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On the multidimensional Hilbert-type inequalities involving the
Hardy operator
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aFaculty of Electrical Engineering and Computing, Unska 3, 10000 Zagreb, Croatia

Abstract. This paper deals with the multidimensional Hilbert-type inequalities involving the Hardy
operator and homogeneous kernels. The main results are established in the setting with the non-conjugate
exponents. After reduction to the conjugate case, the inequalities with the best possible constant factors
are obtained in some general cases. As an application, some particular settings are considered in order to
obtain the multidimensional extensions of some recent results, known from the literature.

1. Introduction

Let p and q be conjugate exponents, that is, 1/p + 1/q = 1, p > 1. One of the earliest variants of the
classical Hilbert inequality, that holds for all non-negative functions f ∈ Lp(R+) and 1 ∈ Lq(R+), is∫

R2
+

f (x)1(y)
x + y

dxdy ≤ π

sin
(
π
p

)∥ f ∥p∥1∥q, (1)

where the constant factorπ/sin
(
π/p

)
is the best possible in the sense that it can not be replaced with a smaller

constant (see [10]). Throughout this paper || · ||r denotes the usual norm in Lr(R+), i.e. || f ||r = (
∫
R+

f r(x)dx)1/r.
The Hilbert inequality is very important in mathematical analysis and its applications and, although

classical, is still a field of interest of numerous mathematicians. During decades, it was generalized in many
different directions, such as different choices of kernels, sets of integration etc. The resulting inequalities
are usually called the Hilbert-type inequalities. For more details about the Hilbert inequality the reader is
referred to [9] and [13].

Shortly after discovery of the Hilbert inequality, Hardy, Littlewood and Pólya noted that to every
Hilbert-type inequality one can assign its equivalent form. For example, the equivalent inequality assigned
to (1) reads[∫

R+

(∫
R+

f (x)
x + y

dx
)p

dy
] 1

p

≤ π

sin
(
π
p

)∥ f ∥p, (2)
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where p > 1 and f ∈ Lp(R+). However, the constant factor included in the right-hand side of (2) is also
the best possible. Inequalities related to (2) are usually called the Hardy-Hilbert type inequalities. In this
paper, inequalities related to (1) and (2) will simply be referred to as the Hilbert-type inequalities.

As we have already seen, some of the most important contributions in development of the Hilbert
inequality are due to Hardy. On the other hand, in 1925, Hardy stated and proved the following integral
inequality:[∫

R+

(
1
x

∫ x

0
f (t)dt

)p

dx
] 1

p

≤ p
p − 1

∥ f ∥p, (3)

where p > 1, and f ∈ Lp(R+) is a non-negative function. This is the original form of the famous Hardy integral
inequality, which later on has been extensively studied and used as a model example for investigations of
more general integral inequalities. The Hardy inequality includes the integral operatorH defined by

H f (x) =
∫ x

0
f (t)dt. (4)

The integral operatorH is usually called the Hardy operator. For more details about the Hardy inequality,
its history and applications, the reader is referred to [12].

In the recent years, several authors considered the Hilbert-type inequalities involving the Hardy operator
H . For example, Das and Sahoo [6], obtained the following two inequalities:∫

R2
+

xr1− 1
q−1yr2− 1

p−1

(x + y)s (H f )(x)(H1)(y)dxdy ≤ pqB(r1, r2)|| f ||p||1||q, (5)

∫
R+

yr2p−1

∫
R+

xr1− 1
q−1

(x + y)s (H f )(x)dx

p

dy


1
p

≤ qB(r1, r2)|| f ||p, (6)

where p and q, p > 1 are conjugate exponents, r1, r2 > 0, s = r1 + r2, f ∈ Lp(R+), 1 ∈ Lq(R+), f , q ≥ 0. They
also showed that the constant factors pqB(r1, r2) and qB(r1, r2), where B(·, ·) denotes the usual Beta function,
are the best possible. Very similar inequalities were also studied in the paper [8].

Considering the kernel K(x, y) = 1/max{xs, ys}, Das and Sahoo [7], established the inequalities∫
R2
+

xr1− 1
q−1yr2− 1

p−1

max{xs, ys} (H f )(x)(H1)(y)dxdy ≤ pqs
r1r2
|| f ||p||1||q, (7)

and ∫
R+

yr2p−1

∫
R+

xr1− 1
q−1

max{xs, ys} (H f )(x)dx

p

dy


1
p

≤ qs
r1r2
|| f ||p, (8)

under the same assumptions as in (5) and (6). Also, the constant factors involved in the right-hand sides of
inequalities (7) and (8) are the best possible.

Considering the kernels K(x, y) = 1/(x + y)s and K(x, y) = 1/max{xs, ys}, s > 0, we see that they have
homogeneity of degree−s in common. The main objective of this paper is to establish an unified treatment of
the above inequalities (5), (6), (7) and (8). Namely, we shall deduce the generalizations of these inequalities
containing arbitrary homogeneous kernel of negative degree. Also, we shall represent the results in
multidimensional setting equipped with non-conjugate exponents.

The paper is organized in the following way: After this Introduction, in Section 2 we introduce definition
of non-conjugate exponents in multidimensional setting and indicate some recent results about the Hilbert
and the Hardy inequality in such setting. These results will be base in our main results. Further, in Section
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3 we derive our main results, i.e. the multidimensional Hilbert-type inequalities involving the Hardy
operator in the non-conjugate setting. In Section 4 we analyze our main results in the conjugate setting. In
such a way we get the best possible constant factors in some general cases. Finally, Section 5 is dedicated
to some particular settings of our main results, which yield multidimensional extensions of some recent
results, mentioned in this Introduction.

2. Non-conjugate exponents, Hilbert-type and Hardy-type inequalities

In this section we refer to papers [4] and [14] which provide an unified treatment of multidimensional
Hilbert-type inequalities in the setting with non-conjugate exponents. Before we state the appropriate
results, we recall the definition of non-conjugate parameters.

Let pi be the real parameters satisfying

n∑
i=1

1
pi
> 1, pi > 1, i = 1, 2, . . . ,n. (9)

The parameters p′i are defined as associated conjugates, that is

1
pi
+

1
p′i
= 1, i = 1, 2, . . . ,n. (10)

Since pi > 1, it follows that p′i > 1, i = 1, 2, . . . ,n. In addition, we define

λn =
1

n − 1

n∑
i=1

1
p′i
. (11)

Clearly, the relations (9) and (10) imply that 0 < λn < 1. Finally, we introduce the parameters qi defined by

1
qi
= λn −

1
p′i
, i = 1, 2, . . . ,n, (12)

assuming qi > 0, i = 1, 2, . . . ,n. The above conditions (9)-(12) establish the n-tuple of non-conjugate
exponents and were given by Bonsall [3], more than half a century ago. The above conditions also imply
relations λn =

∑n
i=1 1/qi and 1/qi + 1−λn = 1/pi, i = 1, 2, . . . ,n. Of course, if λn = 1, then

∑n
i=1 1/pi = 1, which

represents the setting with conjugate parameters.

Remark 1. If n = 2, then non-conjugate parameters p1 and p2 will be denoted with p and q. Also, p′ and q′

will be their conjugates. Moreover, the parameter λ2 will simply be denoted as λ.

In this paper we shall be concerned with the Hilbert-type inequalities with homogeneous kernels. Recall,
the function K : Rn

+ → R is said to be homogeneous of degree −s, s > 0, if K(tx) = t−sK(x) for all t > 0 and
x = (x1, x2, . . . , xn) ∈ Rn

+. Furthermore, if a = (a1, a2, . . . , an) ∈ Rn, we define

ki(a) =
∫
Rn−1
+

K(ûi)
n∏

j=1, j,i

ua j

j d̂iu, i = 1, 2, . . . , n, (13)

where ûi = (u1, . . . ,ui−1, 1,ui+1, . . . , un), d̂iu = du1 . . . dui−1dui+1 . . . dun and provided that the above integral
converges. Note that the constant factor ki(a) does not depend on the component ai. Thus, the component
ai can be replaced with arbitrary real number. This fact will sometimes be used in the sequel, for the sake
of simpler notation. Further, in the sequel du will denote du1du2 . . . dun.

The following multidimensional Hilbert-type inequalities, in the slightly altered notation, can be found
in the paper [14] (see also [4]):
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Theorem 2. Let pi, p′i , qi, i = 1, 2, . . . ,n, and λn be as in (9)–(12), and let Ai j, i, j = 1, 2, . . . ,n, be the real parameters
such that

∑n
i=1 Ai j = 0. If K : Rn

+ → R is non-negative measurable homogeneous function of degree −s, s > 0, and
fi : R+ → R, i = 1, 2, . . . ,n, are non-negative measurable functions, then the following two inequalities hold and are
equivalent:∫

Rn
+

Kλn (x)
n∏

i=1

fi(xi)dx ≤
n∏

i=1

k1/qi

i (qiAi)
n∏

i=1

||x(n−1−s)/qi+αi

i fi||pi , (14)

and 
∫
R+

xn
(1−λnp′n)(n−1−s)−p′nαn

∫
Rn−1
+

Kλn (x)
n−1∏
i=1

fi(xi)d̂nx


p′n

dxn


1/p′n

≤
n∏

i=1

k1/qi

i (qiAi)
n−1∏
i=1

||x(n−1−s)/qi+αi

i fi||pi , (15)

where αi =
∑n

j=1 Ai j, Ai = (Ai1,Ai2, . . . ,Ain) and ki(qiAi) < ∞, i = 1, 2, . . . ,n.

Very recently, Čižmešija et al. investigated in the paper [5] general Hardy-type inequalities in the
non-conjugate setting for n = 2. As a special consequence, they have obtained the inequality[∫ ∞

0
y−λq′ (H f )q′ (y)dy

] 1
q′

≤ (
p′λ

)λ ∥ f ∥p, (16)

where H is the Hardy operator (4). This inequality coincides with the earlier Opic’s estimate (see [11]).
Clearly, for λ = 1, we obtain the Hardy inequality (3) in the original form.

The results presented in this section will be the base of our further research. Besides, all the notations
presented here will be valid throughout the whole paper.

3. Multidimensional Hilbert-type inequalities in the non-conjugate setting

In this section we establish an unified treatment of the multidimensional Hilbert-type inequalities
which include the Hardy operator H and homogeneous kernel. Our first result refers to the setting with
non-conjugate exponents defined in the previous section.

Theorem 1. Suppose pi, p′i , qi, i = 1, 2, . . . , n, and λn are as in (9)–(12), and Ai j, i, j = 1, 2, . . . ,n, are the real
parameters satisfying

∑n
i=1 Ai j = 0. Further, let αi =

∑n
j=1 Ai j, i = 1, 2, . . . ,n, and let νi, µi be real parameters

satisfying

αi + νi +
1
pi
<

s + 1 − n
qi

≤ αi + νi + µi, i = 1, 2, . . . ,n. (17)

If K : Rn
+ → R is non-negative measurable homogeneous function of degree−s, s > 0, and fi : R+ → R, i = 1, 2, . . . ,n,

are non-negative measurable functions, then∫
Rn
+

Kλn (x)
n∏

i=1

xνi
i

(H fi
)µi (xi)dx ≤ ks

n(p,q,A, n)
n∏

i=1

∣∣∣∣∣∣ fi qiµi
piqi(αi+νi+µi)+pi(n−1−s)+qi

∣∣∣∣∣∣pi(αi+νi+µi)+pi(n−1−s)/qi+1

pi
, (18)

and [ ∫
R+

xn
(1−λnp′n)(n−1−s)−p′nαn

∫
Rn−1
+

Kλn (x)
n−1∏
i=1

xνi
i

(H fi
)µi (xi)d̂nx


p′n

dxn

]1/p′n

≤ ks
n−1(p,q,A, n) ×

×
n−1∏
i=1

∣∣∣∣∣∣ fi qiµi
piqi(αi+νi+µi)+pi(n−1−s)+qi

∣∣∣∣∣∣pi(αi+νi+µi)+pi(n−1−s)/qi+1

pi
, (19)
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where

ks
n(p,q,A, n) =

n∏
i=1

k1/qi

i (qiAi)
n∏

i=1

[
piqi(αi + νi) + pi(n − 1 − s) + qi

piqi(αi + νi) + pi(n − 1 − s)

]αi+νi+(n−1−s)/qi

, (20)

ks
n−1(p,q,A, n) =

n∏
i=1

k1/qi

i (qiAi)
n−1∏
i=1

[
piqi(αi + νi) + pi(n − 1 − s) + qi

piqi(αi + νi) + pi(n − 1 − s)

]αi+νi+(n−1−s)/qi

, (21)

Ai = (Ai1,Ai2, . . . ,Ain), ki(qiAi) < ∞, i = 1, 2, . . . , n.

Proof. The result follows easily from the relations (14) and (15) for the appropriate choice of non-negative
measurable functions fi, i = 1, 2, . . . , n.

Namely, if the functions fi : R+ → R, i = 1, 2, . . . , n, are replaced with xνi
i

(H fi
)µi (xi), then the terms on

the right-hand side of inequality (14) become

||x(n−1−s)/qi+αi

i fi||pi
pi
= ||x(n−1−s)/qi+αi+νi

i (H fi)µi (xi)||pi
pi

=

∫
R+

x
piµi

[
n−1−s
qiµi
+
αi+νi
µi

]
i

(H fi
)piµi (xi)dxi

=

∫
R+

x−λq′

i

(H fi
)q′ (xi)dxi = ||x−λi

(H fi
)

(xi)||q
′

q′ , (22)

where q′ = piµi and

λ = −qi(αi + νi) + n − 1 − s
qiµi

. (23)

Moreover, considering the two-dimensional setting with non-conjugate exponents, the expression
||x−λi

(H fi
)

(xi)||q′ represents the left-hand side of the Hardy-type inequality (16), that is, we have inequality

||x−λi
(H fi

)
(xi)||q

′

q′ ≤
(
p′λ

)q′λ || fi||q
′

p , (24)

with abbreviated

p =
piqiµi

piqi(αi + νi + µi) + pi(n − 1 − s) + qi

and

p′ = −
piqiµi

piqi(αi + νi) + pi(n − 1 − s) + qi
.

In other words, the right-hand side of inequality (24) reads[
piqi(αi + νi) + pi(n − 1 − s) + qi

piqi(αi + νi) + pi(n − 1 − s)

]pi(αi+νi)+pi(n−1−s)/qi ∣∣∣∣∣∣ f qiµi
piqi(αi+νi+µi)+pi(n−1−s)+qi

∣∣∣∣∣∣p2
i (αi+νi+µi)+p2

i (n−1−s)/qi+pi

pi
. (25)

Hence, relations (22), (24) and (25) yield the series of inequalities

||x(n−1−s)/qi+αi

i fi||pi ≤
[

piqi(αi + νi) + pi(n − 1 − s) + qi

piqi(αi + νi) + pi(n − 1 − s)

]αi+νi+(n−1−s)/qi ∣∣∣∣∣∣ f qiµi
piqi(αi+νi+µi)+pi (n−1−s)+qi

∣∣∣∣∣∣pi(αi+νi+µi)+pi(n−1−s)/qi+1

pi
,

where i = 1, 2, . . . , n, so the inequality (18) follows immediately from (14).
Obviously the same reasoning is used to establish inequality (19) from (15), which completes the

proof.
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Note that in the proof of the previous theorem we have used the two-dimensional Hardy inequality
with non-conjugate exponents. Now, we are going to consider the special case of Theorem 1 in which the
Hardy inequality appears in the classical conjugate setting. In that case, the parameter λ, defined by (23)
must be equal to 1, i.e. λ = 1. Hence, if λ = 1, then νi = (s+ 1− n)/qi − αi − µi, i = 1, 2, . . . ,n, that is, we have
the equalities in the set of conditions (17). In other words, we can eliminate the parameters νi, i = 1, 2, . . . ,n,
and the set of conditions (17) reduces to

piµi > 1, i = 1, 2, . . . ,n. (26)

In the following corollary it is more convenient to use the classical Hardy operatorH ′ defined by

H ′ f (x) =
1
x

∫ x

0
f (t)dt. (27)

The classical Hardy operator is also known in the literature as the Cesàro operator.

Corollary 2. Suppose pi, p′i , qi, i = 1, 2, . . . ,n, and λn are as in (9)–(12), and Ai j, i, j = 1, 2, . . . ,n, are the real
parameters satisfying

∑n
i=1 Ai j = 0. Further, let αi =

∑n
j=1 Ai j, i = 1, 2, . . . ,n, and let µi, i = 1, 2, . . . , n, be real

parameters satisfying the conditions (26). If K : Rn
+ → R is non-negative measurable homogeneous function of degree

−s, s > 0, and fi : R+ → R, i = 1, 2, . . . ,n, are non-negative measurable functions, then∫
Rn
+

Kλn (x)
n∏

i=1

x
s+1−n

qi
−αi

i

(H ′ fi)µi (xi)dx ≤ lsn(p,q,A,m)
n∏

i=1

|| fiµi ||pi , (28)

and[ ∫
R+

xn
(1−λnp′n)(n−1−s)−p′nαn

∫
Rn−1
+

Kλn (x)
n−1∏
i=1

x
s+1−n

qi
−αi

i

(H ′ fi)µi (xi)d̂nx


p′n

dxn

]1/p′n

≤ lsn−1(p,q,A,m)
n−1∏
i=1

|| fiµi ||pi , (29)

where

lsn(p,q,A,m) =
n∏

i=1

k1/qi

i (qiAi)
n∏

i=1

(
piµi

piµi − 1

)µi

, (30)

lsn−1(p,q,A,m) =
n∏

i=1

k1/qi

i (qiAi)
n−1∏
i=1

(
piµi

piµi − 1

)µi

, (31)

Ai = (Ai1,Ai2, . . . ,Ain), ki(qiAi) < ∞, i = 1, 2, . . . , n.

4. Reduction to conjugate case and the best possible constant factors

Generally speaking, the problem of the best possible constant factors for the Hilbert-type inequalities in
the setting with non-conjugate exponents seems to be very hard problem and remains still open.

Hence, in order to obtain the best possible constant factors in the inequalities (28) and (29), we shall
consider here their conjugate forms. Namely, if {pi; i = 1, 2, . . . , n} is the set of conjugate exponents, then
inequality (28) takes form∫

Rn
+

K(x)
n∏

i=1

x
s+1−n

pi
−αi

i

(H ′ fi)µi (xi)dx ≤ l̄sn(p,A,m)
n∏

i=1

|| fiµi ||pi , (32)

where

l̄sn(p,A,m) =
n∏

i=1

k1/pi

i (piAi)
n∏

i=1

(
piµi

piµi − 1

)µi

. (33)
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Similarly, the conjugate form of inequality (29) reads[ ∫
R+

xn
(1−p′n)(n−1−s)−p′nαn

∫
Rn−1
+

K(x)
n−1∏
i=1

x
s+1−n

pi
−αi

i

(H ′ fi)µi (xi)d̂nx


p′n

dxn

]1/p′n

≤ l̄sn−1(p,A,m)
n−1∏
i=1

|| fiµi ||pi , (34)

including the constant factor

l̄sn−1(p,A,m) =
n∏

i=1

k1/pi

i (piAi)
n−1∏
i=1

(
piµi

piµi − 1

)µi

. (35)

In the sequel we consider the problem of the best possible constant factors involved in both inequalities
(32) and (34). In order to obtain the best possible constant factors, we establish some more specific conditions
about the convergence of the integral k1(a), a = (a1, a2, . . . , an), defined by (13). More precisely, we assume
that

k1(a) < ∞ for a2, . . . , an > −1,
n∑

i=2

ai < s − n + 1,n ∈N,n ≥ 2. (36)

By the similar reasoning as in some recent results known from the literature (see papers [1], [2], [15]), the
best possible constant factors can be obtained if they don’t contain conjugate parameters pi in the exponents.
For that sake, we assume

k1(p1A1) = k2(p2A2) = · · · = kn(pnAn). (37)

If we use the change of variables u1 = 1/t2,u3 = t3/t2,u4 = t4/t2, . . . ,un = tn/t2, which provides the Jacobian
of the transformation ∣∣∣∣∣∂(u1,u3, . . . , un)

∂(t2, t3, . . . , tn)

∣∣∣∣∣ = t−n
2 ,

we have

k2(p2A2) =
∫
Rn−1
+

K(t̂1)ts−n−p2(α2−A22)
2

n∏
j=3

tp2A2 j

j d̂1t = k1(p1A11, s − n − p2(α2 − A22), p2A23, . . . , p2A2n).

According to (37), we have p1A12 = s−n−p2(α2−A22), p1A13 = p2A23, . . ., p1A1n = p2A2n. In a similar manner
we express ki(piAi), i = 3, . . . ,n, in the terms of k1(·). In such a way we see that (37) is fulfilled if

p jA ji = s − n − pi(αi − Aii), i, j = 1, 2, . . . ,n, i , j. (38)

The above set of conditions also implies that piAik = p jA jk, when k , i, j. Hence, we use abbreviations
Ã1 = pnAn1 and Ãi = p1A1i, i , 1. Since

∑n
i=1 Ai j = 0, one easily obtains that p jA j j = Ã j(1 − p j). Moreover,∑n

i=1 Ãi = s − n (see also paper [15]).
Now if the set of conditions (38) is satisfied, then, by using the above mentioned abbreviations, inequal-

ities (32) and (34) become respectively∫
Rn
+

K(x)
n∏

i=1

x
1
pi
+Ãi

i

(H ′ fi)µi (xi)dx ≤ m̄s
n(p, Ã,m)

n∏
i=1

|| fiµi ||pi , (39)


∫
R+

xn
(p′n−1)(1+pnÃn)

∫
Rn−1
+

K(x)
n−1∏
i=1

x
1
pi
+Ãi

i

(H ′ fi)µi (xi)d̂nx


p′n

dxn


1/p′n

≤ m̄s
n−1(p, Ã,m)

n−1∏
i=1

|| fiµi ||pi , (40)
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where

m̄s
n(p, Ã,m) = k1(Ã)

n∏
i=1

(
piµi

piµi − 1

)µi

, (41)

m̄s
n−1(p, Ã,m) = k1(Ã)

n−1∏
i=1

(
piµi

piµi − 1

)µi

, (42)

and Ã = (Ã1, Ã2, . . . , Ãn).
In order to obtain the best possible constant factors in the inequalities (39) and (40) we need the following

two auxiliary results.

Lemma 1. If y ≥ 1 and 0 < r ≤ 1 then (y − 1)r ≥ yr − 1.

Proof. Let us define the function h : [1,∞⟩ → R by h(y) = (y − 1)r − yr + 1, where 0 < r ≤ 1. By taking its
derivative we get h′(y) = r

[
(y − 1)r−1 − yr−1

]
. Clearly, since 0 < r ≤ 1 we conclude that h′(y) ≥ 0, i.e. h is

increasing function on [1,∞⟩. In other words, h(y) ≥ h(1), that is, (y − 1)r ≥ yr − 1, as required.

Lemma 2. If y1, y2, . . . , yn are non-negative real numbers, then

n∏
i=1

(yi − 1) ≥
n∏

i=1

yi −
n∑

i=1

n∏
j=1
j,i

y j. (43)

Proof. The result follows easily by the mathematical induction principle. Namely, if n = 2 then (y1 − 1)(y2 −
1) = y1y2 − y1 − y2 + 1 ≥ y1y2 − y1 − y2.

Now, if we suppose that (43) holds, we have

n+1∏
i=1

(yi − 1) ≥ (yn+1 − 1)


n∏

i=1

yi −
n∑

i=1

n∏
j=1
j,i

y j

 ≥
n+1∏
i=1

yi −
n+1∑
i=1

n+1∏
j=1
j,i

y j,

and the proof is complete.

Now we are ready to establish the best possible constant factors in the inequalities (39) and (40).

Theorem 3. Let K : Rn
+ → R be non-negative measurable homogeneous function of degree −s, s > 0, such that for

every i = 2, 3, . . . ,n

K(1, t2, . . . , ti, . . . , tn) ≤ CKK(1, t2, . . . , 0, . . . , tn), 0 ≤ ti ≤ 1, (44)

where CK is a positive constant. Further, let 1/pi < µi ≤ 1, i = 1, 2, . . . , n, and let the parameters Ãi, i = 2, . . . ,n
satisfy conditions as in (36). Then, the constant factor m̄s

n(p, Ã,m) is the best possible in inequality (39).

Proof. Suppose that there exist a positive constant Cn, 0 < Cn < m̄s
n(p, Ã,m), such that inequality∫

Rn
+

K(x)
n∏

i=1

x
1
pi
+Ãi

i

(H ′ fi)µi (xi)dx ≤ Cn

n∏
i=1

|| fiµi ||pi (45)

holds for all non-negative measurable functions fi : R+ → R. For this purpose, let’s substitute the functions

f εi (xi) =

 0, 0 < xi < 1,

x
− 1+ε

piµi
i , x ≥ 1,

(46)
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where 0 < ε < min{min1≤i≤n
{
piµi

} − 1,min1≤i≤n{pi + piÃi}}, in the previous inequality.
Since ||( f εi )µi ||pi = (1/ε)1/pi , the right-hand side of inequality (45) becomes Cn/ε. On the other hand we

easily get

H ′ f εi (xi) =


0, 0 < xi < 1,

piµi

piµi−1−ε ·
x

piµi−1−ε
piµi

i −1
xi

, x ≥ 1,
(47)

and the left-hand side of the inequality (45), denoted here with L, reads

L = φ(ε)
∫

[1,∞⟩n
K(x)

n∏
i=1

x
1
pi
+Ãi−µi

i

(
x

piµi−1−ε
piµi

i − 1
)µi

dx,

where

φ(ε) =
n∏

i=1

(
piµi

piµi − 1 − ε

)µi

.

Further, the following inequality follows immediately from Lemma 1 and Lemma 2:
n∏

i=1

(
x

piµi−1−ε
piµi

i − 1
)µi

≥
n∏

i=1

x
µi− 1+ε

pi
i −

n∑
i=1

n∏
j=1
j,i

x
µi− 1+ε

pi
i .

Therefore, we have inequality

L ≥ φ(ε)I − φ(ε)
n∑

i=1

Ii (48)

where

I =
∫

[1,∞⟩n
K(x)

n∏
i=1

x
Ãi− εpi
i dx, Ii =

∫
[1,∞⟩n

K(x)x
1
pi
+Ãi−µi

i

n∏
j=1
j,i

x
Ã j− εpj

j .

In the sequel, we are going to estimate the integrals I and Ii, i = 1, 2, . . . ,n. Obviously, the integral I can be
rewritten as

I =
∫ ∞

1
x−1−ε

1

∫
[1/x1,∞⟩n−1

K(û1)
n∏

i=2

uÃi−ε/pi

i d̂1u

 dx1,

providing the inequality

I ≥
∫ ∞

1
x−1−ε

1

∫
Rn−1
+

K(û1)
n∏

i=2

uÃi−ε/pi

i d̂1u

 dx1 −
∫ ∞

1
x−1−ε

1

 n∑
i=2

∫
Di

K(û1)
n∏

j=2

uÃ j−ε/p j

j d̂1u

 dx1

=
1
ε

k1

(
Ã − ε1/p

)
−

∫ ∞

1
x−1−ε

1

 n∑
i=2

∫
Di

K(û1)
n∏

j=2

uÃ j−ε/p j

j d̂1u

 dx1,

(49)

whereDi = {(u2,u3, . . . ,un); 0 < ui ≤ 1/x1,u j > 0, j , i} and 1/p = (1/p1, . . . , 1/pn).

Without losing generality, it is enough to find the upper bound for the integral
∫
D2

K(û1)
∏n

j=2 uÃ j−ε/p j

j d̂1u.
Regarding (44), we have∫

D2

K(û1)
n∏

j=2

uÃ j−ε/p j

j d̂1u ≤ CK


∫
Rn−2
+

K(1, 0, u3, . . . ,un)
n∏

j=3

uÃ j−ε/p j

j du3 . . . dun


∫ 1/x1

0
uÃ2−ε/p2

2 du2

= CK(1 − ε/p2 + Ã2)−1xε/p2−Ã2−1
1 k1(Ã1 − ε/p1, Ã3 − ε/p3, . . . , Ãn − ε/pn),
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where k1(Ã1 − ε/p1, Ã3 − ε/p3, . . . , Ãn − ε/pn) is well defined since obviously
∑n

i=3 Ãi < s − n + 2. Hence, we
have ∫

Di

K(û1)
n∏

j=2

uÃ j−ε/p j

j d̂1u = xε/pi−Ãi−1
1 O(1), i = 2, 3, . . . ,n,

and consequently ∫ ∞

1
x−1−ε

1

 n∑
i=2

∫
Di

K(û1)
n∏

j=2

uÃ j−ε/p j

j d̂1u

 dx1 = O(1).

It remains to estimate integrals Ii, i = 1, 2, . . . , n. We have

Ii =

∫
[1,∞⟩n

K(x)x
1
pi
+Ãi−µi

i

n∏
j=1
j,i

x
Ã j− εpj

j dx =

∫
[1,∞⟩

x
1
pi
−µi− εp′i

−1

i


∫

[1/x1,∞⟩n−1
K(ûi)

n∏
j=1
j,i

u
Ã j− εpj

j d̂iu

 dxi

≤
∫

[1,∞⟩
x

1
pi
−µi− εp′i

−1

i


∫
Rn−1
+

K(ûi)
n∏

j=1
j,i

u
Ã j− εpj

j d̂iu

 dxi

= ki

(
Ã − ε1/p

) ∫
[1,∞⟩

x
1
pi
−µi− εp′i

−1

i dxi

=
1

µi − 1
pi
+ ε

p′i

ki

(
Ã − ε1/p

)
= O(1),

so inequality (48) yields relation

L ≥ φ(ε)
ε

k1

(
Ã − ε1/p

)
− φ(ε)O(1).

Furthermore, since the right-hand side of inequality (45) is equal to Cn/ε in the setting with functions (46),
the above inequality implies

Cn

ε
≥ φ(ε)
ε

k1

(
Ã − ε1/p

)
− φ(ε)O(1),

that is

Cn ≥ φ(ε)k1

(
Ã − ε1/p

)
− φ(ε)o(1). (50)

Obviously, if ε→ 0+, then

φ(ε)→
n∏

i=1

(
piµi

piµi − 1

)µi

,

thus, by letting ε→ 0+, the inequality (50) yields Cn ≥ m̄s
n(p, Ã,m), which contradicts with our assumption

0 < Cn < m̄s
n(p, Ã,m). Hence, m̄s

n(p, Ã,m) is the best possible constant in inequality (39).

With the help of Theorem 3, we also get the best possible constant factor in inequality (40).

Theorem 4. Let K : Rn
+ → R be non-negative measurable homogeneous function of degree −s, s > 0, fulfilling the

condition (44). Further, let 1/pi < µi ≤ 1, i = 1, 2, . . . ,n, and let the parameters Ãi, i = 2, . . . , n satisfy conditions as
in (36). Then, the constant factor m̄s

n−1(p, Ã,m) is the best possible in inequality (40).
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Proof. Suppose, on the contrary, that there exist a positive constant Cn−1, 0 < Cn−1 < m̄s
n−1(p, Ã,m) such that

the inequality (40) holds for all non-negative measurable functions fi : R+ → R, if we replace m̄s
n−1(p, Ã,m)

with Cn−1.
In that case, the left hand side of inequality (39), denoted here with L, can be rewritten in the following

form:

L =
∫
R+

x
1

pn
+Ãn

n

∫
Rn−1
+

K(x)
n−1∏
i=1

x
1
pi
+Ãi

i

(H ′ fi)µi (xi)d̂nx

 (H ′ fn)µn (xn)dxn.

Now, the application of the well-known Hölder’s inequality with conjugate exponents pn and p′n yields
inequality

L ≤ L′|| (H ′ fn)µn ||pn , (51)

where L′ denotes the left-hand side of inequality (40).
Furthermore, L′ ≤ Cn−1

∏n−1
i=1 || fiµi ||pi , while the Hardy inequality yields inequality

|| (H ′ fn)µn ||pn ≤
(

pnµn

pnµn − 1

)µn

|| fnµn ||pn .

Hence, the relation (51) yields inequality

L ≤ Cn−1

(
pnµn

pnµn − 1

)µn n∏
i=1

|| fiµi ||pi . (52)

Finally, taking into account our assumption 0 < Cn−1 < m̄s
n−1(p, Ã,m), we have

0 < Cn−1

(
pnµn

pnµn − 1

)µn

< m̄s
n−1(p, Ã,m)

(
pnµn

pnµn − 1

)µn

= m̄s
n(p, Ã,m).

Hence, inequality (52) contradicts with the fact that m̄s
n(p, Ã,m) is the best possible constant factor in

inequality (39).
Thus the assumption that m̄s

n−1(p, Ã,m) is not the best possible was false. That completes the proof.

Remark 5. Since
∑n

i=1 Ãi = s − n, the requirement (36) in the setting with the above mentioned parameters
reads: k1(Ã) < ∞ if Ãi > −1, i = 1, 2, . . . ,n, n ≥ 2.

5. Two examples and concluding remarks

This section is devoted to the results from the previous two sections in some particular settings. In such
a way we shall obtain generalizations of some recent results, mentioned in the Introduction. More precisely,
we shall consider two particular homogeneous kernels discussed in the Introduction.

5.1. First example

A typical example of the homogeneous kernel with the negative degree of homogeneity is the function
K : Rn

+ → R defined by

K(x) =
1(∑n

i=1 xi
)s , s > 0. (53)
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Clearly, K is homogeneous function of degree −s, and the constant factors ki(piAi) can be expressed in the
terms of the usual Gamma function Γ. For that sake, we use the well-known formula∫

Rn−1
+

∏n−1
i=1 uai−1

i(
1 +

∑n−1
i=1 ui

)∑n
i=1 ai

d̂nu =
∏n

i=1 Γ(ai)
Γ
(∑n

i=1 ai
) , (54)

which holds for ai > 0, i = 1, 2, . . . n (see, for instance [2]). In such a way, the constant factors ki(piAi),
i = 1, 2, . . . ,n, involved in the inequalities (32) and (34) become

ki(piAi) =
Γ
(
s − n + 1 − piαi + piAii

)
Γ(s)

n∏
j=1, j,i

Γ(1 + piAi j), i = 1, 2, . . . , n,

provided that Ai j > −1/pi, i , j and Aii − αi > (n − s − 1)/pi.
Moreover, if the parameters Ai j, i, j = 1, 2, . . . , n, satisfy the set of conditions (37), then the above constant

factor (taking into account the abbreviations Ãi, i = 1, 2, . . . ,n) reduces to

ki(piAi) =
1
Γ(s)

n∏
i=1

Γ(1 + Ãi), i = 1, 2, . . . ,n,

provided that Ãi > −1, i = 1, 2, . . . ,n. Now, if we substitute the parameters Ãi = ri − 1, ri > 0 and µi = 1,
i = 1, 2, . . . ,n, in the inequalities (39) and (40), we get∫

Rn
+

1(∑n
i=1 xi

)s

n∏
i=1

x
ri− 1

p′i
i

(H ′ fi) (xi)dx ≤
∏n

i=1 p′i
Γ(s)

n∏
i=1

Γ(ri)
n∏

i=1

|| fi||pi , (55)

and 
∫
R+

xn
rnp′n−1

∫
Rn−1
+

1(∑n
i=1 xi

)s

n−1∏
i=1

x
ri− 1

p′i
i

(H ′ fi) (xi)d̂nx


p′n

dxn


1/p′n

≤
∏n−1

i=1 p′i
Γ(s)

n∏
i=1

Γ(ri)
n−1∏
i=1

|| fiµi ||pi . (56)

Clearly, the kernel (53) satisfies the relation (44) equipped with the positive constant CK = 1. Therefore,
in accordance with Theorems 3 and 4 inequalities (55) and (56) contain the best possible constant factors
on the right-hand sides. Finally, if n = 2 inequalities (55) and (56) become inequalities (5) and (6) in
the slightly altered form, due to the well-known relationship between the Gamma and Beta function, i.e.
B(r1, r2) = Γ(r1)Γ(r2)/Γ(r1 + r2), r1, r2 > 0.

5.2. Second example
We conclude this paper with yet another homogeneous kernel of degree −s, that is

K(x) =
1

max{xs
1, . . . , x

s
n}
, s > 0. (57)

It is easy to show the integral formula∫
Rn−1
+

∏n−1
i=1 uai

i

max{1, xs
1, . . . , x

s
n−1}

d̂nu =
s∏n

i=1(1 + ai)
, (58)

where ai > −1 and
∑n

i=1 ai = s − n. Namely, the previous integral can be represented as∫
Rn−1
+

∏n−1
i=1 uai

i

max{1, xs
1, . . . , x

s
n−1}

d̂nu =
∫
D0

n−1∏
i=1

uai
i d̂nu +

n−1∑
i=1

∫
Di

∏n−1
k=1 uak

k

xs
i

d̂nu,
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with the regions D0 = {(u1,u2, . . . ,un−1); uk ≤ 1, k = 1, 2, . . . , n − 1} and Di = {(u1,u2, . . . ,un−1); ui ≥ 1, uk ≤
ui, k , i}, i = 1, 2, . . . ,n − 1. By using the well-known Fubini’s theorem we get formulas∫

D0

n−1∏
i=1

uai
i d̂nu =

1 + an∏n
k=1(1 + ak)∫

Di

∏n−1
k=1 uak

k

xs
i

d̂nu =
1 + ai∏n

k=1(1 + ak)
,

that is, we get (58) since
∑n

i=1 ai = s − n.
Finally, the inequalities (39) and (40) including the parameters Ãi = ri − 1, ri > 0, µi = 1, i = 1, 2, . . . ,n,

and the homogeneous kernel (57) reduce respectively to∫
Rn
+

1
max{xs

1, . . . , x
s
n}

n∏
i=1

x
ri− 1

p′i
i

(H ′ fi) (xi)dx ≤ s
n∏

i=1

p′i
ri

n∏
i=1

|| fi||pi , (59)

and 
∫
R+

xn
rnp′n−1

∫
Rn−1
+

1
max{xs

1, . . . , x
s
n}

n−1∏
i=1

x
ri− 1

p′i
i

(H ′ fi) (xi)d̂nx


p′n

dxn


1/p′n

≤ s
p′n

n∏
i=1

p′i
ri

n−1∏
i=1

|| fi||pi . (60)

Obviously, the kernel (57) fulfill condition (44), thus according to Theorems 3 and 4 inequalities (59) and
(60) involve the best possible constant factors. Moreover, inequalities (59) and (60) are multidimensional
extensions of inequalities (7) and (8), presented in the Introduction.
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