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Well posedness for a class of ultra-parabolic equations with
discontinuous flux

Jela Susica

aUniversity of Montenegro, Cetinjski put bb, 81000 Podgorica, Montenegro

Abstract. We prove existence and uniqueness of a weak solution to an ultra-parabolic equation with
discontinuous convection term. Due to degeneracy in the parabolic term, the equation does not admit the
classical solution. Equations of this type describe processes where transport is negligible in some directions.

1. Introduction

The subject of the paper is the well posedness for the following Cauchy problem

ut + div f (x, u) =
k∑

i, j=1

∂xi

(
ai j∂x j (u)

)
, k ≤ d (1)

u|t=0 = u0 ∈ L2 ∩ L∞(IRd), (2)

for a constants a and b. The matrix (ai j)i, j=1,...,k is a constant matrix such that there exists λ > 0 satisfying

k∑
i, j=1

ai jξiξ j > λ |ξ|2 , ξ ∈ IRk, (3)

and f = ( f1, . . . , fk, 0, . . . , 0) is such that there exists constants Ci, i = 1, . . . , 4:

max
1≤i≤k

∥∂ξ fi(x, ξ)∥∞ < C1;∫
IRd

k∑
i=1

sup
ξ∈IR
| fi(x, ξ)|2dx < C2,

∫
IRd

k∑
i=1

sup
ξ∈IR
|∂ξ fi(x, ξ)|2dx < C3;

∫
IRd

sup
ξ∈IR

∣∣∣∣ fi(x + ∆x, ξ) − fi(x, ξ)
∣∣∣∣2

∆x
dx < C4, ∆x ∈ IRd.
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The latter assumptions clearly include cases of discontinuous flux. For instance, the third assumption is

fulfilled if f ∈ C1
(
Rξ; BV

(
Rd

x

))d
and sup

ξ∈IR
| f (·, ξ)| ∈ BV

(
Rd

x

)
∩ L2(IRd).

If k = d then (1) is parabolic and the corresponding Cauchy problem admits a unique smooth solution
with the initial data satisfied in the sense of strong traces of the solution u on t = 0 (see [8]). If k < d, then (1)
is ultraparabolic. Remark that the condition u0 ∈ L2(IRd) ∩ L∞(IRd) is not substantial (it is enough to assume
u0 ∈ L∞(IRd)) but to avoid certain technical moments we shall assume exactly (2).

Specific situation modeled by (1) is the one when transport can be neglected in the directions xk+1, ...,
xd which is expected in certain physical situations (see Figure 1). In general, ultraparabolic equations were
firstly considered by Graetz [4], and Nusselt [9] in their investigations concerning the heat transfer. Besides
the heat transfer, equations of type (1) describe processes in porous media (cf. [12]) such as oil extraction or
CO2 sequestration which typically occur in highly heterogeneous surroundings (again Figure 1). One can
also find applications in sedimentation processes, traffic flow, radar shape-from-shading problems, blood
flow, gas flow in a variable duct and so on.

Figure 1: CO2-plume expansion in a highly stratified surrounding. Transport in the vertical direction can be obviously neglected.
Diffusion term in the equations modeling the transport is usually linear (e.g. [11]).

Concerning the technical moments, if the flux is regular enough, then Cauchy problem (1), (2) can
be solved using either the kinetic approach [2] or the Kruzhkov [7] method of doubling of variables [3].
Precompactness properties of families of solutions to equations of type (1) are considered in [10, 13] using
techniques of Tartar’s H-measures [14] (see also [6] for a more general situation).

Usual situation for Cauchy problem (1), (2) is that it does not admit the classical solution, but it admits
several weak solutions. Physically relevant weak solution is then singled out by using entropy inequalities
[2, 3, 7]. In the case of (1), (2), we are not able to prove existence of the classical solution, but we do not
need the entropy type inequalities to prove uniqueness of the weak solution defined as follows.

Definition 1.1. We say that a function u ∈ L∞(IR+ × IRd) to (1) is a weak solution to (1), (2) if

• ∂x j u ∈ L2(IR+ × IRd), j = 1, . . . , k;

• for every T > 0 and every φ ∈ C2
c ([0,T) × IRd)∫

[0,T)×IRd

(
u∂tφ + ⟨ f (x,u),∇φ⟩) dxdt −

∫
IRd

u0φdx =
∫

[0,T)×IR

k∑
i, j

ai j∂x j u∂xiφdxdt.
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The main theorem of the paper is:

Theorem 1.2. There exists a unique weak solution to (1), (2).
Moreover, if u and v are two weak solutions to (1) with initial conditions u0 and v0, respectively, then it holds∫ T

0

∫
∥x∥<R

|u(t, x) − v(t, x)|dxdt ≤ C(R,T)
∫

IRd
|u0(x) − v0(x)|dx,

for a constant C(T,R) depending on T and R.

The next section will be dedicated to the proof of the theorem. Existence proof will be given via the
method of shifting of variables, while the uniqueness will be provided by deriving the corresponding Kato
inequality.

2. Proof of Theorem 1.2

In order to prove existence, we shall use the vanishing viscosity and flux regularization of (1), (2), and
prove that the family of solutions to the regularized problems is strongly L1

loc precompact. More precisely,
we shall prove that the family admits the L1

loc-limit along a subsequence, and that limit will obviously be
wanted solution to (1), (2).

The uniqueness will follow by a simple adaptation of the existence proof.

2.1. The existence proof

We first regularize functions fi, i = 1, 2, ..., k in x.

fiε (x, λ) = fi (x, λ) ∗ ρε (x) =
∫

fi
(
y, λ

) · ρε (x − y
)

dy,

where

ρε (z) =
1
εd
ρ
(z1

ε

)
· ρ

(z2

ε

)
· ... · ρ

(zd

ε

)
, ρ ≥ 0, ε > 0.

ρ ∈ C∞c (IR), suppρ ⊂ (−1, 1),
∫
ρ (z) dz = 1

Consider now a viscous regularization of the equation(1):

∂tuε + div fε (x,uε) =
k∑

i, j=1

∂xi

(
ai j∂x j uε

)
+ ε

d∑
i=k+1

∂xixi uε (4)

It is well known that, since (4) is strictly parabolic, Cauchy problem (4), (2) admits a unique solution
belonging to Hs(IR+ × IRd) for any s > 0. If uε converges in L1

loc as ε → 0, then it converges to u, where u
is wanted solution of (1), (2). In order to show that uε converges, we will apply the method of shifting of
variables and the Kolmogorov-Riesz compactness criterion (see e.g. [5]).

First, we need the following apriori estimate.

Lemma 2.1. Let u be a weak solution to (1). Then, there exists a constant C5 such that it holds for any T > 0∫
[0,T]×IRd

|∂xr uε|2dxdt ≤ C5, r = 1, . . . .k.
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Proof. By multiplying (4) by uε and integrating over IR+ × IRd, we obtain after elementary partial integration
and using ellipticity condition (3)∫

IRd
u2
ε(T, x)dx −

∫
IRd

u2
0(x)dx + λ

k∑
r=1

∫
[0,T]×IRd

|∂xr uε|2 ≤
∫

[0,T]×IRd

k∑
r=1

| frε(x,uε)∂xr uε|dxdt.

Applying the Young inequality on the right-hand side of the latter expression, we obtain:∫
IRd

u2
ε(T, x)dx +

λ
2

k∑
r=1

∫
[0,T]×IRd

|∂xr uε|2 ≤
1

2λ

∫
[0,T]×IRd

k∑
r=1

| frε(x,uε)|2dxdt +
∫

IRd
u2

0(x)dx.

This concludes the proof.

Consider equation (4) with the variable x shifted by ∆x (i.e. we introduce the change of variables
x 7→ x + ∆x). It holds:

∂tũε + div fε (x + ∆x, ũε) =
k∑

i, j=1

∂xi

(
ai j∂x j ũε

)
+ ε

d∑
i=k+1

∂xixi ũε

ũε|t=0 = u0 (x + ∆x) ,

(5)

where ũε(t, x) = uε(t, x + ∆x), and uε is the solution to

∂tuε + div fε (x,uε) =
k∑

i, j=1

∂xi

(
ai j∂x j uε

)
+ ε

d∑
i=k+1

∂xixi uε,

uε|t=0 = u0 (x) .

(6)

Subtracting the equations (5) and (6), we obtain:

∂t (ũε − uε) + div
(

fε (x + ∆x, ũε) − fε (x,uε)
)
=

k∑
i, j=1

∂xi

[
ai j∂x j (ũε − uε)

]
+ ε

d∑
i=k+1

∂xixi (ũε − uε) .

Multiplying the previous equality by η′ (ũε − uε), we obtain:

∂tη (ũε − uε) + div
(
η′ (ũε − uε)

(
fε (x + ∆x, ũε) − fε (x, uε)

))
(7)

−
k∑

i=1

η′′ (ũε − uε)
(

fiε (x + ∆x, ũε) − fiε (x, uε)
)
∂xi (ũε − uε)

=

k∑
i, j=1

∂xi

(
η′ (ũε − uε) ∂x j

(
ai j (ũε − uε)

))
+ ε

d∑
i=k+1

∂xixi

(
η (ũε − uε)

) − ε d∑
i=k+1

η′′ (ũε − uε)
(
∂xi (ũε − uε)

)2

−
k∑

i, j=1

η′′ (ũε − uε) ai j∂x j (ũε − uε) ∂xi (ũε − uε)

Observe that uε (x1, . . . , xi−1,±∞, xi+1, . . . , xd) = 0 for almost every
(x1, . . . , xi−1, xi+1, . . . , xd) ∈ IRd−1 because of uε is a solution of strongly parabolic equation with the initial
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condition that vanish at infinity. Similarly, there holds ũε (x1, . . . , xi−1,±∞, xi+1, . . . , xd) = 0. This yields:

∫
IRd

div
(
η′ (ũε − uε)

(
fε (x + ∆x, ũε) − fε (x,uε)

))
dx = 0

∫
IRd

∂xixi

(
η (ũε − uε)

)
dx = 0

∫
IRd

d∑
i, j=1

∂xi

(
η′ (ũε − uε) · ∂xi

(
ai j (ũε) ∂x j ũε − ai j (uε) ∂xi uε

))
dx = 0

(8)

Assume now that η ≥ 0 and η′′ ≥ 0. By (8) and from the elipticity condition (3), it follows by integrating
equality (7) over the set [0, t] × IRd:

T∫
0

∫
IRd

∂tη (ũε − uε) (9)

+

T∫
0

∫
IRd

d∑
i=1

η′′ (ũε − uε)
(

fiε (x + ∆x,u) − fiε (x,u)
)
∂xi (ũε − uε) dx dt

=

∫
IRd

[
η (ũε(T, x) − uε(T, x)) − η (ũε (0, x + ∆x) − uε (0, x))

]
dx

−
T∫

0

∫
IRd

d∑
i=1

η′′ (ũε − uε)
(

fiε (x + ∆x, ũε) − fiε (x,uε)
)
∂xi (ũε − uε) dx dt

≤ 0.

Now, we can specify the entropy η. Let η (ũε − uε) = |ũε − uε|δ, where |z|δ is a C2-function such that

|z|′δ =
1, z > δ
−1, z < −δ , 0 ≤ |z|′′δ <

1
δ
.

Then (9) becomes:∫
IRd

[|uε(T, x + ∆x) − uε(T, x)|δ − |u0 (x + ∆x) − u0 (x)|δ
]

dx (10)

≤
T∫

0

∫
IRd

k∑
i=1

|ũε − uε|′′δ
(

fiε (x + ∆x, ũε) − fiε (x + ∆x,uε)
)
∂xi (ũε − uε) dxdt

+

T∫
0

∫
IRd

k∑
i=1

|ũε − uε|′′δ
(

fiε (x + ∆x,uε) − fiε (x, uε)
)
∂xi (ũε − uε) dxdt.

Denote the first summand on the right hand side by (a) and the second by (b). Furthermore, denote by
Gr(x) = sup

ξ∈IR
sup
ε∈(0,1)

| f ′rε,ξ(x, ξ)|, r = 1, . . . , k. It holds according to Lemma 2.1 and definition of | · |δ:

(a)

T∫
0

∫
IRd

k∑
i=1

|ũε − uε|′′δ
(

fiε (x + ∆x, ũε) − fiε (x + ∆x,uε)
)
∂xi (ũε − uε)dxdt
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=

k∑
i=1

T∫
0

∫
IRd

|ũε − uε|′′δ f ′iε,ξ (x + ∆x, ξ(t, x)) (ũε − uε) ∂xi (ũε − uε) dxdt

≤
k∑

i=1

T∫
0

∫
IRd

|ũε − uε|′′δ (ũε − uε) · Gi(x) · ∂xi (ũε − uε) dxdt

≤
k∑

i=1


T∫

0

∫
IRd

(
|ũε − uε|′′δ (ũε − uε)

)2

G2
i (x)dxdt


1/2

·


T∫

0

∫
IRd

(
∂xi (ũε − uε)

)2 dxdt


1/2

= o(1), δ→ 0,

according to the Lebesgue dominated convergence theorem since |ũε − uε|′′δ (ũε − uε)→ 0 pointwisely (keep
in mind that Gi ∈ L2(IRd), i = 1, . . . , k). Similarly as in (a), and since f = f (x, λ) is of bounded variation with
respect to x ∈ IRd (see conditions on f ), we conclude

(b)

T∫
0

∫
IRd

k∑
i=1

|ũε − uε|′′δ
(

fiε (x + ∆x,uε) − fiε (x,uε)
)
∂xi (ũε − uε)dxdt

=

k∑
i=1

T∫
0

∫
IRd

|ũε − uε|′′δ
fiε (x + ∆x,uε) − fiε (x,uε)

(∆x)1/2
· (∆x)1/2 · ∂xi (ũε − uε) dxdt

≤
k∑

i=1


T∫

0

∫
IRd

(
fiε (x + ∆x,uε) − fiε (x,uε)

(∆x)1/2

)2

dxdt


1/2

×


T∫

0

∫
IRd

∆x ·
(
|ũε − uε|′′δ

)2
· (∂xi (ũε − uε)

)2 dxdt


1/2

≤ C3 · ∆x·
(
|ũε − uε|′′δ

)2
· C5 ≤ C6

∆x
δ2 .

Now, fix σ > 0 and a compact K ⊂⊂ IRd. Choose ∆x and δ so that (o(1) below is from (a)):

C6
∆x
δ2 < σ, o(1) < σ,∫

IRd

|u0 (x + ∆x) − u0 (x)|δ dx < σ, (11)

T∫
0

∫
K

(|ũε − uε|δ − |ũε − uε|)dx < σ.

Since
∫ T

0

∫
K |ũε − uε|δ dxdt ≤

∫ T

0

∫
IRd |ũε − uε|δ dxdt, from (11), (a), (b), and (10) it follows that for any fixed

T > 0:∫
K

|ũε(T, x) − uε(T, x)|dx ≤
∫
K

(
|ũε(T, x) − uε(T, x)| − |ũε(T, x) − uε(T, x)|δ

)
dx

+

∫
IRd

|u0 (x + ∆x) − u0 (x)| dx + 2σ ≤ 4σ.
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Thus, we have proved L1
loc equicontinuity of the family uε with respect to x ∈ IRd. Equicontinuity with

respect to t ∈ IR+ follows from [7, Section 4].
Therefore, by using the Kolomogorov-Riesz criterion, it follows that (uε) is strongly precompact in L1

loc.
This concludes the existence proof.

2.2. The uniqueness proof
First, notice that the following lemma holds.

Lemma 2.2. For any weak solution u to (1), (2) it holds

∂xs u ∈ L2(IR+ × IRd), s = 1, . . . , k.

Proof. We take the convolution kernel ρε defined on the beginning of Section 2.1 and apply it on (1).
Denoting uε = u ⋆ ρε and multiplying the convoluted (1) by uε, we obtain as in the proof of Lemma 2.1:∫

IRd
u2
ε(T, x)dx −

∫
IRd

u2
0(x)dx +

λ
2

k∑
r=1

∫
[0,T]×IRd

|∂xr uε|2 < ∞

uniformly in ε.
By letting ε→ 0 here, we immediately reach to the statement of the lemma.

Next, take two arbitrary weak solutions to (1), denote them by u and v, corresponding to the initial data
u|t=0 = u0, v|t=0 = v0.

Take the regularizing kernel ρε(t) given at the beginning of subsection 2.1. By convoluting (1) (first as it
is and then with u = v) by ρε(t), we obtain the equations:

uεt + div fεu (x,u) =
k∑

i, j=1

∂xi

(
ai j∂x j (uε)

)
,

vεt + div fεv (x, v) =
k∑

i, j=1

∂xi

(
ai j∂x j (vε)

)
,

where fεu (x,u) = f (x,u) ⋆ ρε(t) and fεv (x, v) = f (x, v) ⋆ ρε(t). By subtracting the latter two equations and
multiplying by η′(uε − vε) for a convex function η ∈ C2(IR), we obtain

∂tη(uε − vε) + η′(uε − vε) div
(

fεu(x,u) − fεv(x, v)
)

=

k∑
i, j=1

∂xi

(
ai j∂x jη(uε − vε)

)
−

k∑
i, j=1

η′′(uε − vε)ai j∂xi (uε − vε)∂x j (uε − vε).

Letting here ε→ 0, we get in the weak sense (keep in mind Lemma 2.2 when dealing with the second term
on the right-hand side)

∂tη(u − v) + η′(u − v) div
(

f (x,u) − f (x, v)
)

=

k∑
i, j=1

∂xi

(
ai j∂x jη(u − v)

)
−

k∑
i, j=1

η′′(u − v)ai j∂xi (u − v)∂x j (u − v).

We rewrite the latter in the form

∂tη(u − v) + div η′(u − v)
(

f (x,u) − f (x, v)
) − k∑

i=1

η′′(u − v)
(

f (x,u) − f (x, v)
)
∂xi (u − v)
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=

k∑
i, j=1

∂xi

(
ai j∂x jη(u − v)

)
−

k∑
i, j=1

η′′(u − v)ai j∂xi (u − v)∂x j (u − v).

By putting η(z) = |z| and having in mind η′′(u− v)
(

f (x,u) − f (x, v)
)
= δ(u− v)

(
f (x,u) − f (x, v)

)
= 0, we reach

to the so called Kato inequality:∫
IR+×IRd

(|u − v|∂tφ + ⟨sgn(u − v)( f (x, v) − f (x,u)),∇φ⟩) dxdt

≤
k∑

i, j=1

∫
IR+×IRd

(
ai jsgn(u − v)∂x j (u − v)

)
∂xiφdxdt.

The L1-stability follows from here by using the standard procedure which can be found in e.g. [3]. The
proof is over.
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