci. 2 (2007) 1163-1166.

[^0]: 2010 Mathematics Subject Classification. Primary 46T99; Secondary 47H10, 54H25
 Keywords. Cyclic contraction, Banach spaces
 Received: dd Month yyyy; Accepted: dd Month yyyy
 Communicated by (name of the Editor, mandatory)
 Email addresses: erdalkarapinar@yahoo.com (Erdal Karapinar), ierhan@atilim.edu.tr (Inci M. Erhan)

