A commutator approach to Buzano's inequality

Mohammad Sal Moslehian ${ }^{* a}$, Maryam Khosravi ${ }^{\text {b }}$, Roman Drnovšek ${ }^{\text {c }}$
${ }^{a}$ Department of Pure Mathematics, Center of Excellence in Analysis on Algebraic Structures (CEAAS), Ferdowsi University of Mashhad, P. O. Box 1159, Mashhad 91775, Iran
${ }^{b}$ Department of Mathematics, Shahid Bahonar University of Kerman, Kerman, Iran
${ }^{\text {c D Department of Mathematics, Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, SI-1000 Ljubljana, Slovenia }}$

Abstract

Using a 2×2 matrix trick, an inequality involving commutators of certain Hilbert space operators as an operator version of Buzano's inequality, which is in turn a generalization of the Cauchy-Schwarz inequality, is presented. Also a version of the inequality in the framework of Hilbert C^{*}-modules is stated and a special case in the context of C^{*}-algebras is presented.

1. Introduction and preliminaries

In [4], Buzano obtained the following extension of the celebrated Cauchy-Schwarz inequality in a real or complex inner product space \mathscr{H} :

$$
|\langle a, x\rangle\langle x, b\rangle| \leq \frac{1}{2}\left(|\langle a, b\rangle|+\|a|\|\mid\| b \|)\| x \|^{2} \quad(a, b, x \in \mathscr{H})\right.
$$

When $a=b$ this inequality becomes the Cauchy-Schwarz inequality

$$
|\langle a, x\rangle|^{2} \leq\|a\|^{2}\|x\|^{2}
$$

For a real inner product space, Richard [18] independently obtained the following stronger inequality:

$$
\left|\langle a, x\rangle\langle x, b\rangle-\frac{1}{2}\langle a, b\rangle\|x\|^{2}\right| \leq \frac{1}{2}\|a\|\|b\|\|x\|^{2} \quad(a, b, x \in \mathscr{H}) .
$$

Dragomir [5] showed that this inequality (for real or complex case) is valid with coefficients $\frac{1}{|\alpha|}$ instead of $\frac{1}{2}$, where a non-zero number α satisfies the equality $|1-\alpha|=1$. As an application of this inequality, Fujii and Kubo [9] found a bound for roots of algebraic equations. During developing the operator theory and its applications, the authors of [6] have recently extended some numerical inequalities to operator inequalities.

[^0]Some mathematicians have also investigated the operator versions of the Cauchy-Schwarz inequality or its reverse; see $[7,8,12,16,19]$.

In the next section an operator version of Buzano's inequality is introduced as a commutator inequality and in the last section we state a suitable version of it for Hilbert C^{*}-modules including C^{*}-algebras.

In this paper, $\mathbb{B}(\mathscr{H})$ stands for the C^{*}-algebra of all bounded operators on a complex separable Hilbert space \mathscr{H} equipped with the usual operator norm $\|\cdot\|$. If \mathscr{H} is finite-dimensional with $\operatorname{dim} \mathscr{H}=n$, we identify $\mathbb{B}(\mathscr{H})$ with the full matrix algebra $M_{n}(\mathbb{C})$ of all $n \times n$ matrices with entries in the complex field \mathbb{C}. If $x, y \in \mathscr{H}$, the rank-one operator $x \otimes y$ is defined by

$$
(x \otimes y) z=\langle z, y\rangle x \quad(z \in \mathscr{H})
$$

For a compact operator $T \in \mathbb{B}(\mathscr{H})$, the singular values of T are defined to be the eigenvalues of the positive operator $|T|=\left(T^{*} T\right)^{1 / 2}$, enumerated as $s_{1}(T) \geq s_{2}(T) \geq \cdots$ with their multiplicities counted. If $S \in \mathbb{B}(\mathscr{H})$ and $T \in \mathbb{B}(\mathscr{K})$, we use the direct sum notation $S \oplus T$ for the block-diagonal operator $\left[\begin{array}{cc}S & 0 \\ 0 & T\end{array}\right]$ defined on $\mathscr{H} \oplus \mathscr{K}$. It can be easily seen that the set of singular values of $S \oplus T$ is the union of those of S and T. In particular, the operator norm of $S \oplus T$ is the maximum of the norm of S and T. For $A, B, X \in \mathbb{B}(\mathscr{H})$, the operator $A X-X A$ is called a commutator and the operator $A X-X B$ is said to be a generalized commutator. There are several results related to the singular values and unitarily invariant norms of (generalized) commutators, see $[3,11,13,14]$ and references therein. Recall that a norm $\left\|\|\cdot\| \mid\right.$ on \mathcal{M}_{n} is said to be unitarily invariant if $|||U A V|||=||A|| \mid$ for all $A \in M_{n}(\mathbb{C})$ and all unitary matrices $U, V \in M_{n}(\mathbb{C})$.

The notion of Hilbert C^{*}-module is a generalization of that of Hilbert space. Let \mathscr{A} be a C^{*}-algebra, and let \mathscr{X} be a complex linear space, which is a right \mathscr{A}-module satisfying $\lambda(x a)=x(\lambda a)=(\lambda x) a$ for all $x \in \mathscr{X}, a \in \mathscr{A}, \lambda \in \mathbb{C}$. The space \mathscr{X} is called a (right) pre-Hilbert C^{*}-module over \mathscr{A} if there exists an \mathscr{A}-inner product $\langle\cdot, \cdot\rangle: \mathscr{X} \times \mathscr{X} \rightarrow \mathscr{A}$ satisfying
(i) $\langle x, x\rangle \geq 0$ (i.e. $\langle x, x\rangle$ is a positive element of \mathscr{A}) and $\langle x, x\rangle=0$ if and only if $\quad x=0$;
(ii) $\langle x, \lambda y+z\rangle=\lambda\langle x, y\rangle+\langle x, z\rangle$;
(iii) $\langle x, y a\rangle=\langle x, y\rangle$;
(iv) $\langle x, y\rangle^{*}=\langle y, x\rangle$;
for all $x, y, z \in \mathscr{X}, \lambda \in \mathbb{C}, a \in \mathscr{A}$.
We can define a norm on \mathscr{X} by $\|x\|:=\|\langle x, x\rangle\|^{\frac{1}{2}}$, where the latter norm denotes that in the C^{*}-algebra \mathscr{A}. A pre-Hilbert \mathscr{A}-module is called a (right) Hilbert C^{*}-module over \mathscr{A} (or a (right) Hilbert \mathscr{A}-module) if it is complete with respect to its norm. Any inner product space can be regarded as a pre-Hilbert \mathbb{C}-module and any C^{*}-algebra \mathscr{A} is a Hilbert C^{*}-module over itself via $\langle a, b\rangle=a^{*} b(a, b \in \mathscr{A})$. For more information about C^{*}-algebras and Hilbert C^{*}-modules see [17] and [15], respectively.

2. The Hilbert space case

To establish singular value inequalities for Hilbert space operators, we need the following lemma, which is an immediate consequence of the Maximin principle (see, e.g., [2, p. 75] or [10, p. 27]).

Lemma 2.1. Suppose that $X, Y, Z \in \mathbb{B}(\mathscr{H})$. If Y is compact, then

$$
s_{j}(X Y Z) \leq\|X\|\|Z\| s_{j}(Y)
$$

for all $j=1,2, \ldots$.
Now we state our main result.
Theorem 2.2. Let $A, B, X \in \mathbb{B}(\mathscr{H})$ be such that A is invertible and it commutes with X. Suppose that, for some Hilbert space $\mathscr{K}, \widetilde{A}=A \oplus A^{\prime} \in \mathbb{B}(\mathscr{H} \oplus \mathscr{K}), \widetilde{B}=B \oplus 0 \in \mathbb{B}(\mathscr{H} \oplus \mathscr{K})$ and $\widetilde{X} \in \mathbb{B}(\mathscr{H} \oplus \mathscr{K})$ is any compact extension of X. Then, for $j=1,2, \ldots$,

$$
s_{j}(\widetilde{A X}-\widetilde{X B}) \leq \max \left\{1,\left\|1-A^{-1} B\right\|\right\}\|\widetilde{A}\| s_{j}(\widetilde{X})
$$

If $\mathscr{K}=\{0\}$, then

$$
s_{j}(A X-X B) \leq\|A-B\| s_{j}(X) \leq\left\|1-A^{-1} B\right\|\|A\| s_{j}(X) .
$$

Proof. Since $\widetilde{\mathrm{X}}$ leaves \mathscr{H} invariant, we can write

$$
\widetilde{A}=\left[\begin{array}{cc}
A & 0 \\
0 & A^{\prime}
\end{array}\right], \widetilde{B}=\left[\begin{array}{cc}
B & 0 \\
0 & 0
\end{array}\right], \widetilde{X}=\left[\begin{array}{cc}
X & Y \\
0 & Z
\end{array}\right] .
$$

It follows from Lemma 2.1 and

$$
\widetilde{A X}-\widetilde{X B}=\left[\begin{array}{cc}
A X-X B & A Y \\
0 & A^{\prime} Z
\end{array}\right]=\left[\begin{array}{cc}
A & 0 \\
0 & A^{\prime}
\end{array}\right]\left[\begin{array}{cc}
X & Y \\
0 & Z
\end{array}\right]\left[\begin{array}{cc}
I-A^{-1} B & 0 \\
0 & I
\end{array}\right]
$$

that

$$
s_{j}(\widetilde{A X}-\widetilde{X B}) \leq \max \left\{1,\left\|1-A^{-1} B\right\|\right\}\|\widetilde{A}\| s_{j}(\widetilde{X}) .
$$

If $\mathscr{K}=\{0\}$, then $s_{j}(A X-X B)=s_{j}(X(A-B)) \leq\|A-B\| s_{j}(X)$ by Lemma 2.1.
Corollary 2.3. Let A, B, X be $n \times n$ matrices such that A is invertible and it commutes with X. Suppose that $\widetilde{A}=A \oplus A^{\prime}, \widetilde{B}=B \oplus 0$ and \widetilde{X} is any extension of X to $\mathbb{C}^{n} \oplus \mathbb{C}^{m}$ for some m. Then
(i) $\|\widetilde{A X}-\widetilde{X B}\| \leq \max \left\{1,\left\|1-A^{-1} B\right\|\| \|\|\widetilde{A}\|\| \| \widetilde{X}\| \|\right.$ for every unitarily invariant norm $\left\||\cdot \||\right.$ on \mathbb{C}^{n+m}.
(ii) $|\widetilde{A X}-\widetilde{X B}| \leq \max \left\{1,\left\|1-A^{-1} B\right\| \|\right\}|\widetilde{A}\| \| U| \widetilde{X} \mid U^{*}$ for some unitary matrix $U \in M_{n+m}(\mathbb{C})$.

Proof. It follows from Theorem 2.2 that we have, for each $k=1,2, \ldots, n+m$,

$$
\sum_{j=1}^{k} s_{j}(\widetilde{A} \widetilde{X}-\widetilde{X} \widetilde{B}) \leq \sum_{j=1}^{k} \max \left\{1,\left\|1-A^{-1} B\right\|\right\}\|\widetilde{A}\| s_{j}(\widetilde{X}) .
$$

The Ky Fan dominance theorem (see, e.g., [2, p. 93]) then completes the proof of (i).
The assertion (ii) follows from the fact that for positive matrices S, T the inequalities $s_{j}(S) \leq s_{j}(T)(1 \leq$ $j \leq n+m)$ are equivalent to $S \leq U T U^{*}$ for some unitary matrix U.

The next result may be considered as a slight generalization of [13, Lemma 3] in the case when $X \in \mathbb{B}(\mathscr{H})$ is a compact operator leaving invariant the range of a projection $P \in \mathbb{B}(\mathscr{H})$.
Corollary 2.4. Let $P \in \mathbb{B}(\mathscr{H})$ be a non-zero projection on a subspace \mathscr{K} of \mathscr{H}, and let $\mathrm{X} \in \mathbb{B}(\mathscr{H})$ be a compact operator which leaves \mathscr{K} invariant. Suppose that $C \in \mathbb{B}(\mathscr{H})$ is a contraction satisfying $P C=C P=0$. Then, for $\alpha \in \mathbb{C}$ and $j=1,2, \ldots$,

$$
\begin{equation*}
s_{j}((P+C) X-\alpha X P) \leq \max \{1,|1-\alpha|\} s_{j}(X) \tag{1}
\end{equation*}
$$

Proof. Since the restriction of the operator $P+C$ to the subspace \mathscr{K} is the identity operator, Theorem 2.2 can be applied for the operators $\widetilde{A}=P+C, \widetilde{B}=\alpha P$ and $\widetilde{X}=X$.

Suppose that $x, a, b \in \mathscr{H}$ and $\|x\|=1$. Set $P=x \otimes x, C=0$ and $X=x \otimes b$ in inequality (1). Then

$$
\|P X a-\alpha X P a\| \leq \max \{1,|1-\alpha|\}\|X|\|\mid\| a \| .
$$

Since

$$
\begin{aligned}
\|P X a-\alpha X P a\| & =\|(x \otimes x)(x \otimes b) a-\alpha(x \otimes b)(x \otimes x) a\| \\
& =\|\langle a, b\rangle\langle x, x\rangle x-\alpha\langle a, x\rangle\langle x, b\rangle x\| \\
& =|\langle a, b\rangle-\alpha\langle a, x\rangle\langle x, b\rangle|
\end{aligned}
$$

and $\|X\|=\|b\|$, we obtain that

$$
|\langle a, b\rangle-\alpha\langle a, x\rangle\langle x, b\rangle| \leq \max \{1,|1-\alpha|\}|\|b \mid\| a \| .
$$

If x is an arbitrary non-zero vector in an inner product space \mathscr{H}, by completing the space we can assume that \mathscr{H} is a Hilbert space. Then an application of the last inequality for the unit vector $\frac{x}{\|x\|}$ proves the following version of Buzano's inequality. It allows us to regard inequality (1) as an operator version of Buzano's inequality.

Corollary 2.5. Let x, a, b be vectors in an inner product space \mathscr{H} and $\alpha \in \mathbb{C}$. Then

$$
\begin{equation*}
\left|\langle a, b\rangle\|x\|^{2}-\alpha\langle a, x\rangle\langle x, b\rangle\right| \leq \max \{1,|1-\alpha|\}\|b|\||a|\|| x\|^{2} . \tag{2}
\end{equation*}
$$

Remark 2.6. An easy inspection of the proof of Dragomir's result [5, Theorem 3.3] shows that he in fact proved inequality (2).

The following result is a slight generalization of [5, Theorem 3.7] (and of Corollary 2.5).
Theorem 2.7. Let $\left\{e_{i}\right\}_{i=1}^{\infty}$ be an orthonormal family in a Hilbert space \mathscr{H}, and let $\left\{\lambda_{i}\right\}_{i=1}^{\infty}$ be a bounded sequence of complex numbers. Then

$$
\left|\sum_{i=1}^{\infty} \lambda_{i}\left\langle a, e_{i}\right\rangle\left\langle e_{i}, b\right\rangle-\langle a, b\rangle\right| \leq \max \left\{1, \sup _{i \geq 1}\left|1-\lambda_{i}\right|\right\}\|b\|\|a\|
$$

for all $a, b \in \mathscr{H}$. If $\left\{e_{i}\right\}_{i=1}^{\infty}$ is an orthonormal basis of \mathscr{H}, then

$$
\left|\sum_{i=1}^{\infty} \lambda_{i}\left\langle a, e_{i}\right\rangle\left\langle e_{i}, b\right\rangle-\langle a, b\rangle\right| \leq \sup _{i \geq 1}\left|1-\lambda_{i}\right|\|b\|\|a\| .
$$

Proof. The series $\sum_{i=1}^{\infty} \lambda_{i}\left\langle a, e_{i}\right\rangle\left\langle e_{i}, b\right\rangle$ converges absolutely, since

$$
\sum_{i=1}^{\infty}\left|\lambda_{i}\left\langle a, e_{i}\right\rangle\left\langle e_{i}, b\right\rangle\right| \leq \sup _{i \geq 1}\left|\lambda_{i}\right| \cdot\left(\sum_{i=1}^{\infty}\left|\left\langle a, e_{i}\right\rangle\right|^{2}\right)^{1 / 2}\left(\sum_{i=1}^{\infty}\left|\left\langle e_{i}, b\right\rangle\right|^{2}\right)^{1 / 2} \leq \sup _{i \geq 1}\left|\lambda_{i}\right|\|a\|\|b\|
$$

by the Cauchy-Schwarz inequality in the sequence space l^{2} and by Bessel's inequality. Therefore, it is enough to show that, for each positive integer n, we have

$$
\left|\sum_{i=1}^{n} \lambda_{i}\left\langle a, e_{i}\right\rangle\left\langle e_{i}, b\right\rangle-\langle a, b\rangle\right| \leq \max \left\{1,\left|1-\lambda_{1}\right|, \ldots,\left|1-\lambda_{n}\right|\right\}\|b\|\|a\| .
$$

Set $A:=\sum_{i=1}^{n} e_{i} \otimes e_{i}, B:=\sum_{i=1}^{n} \lambda_{i} e_{i} \otimes e_{i}$ and $X:=\sum_{i=1}^{n} e_{i} \otimes b$. Consider the closed subspace \mathscr{K} spanned by vectors e_{1}, \ldots, e_{n}. Note that A is the identity operator on \mathscr{K}, and B leaves \mathscr{K} invariant and it is zero on the orthogonal complement of \mathscr{K}. Also, X is an operator from \mathscr{H} to \mathscr{K}, so its restriction to \mathscr{K} commutes with A. By Theorem 2.2, we have

$$
\|A X-X B\| \leq \max \left\{1,\left\|1-\left.\left(\left.A\right|_{\mathscr{K}}\right)^{-1} B\right|_{\mathscr{K}}\right\|\right\}\|A\|\| \| X \|,
$$

and so, for each $a \in \mathscr{H}$,

$$
\|(A X-X B) a\| \leq \max \left\{1,\left|1-\lambda_{1}\right|, \ldots,\left|1-\lambda_{n}\right|\right\}\left\|\sum_{i=1}^{n} e_{i}\right\|\|b|\||a| .
$$

Since

$$
(A X-X B) a=\left(\sum_{i=1}^{n} e_{i}\right)\left(\langle a, b\rangle-\sum_{i=1}^{n} \lambda_{i}\left\langle a, e_{i}\right\rangle\left\langle e_{i}, b\right\rangle\right),
$$

we obtain the desired inequality. When $\left\{e_{i}\right\}_{i=1}^{\infty}$ is a basis of \mathscr{H}, we can omit the number 1 in the maximum by the last assertion of Theorem 2.2.

3. The Hilbert C^{*}-module case

The following theorem is Buzano's inequality in the context of Hilbert C^{*}-modules.
Theorem 3.1. Let \mathscr{X} be a Hilbert C^{*}-module. If $x, y, z \in \mathscr{X}$ such that $\langle x, z\rangle$ commutes with $\langle z, z\rangle$, then

$$
\begin{equation*}
|2\langle x, z\rangle\langle z, y\rangle-\langle z, z\rangle\langle x, y\rangle| \leq\|x\|\|z\|^{2}|y| . \tag{3}
\end{equation*}
$$

Proof. For $x, y, z \in \mathscr{X}$, we have

$$
\begin{align*}
|2\langle x, z\rangle\langle z, y\rangle-\langle z, z\rangle\langle x, y\rangle| & =|\langle 2 z\langle z, x\rangle, y\rangle-\langle x\langle z, z\rangle, y\rangle| \\
& =|\langle 2 z\langle z, x\rangle-x\langle z, z\rangle, y\rangle| \\
& \leq\|2 z\langle z, x\rangle-x\langle z, z\rangle\||y| \tag{4}
\end{align*}
$$

and

$$
\begin{align*}
\|2 z\langle z, x\rangle-x\langle z, z\rangle\|^{2}= & \|\langle 2 z\langle z, x\rangle-x\langle z, z\rangle, 2 z\langle z, x\rangle-x\langle z, z\rangle\rangle\| \\
= & \| 4\langle x, z\rangle\langle z, z\rangle\langle z, x\rangle-2\langle x, z\rangle\langle z, x\rangle\langle z, z\rangle \\
& -2\langle z, z\rangle\langle x, z\rangle\langle z, x\rangle+\langle z, z\rangle\langle x, x\rangle\langle z, z\rangle \| \\
\leq & \|z\|^{4}\|x\|^{2} . \tag{5}
\end{align*}
$$

Now (3) follows from (4) and (5).
Using Theorem 3.1 and the fact that, in a C^{*}-algebra, the relation $|c| \leq M$ is equivalent to the condition that $|c d| \leq M|d|$ for all d, we get

Corollary 3.2. If $a, b \in \mathscr{A}$ are elements of $a C^{*}$-algebra such that $a^{*} b$ commutes with $b^{*} b$, then

$$
\left|2 a^{*} b b^{*}-b^{*} b a^{*}\right| \leq\|a\|\|b\|^{2} .
$$

The following provides a non-trivial example.
Example 3.3. Let \mathscr{H} be a separable complex Hilbert space and let $\left\{e_{i}\right\}_{i=1}^{\infty}$ be an orthonormal basis for \mathscr{H}. Define the operator $u: \mathscr{H} \rightarrow \mathscr{H}$ by

$$
u\left(e_{i}\right)=\left\{\begin{array}{ll}
e_{i+1}, & i \leq n \\
0, & i>n
\end{array} .\right.
$$

Then the adjoint operator u^{*} is defined by $u^{*}\left(e_{i}\right)=\left\{\begin{array}{ll}e_{i-1}, & 2 \leq i \leq n+1 \\ 0, & i>n+1 \text { or } i=1 .\end{array}\right.$. If $\mathscr{K}_{1}, \mathscr{K}_{2}$ are the subspaces generated with $\left\{e_{1}, \cdots, e_{n}\right\}$ and $\left\{e_{2}, \cdots, e_{n+1}\right\}$, respectively, then $u^{*} u$ is the projection onto \mathscr{K}_{1} and $u u^{*}$ is the projection onto \mathscr{K}_{2}. For all $v \in \mathbb{B}(\mathscr{H})$, we clearly have $v u=0$ on \mathscr{K}_{1}^{\perp}. Therefore, if $v\left(\mathscr{K}_{2}\right) \subseteq \mathscr{K}_{1}$, then $v u$ commutes with $u^{*} u$, so that we have

$$
\left\|2 v u u^{*}-u^{*} u v\right\| \leq\|v\| .
$$

References

[1] Lj. Arambasić, D. Bakić, M.S. Moslehian, A treatment of the Cauchy-Schwarz inequality in C*-modules, J. Math. Anal. Appl. 381 (2011) 546-556.
[2] R. Bhatia, Matrix Analysis, Springer-Verlag, New York, 1997.
[3] R. Bhatia, F. Kittaneh, Commutators, pinchings, and spectral variation, Oper. Matrices 2(1) (2008) 143-151.
[4] M.L. Buzano, Generalizzazione della disiguaglianza di Cauchy-Schwarz (Italian), Rend. Sem. Mat. Univ. e Politech. Torino 31 (1974) 405-409.
[5] S.S. Dragomir, A potpourri of Schwarz related inequalities in inner product spaces (II), J. Inequal. Pure Appl. Math. 7(1) (2006), Article 14.
[6] S.S. Dragomir, M. Khosravi, M.S. Moslehian, Bessel type inequalities in Hilbert modules, Linear Multilinear Algebra 58(8) (2010) 967-975.
[7] J.I. Fujii, Operator-valued inner product and operator inequalities, Banach J. Math. Anal. 2(2) (2008) 59-67.
[8] J.I. Fujii, M. Fujii, M.S. Moslehian, J.E. Pečarić, Y. Seo, Reverses Cauchy-Schwarz type inequalities in pre-inner product $C^{*}-$ modules, Hokkaido Math. J. 40 (2011) 1-17.
[9] M. Fujii, F. Kubo, Buzano's inequality and bounds for roots of algebraic equations, Proc. Amer. Math. Soc. 117 (1993) 359-361.
[10] I.C. Gohberg, M.G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators, Transl. Math. Monographs, Amer. Math. Soc., Providence, RI, 1969.
[11] O. Hirzallah, Commutator inequalities for Hilbert space operators, Linear Algebra Appl. 431 (2009), no. 9, 1571-1578.
[12] D. Ilisević, S. Varošanec, On the Cauchy-Schwarz inequality and its reverse in semi-inner product C^{*}-modules, Banach J. Math. Anal. 1 (2007) 78-84.
[13] F. Kittaneh, Inequalities for commutators of positive operators, J. Funct. Anal. 250(1) (2007) 132-143.
[14] F. Kittaneh, Singular value inequalities for commutators of Hilbert space operators, Linear Algebra Appl. 430 (2009) 2362-2367.
[15] E.C. Lance, Hilbert C^{*}-modules, London Mathematical Society Lecture Note Series, 210, Cambridge University Press, Cambridge, 1995.
[16] M.S. Moslehian, L.-E. Persson, Reverse Cauchy-Schwarz inequalities for positive C^{*}-valued sesquilinear forms, Math. Inequal. Appl. 4(12) (2009) 701-709.
[17] J.G. Murphy, C*-Algebras and Operator Theory, Academic Press, Boston, 1990.
[18] U. Richard, Sur des inégalités du type Wirtinger et leurs application aux équationes diffrentielles ordinaires, Colloquium of Analysis held in Rio de Janeiro, 1972, 233-244.
[19] K. Tanahashi, A. Uchiyama, M. Uchiyama, On Schwarz type inequalities, Proc. Amer. Math. Soc. 131(8) (2003) $2549-2552$.
[20] X. Zhan, Singular values of differences of positive semidefinite matrices, SIAM J. Matrix. Anal. Appl. 22 (2000) 819-823.

[^0]: 2010 Mathematics Subject Classification. Primary 47A63; Secondary 15A42, 47B47
 Keywords. Buzano's inequality, operator inequality, commutator, singular value
 Received: 16 December 2011; Accepted: 25 April 2012
 Communicated by H.M. Srivastava

 * Corresponding author

 The first author was supported by a grant from Ferdowsi University of Mashhad (No. MP90211MOS). The third author was supported by the Slovenian Research Agency.

 Email addresses: moslehian@ferdowsi.um.ac.ir and moslehian@member.ams.org (Mohammad Sal Moslehian*),
 khosravi_m@mail.uk.ac.ir (Maryam Khosravi), roman.drnovsek@fmf.uni-lj.si (Roman Drnovšek)

