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Abstract. The main object of this paper is to prove two general theorems by using a two-parameter quasi-
f (β,σ)-power increasing sequence instead of a quasi-β-power increasing sequence. The first result (Theorem
2.1) in this paper covers the case when 0 < β < 1 and σ = 0. The second main result (Theorem 2.3) in this
paper covers the exceptional case when β = 1 and σ 5 0. Each of these theorems also includes several new
or known results as their special cases and consequences.

1. Introduction, definitions and preliminaries

A positive sequence {bn}n∈N is said to be almost increasing if there exists a positive increasing sequence
{cn}n∈N and two positive constants A and B such that (see [1])

Acn 5 bn 5 Bcn (n ∈N := {1, 2, 3, · · · }).

We write
BVO = BV ∩ CO,

where
CO :=

{
x : x = {xn}n∈N ∈ Ω and lim

n→∞
|xn| = 0

}
and

BV :=

x : x = {xn}n∈N ∈ Ω and
∞∑

n=1

|xn − xn+1| < ∞
 ,

Ω being the space of all real-valued sequences.

Definition 1.1. A positive sequence {γn}n∈N is said to be a quasi-β-power increasing sequence if there exists
a constant K := K(γ; β) = 1 such that the following inequality holds true (see [10]):

Knβγn = mβγm (n = m = 1; m,n ∈N).
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∗Corresponding author
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It should be noted that every almost increasing sequence is a quasi β-power increasing sequence for any
nonnegative real number β, but the converse may not be true as can be seen by considering the following
example:

γn = n−β (n ∈N; β > 0).

Let {φn}n∈N be a sequence of complex numbers and let
∞∑

n=1
an be a given infinite series with the associated

sequence {sn}n∈N of partial sums. We denote by zαn and tαn the nth Cesàro means of order α of the sequences
{sn}n∈N and {nan}n∈N, respectively, that is,

zαn =
1

Aαn

n∑
v=1

Aα−1
n−v sv, (1)

and

tαn =
1

Aαn

n∑
v=1

Aα−1
n−v vav, (2)

where

Aαn = O(nα), Aα0 = 1 and Aα−n = 0 (n ∈N; α > −1). (3)

By definition, the following series
∞∑

n=1
an is said to be summable as follows:

φ-|C, α|k (k = 1; α > −1)
if (see [2])

∞∑
n=1

|φn(zαn − zαn−1)|k < ∞. (4)

But, since (see [9])
tαn = n(zαn − zαn−1),

where zαn is given by (1), the condition (4) can also be written as follows:

∞∑
n=1

n−k|φntαn |k < ∞. (5)

In the special case when

φn = n1− 1
k and φn = nδ+1− 1

k (n ∈N; k = 1),

the (φ-|C, α|k)-summability is the same as the relatively more familiar summabilities:

|C, α|k and |C, α; δ|k,

respectively.
Recently, by making use of Definition 1.1, Bor and Özarslan [7] proved the following theorem.

Theorem 1.2. Let {Xn}n∈N be a quasi-β-power increasing sequence for some real parameter β (0 < β < 1), where

Xn := Xn(β) (n ∈N; 0 < β < 1).

Suppose also that there exit sequences {κn}n∈N and {λn}n∈N ∈ BVO such that

|∆λn| 5 κn, (6)
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κn → 0 (n→∞), (7)
∞∑

n=1

n|∆κn|Xn < ∞ (8)

and

|λn|Xn = O(1) (n→∞). (9)

If there exists an ϵ > 0 such that the sequence
{
nϵ−k|φn|k

}
n∈N is non-increasing and if the sequence

{
wαn
}
n∈N, defined

by (see [11])

wαn =


|tαn | (α = 1)

max
15v5n

{|tαv |} (0 < α < 1),
(10)

satisfies the following condition:

m∑
n=1

n−k (|φn|wαn
)k = O(Xm) (m→∞), (11)

then the series
∞∑

n=1
anλn is summable as follows:

φ-|C, α|k (k = 1; 0 < α 5 1; kα + ϵ > 1).

Remark 1.3. Here, in the hypothesis of Theorem 1.2, we have added the following condition:

{λn}n∈N ∈ BVO.

The aim of this paper is to derive extensions of Theorem 1.2 by using a new class of power increas-
ing sequences. For this purpose, we need the concept of the two-parameter quasi- f (β,σ)-power increasing
sequences given by Definition 1.4 below.

Definition 1.4. A positive sequence c = {cn}n∈N is said to be a two-parameter quasi- f (β,σ)-power increasing
sequence if there exists a constantK given by

K := K
(
c; f (β,σ)

)
= 1

such that the following inequality holds true (see, for details, [13] and [12, p. 703] for the case when 0 < β < 1
and σ = 0):

K f (β,σ)
n cn = f (β,σ)

m cm (n = m = 1; m,n ∈N),

where
f (β,σ) =

{
f (β,σ)
n

}
n∈N =

{
nβ(log n)σ

}
n∈N (σ ∈ R; 0 < β 5 1).

Clearly, if we choose σ = 0, then a quasi- f (β,σ)-power increasing sequence is precisely the same as the
above-defined quasi-β-power increasing sequence.

2. A set of main results

Our first main result (Theorem 2.1 below) is based essentially upon Definition 1.4 for the case when
0 < β < 1 and σ = 0. It provides one of our proposed extensions of Theorem 1.2 of the preceding section.



H. Bor et al. / Filomat 26:4 (2012), 871–879 874

Theorem 2.1. Let {λn}n∈N ∈ BVO and let {Xn}n∈N be a quasi- f (β,σ)-power increasing sequence for some real
parameter β (0 < β < 1) and some real parameter σ (σ = 0), where

Xn := Xn(β, σ) (n ∈N; σ = 0; 0 < β < 1).

If the conditions involved in (6) to (9) and (11) are satisfied, then the series
∞∑

n=1
anλn is summable as follows:

φ-|C, α|k (k = 1; 0 < α 5 1; σ = 0; kα + ϵ > 1).

Remark 2.2. If, as in Theorem 2.1, we assume that {Xn}n∈N is a quasi- f (β,σ)-power increasing sequence,
where

f (β,σ) =
{

f (β,σ)
n

}
n∈N =

{
nβ(log n)σ

}
n∈N (σ = 0; 0 < β < 1), (12)

then the sequence
{
nβ(log n)σ Xn

}
n∈N is non-decreasing. So, as a special case, we can take

Xn = n−β(log n)−σ (n ∈N; σ = 0; 0 < β < 1). (13)

Under this assumption, we find that

∞∑
n=1

n |∆κn|Xn < ∞ =⇒
∞∑

n=1

κnXn < ∞ and nκnXn = O(1) (n→∞), (14)

which holds true for all sequences {Xn}n∈N for which the sequence
{

f (β,σ)
n Xn

}
n∈N is at least non-decreasing.

But, if we assume that {Xn}n∈N is a quasi-β-power increasing sequence, that is, if we assume that σ = 0 in
(12), then the sequence {Xn}n∈N in (13) would no more imply the assertion in (14), because the sequence{
nβXn

}
n∈N is decreasing (that is, not necessarily non-decreasing) and, therefore, the assertion in (14) is no

longer satisfied. Thus, in general, Theorem 1.2 does not imply Theorem 2.1.

We next consider the seemingly exceptional case of Definition 1.4 and Theorem 2.1 when β = 1 and σ 5 0.
In this exceptional case, our proposed extension of Theorem 1.2 is given by Theorem 2.3 below.

Theorem 2.3. Let {λn}n∈N ∈ BVO and let {Xn}n∈N be a quasi- f (1,−σ)-power increasing sequence for some real
parameter σ (σ = 0), where

Xn := Xn(1,−σ) (n ∈N; σ = 0).

Suppose also that all of the conditions of Theorem 2 are satisfied with the condition (8) replaced by the following
condition:

∞∑
n=1

(n log n)Xn |∆κn| < ∞. (15)

Then the series
∞∑

n=1
anλn is summable as follows:

φ − |C, α|k (k = 1; 0 < α 5 1; kα + ϵ > 1).

We need each of the following lemmas in our proofs of Theorem 2.1 and Theorem 2.3.

Lemma 2.4. ([8]) If 0 < α 5 1 and 1 5 v 5 n, then∣∣∣∣∣∣∣∣
v∑

p=0

Aα−1
n−p ap

∣∣∣∣∣∣∣∣ 5 max
15m5v

∣∣∣∣∣∣∣∣
m∑

p=0

Aα−1
m−p ap

∣∣∣∣∣∣∣∣ . (16)
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Lemma 2.5. Except for the condition {λn}n∈N ∈ BVO, under the conditions on the sequences {Xn}n∈N, {κn}n∈N and
{λn}n∈N as expressed in the statement of Theorem 2, the following assertions hold true:

nκnXn = O(1) (n→∞) (17)

and
∞∑

n=1

κnXn < ∞. (18)

Proof. First of all, we observe that

nκnXn = nXn

∞∑
v=n

∆κv 5 nXn

∞∑
v=n

|∆κv|

= n1−β(log n)−σnβ(log n)σXn

∞∑
v=n

|∆κv|

5 n1−β(log n)−σ
∞∑

v=n

vβ(log v)σXv|∆κv|

5
∞∑

v=n

v1−β(log v)−σXvvβ(log v)σ|∆κv|

=

∞∑
v=n

vXv|∆κv| = O(1) (n→∞).

Now, since κn → 0, we have ∆κn → 0. Consequently, for a given positive number ϵ such that

0 < ϵ < β + ϵ < 1,

we get
∞∑

n=1

κnXn 5
∞∑

n=1

Xn

∞∑
v=n

|∆κv| =
∞∑

v=1

|∆κv|
v∑

n=1

Xn

=

∞∑
v=1

|∆κv|
v∑

n=1

nβ(log n)σXnn−β(log n)−σ

= O(1)
∞∑

v=1

|∆κv|vβ(log v)σXv

v∑
n=1

n−β(log n)−σ

= O(1)
∞∑

v=1

|∆κv|vβ(log v)σXv

v∑
n=1

nϵ(log n)−σn−β−ϵ

= O(1)
∞∑

v=1

|∆κv|vβXv(log v)σvϵ(log v)−σ
v∑

n=1

n−β−ϵ

= O(1)
∞∑

v=1

|∆κv|vβ+ϵXv

∫ v

0
x−β−ϵdx

= O(1)
∞∑

v=1

|∆κv|vβ+ϵXvv1−β−ϵ

= O(1)
∞∑

v=1

v|∆κv|Xv = O(1).
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This completes the proof of Lemma 2.5.

Lemma 2.6. Suppose that all of the conditions of Theorem 2.3 are satisfied. Then the assertions (17) and (18) of
Lemma 2.5 are also satisfied.

Proof. Under the hypotheses of Lemma 2.6, it is easily observed that

nκnXn = nXn

∞∑
v=n

∆κv 5 nXn

∞∑
v=n

|∆κv|

= (log n)σn(log n)−σXn

∞∑
v=n

|∆κv|

5 (log n)σ
∞∑

v=n

v(log v)−σXv |∆κv|

5
∞∑

v=n

(log v)σv(log v)−σXv |∆κv|

= O(1)
∞∑

v=1

(v log v)Xv |∆κv| = O(1).

Therefore, we have
∞∑

n=1

κnXn 5
∞∑

n=1

Xn

∞∑
v=n

|∆κv| =
∞∑

v=1

|∆κv|
v∑

n=1

Xn

=

∞∑
v=1

|∆κv|
v∑

n=1

n(log n)−σXnn−1(log n)σ

5
∞∑

v=1

|∆κv| v(log v)−σXv

v∑
n=1

n−1(log n)σ

= O(1)
∞∑

v=1

|∆κv| v(log v)−σXv

∫ v

1
(log x)σx−1dx

= O(1)
∞∑

v=1

|∆κv| v(log v)−σXv(log v)σ+1

= O(1)
∞∑

v=1

(v log v)Xv |∆κv| = O(1).

This evidently completes the proof of Lemma 2.6.

3. Proofs of Theorems 2.1 and 2.3

Proof of Theorem 2.1. Let Tαn be the nth (C, α)-mean of the sequence {nanλn}n∈N with 0 < α 5 1. Then, by
means of (2), we have

Tαn =
1

Aαn

n∑
v=1

Aα−1
n−v vavλv. (19)

Thus, by first applying Abel’s transformation and then using Lemma 2.4, we find that

Tαn =
1

Aαn

n−1∑
v=1

∆λv

v∑
p=1

Aα−1
n−p pap +

λn

Aαn

n∑
v=1

Aα−1
n−v vav
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and

|Tαn | 5
1

Aαn

n−1∑
v=1

|∆λv| ·

∣∣∣∣∣∣∣∣
v∑

p=1

Aα−1
n−p pap

∣∣∣∣∣∣∣∣ + |λn|
Aαn

∣∣∣∣∣∣∣
n∑

v=1

Aα−1
n−vvav

∣∣∣∣∣∣∣
5

1
Aαn

n−1∑
v=1

Aαv wαv |∆λv| + |λn|wαn

= Tαn,1 + Tαn,2.

Since

|Tαn,1 + Tαn,2|k 5 2k(|Tαn,1|k + |Tαn,2|k),

in order to complete the proof of Theorem 2.1, by using (5), it is sufficient to show that

∞∑
n=1

n−k|φnTαn,r|k < ∞ (r = 1, 2).

Next, when k > 1, by applying Hölder’s inequality with indices

k and k′
(1

k
+

1
k′
= 1
)
,

we get

m+1∑
n=2

n−k|φnTαn,1|k 5
m+1∑
n=2

n−k(Aαn)−k|φn|k
n−1∑

v=1

Aαv wαv |∆λv|


k

5
m+1∑
n=2

n−kn−αk|φn|k
n−1∑

v=1

vαk(wαv )k|∆λv|

n−1∑

v=1

|∆λv|


k−1

= O(1)
m∑

v=1

vαk(wαv )kκv

m+1∑
n=v+1

n−k|φn|k
nαk

= O(1)
m∑

v=1

vαk(wαv )kκv

m+1∑
n=v+1

nϵ−k|φn|k
nαk+ϵ

= O(1)
m∑

v=1

vαk(wαv )kκvvϵ−k|φv|k
m+1∑

n=v+1

1
nαk+ϵ

= O(1)
m∑

v=1

vαk(wαv )kκvvϵ−k|φv|k
∫ ∞

v

dx
xαk+ϵ

= O(1)
m∑

v=1

vκvv−k(wαv |φv|)k

= O(1)
m−1∑
v=1

∆(vκv)
v∑

r=1

r−k(wαr |φr|)k +O(1)mκm

m∑
v=1

v−k(wαv |φv|)k

= O(1)
m−1∑
v=1

|∆(vκv)|Xv +O(1)mκmXm
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= O(1)
m−1∑
v=1

|(v + 1)∆κv − κv|Xv +O(1)mκmXm

= O(1)
m−1∑
v=1

v|∆κv|Xv +O(1)
m−1∑
v=1

κvXv +O(1)mκmXm

= O(1) (m→∞),

by virtue of the hypotheses of Theorem 2 and Lemma 2. Thus, finally, we have

m∑
n=1

n−k|φnTαn,2|k = O(1)
m∑

n=1

|λn|n−k(wαn |φn|)k

= O(1)
m−1∑
n=1

∆|λn|
n∑

v=1

v−k(wαv |φv|)k +O(1)|λm|
m∑

n=1

n−k(wαn |φn|)k

= O(1)
m−1∑
n=1

|∆λn|Xn +O(1)|λm|Xm

= O(1)
m−1∑
n=1

κnXn +O(1)|λm|Xm = O(1) (m→∞),

again by virtue of the hypotheses of Theorem 2.1 and Lemma 2.5. Therefore, we obtain

m∑
n=1

n−k|φnTαn,r|k = O(1) (m→∞; r = 1, 2).

This evidently completes the proof of Theorem 2.1. �

Proof of Theorem 2.3. Our proof of Theorem 2.3 is much akin to that of Theorem 2.1 which we have detailed
above fairly adequately. Indeed, in place of Lemma 2.5, Theorem 2.3 is proven by appealing instead to
Lemma 2.6. We choose to omit the details involved. �

4. Special cases and consequences

Each of the following special cases and consequences of one of our main results (Theorem 2.1 of the
preceding section) is worthy of mention here. Theorem 2.3 can similarly be applied in order to derive its
various (known or new) corollaries and consequences.

1. If, in Theorem 2.1, we take {Xn}n∈N as a positive non-decreasing sequence and let

ϵ = 1, σ = 0 and β = δ + 1 − 1
k

(n ∈N; 0 5 δ < 1; k = 1),

then we get a result of Bor [3].

2. By setting

ϵ = 1, σ = 0 and β = 1 − 1
k

(n ∈N; k = 1)

or
ϵ = 1, σ = 0, α = 1 and β = 1 − 1

k
(n ∈N; k = 1),

Theorem 2.1 would yield a new result dealing with the summability factor

|C, α|k or |C, 1|k,
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as the case may be.

3. If the sequence {Xn}n∈N is assumed to be an almost increasing sequence, and if

ϵ = 1, σ = 0 and β = 1 − 1
k

(n ∈N; k = 1),

then Theorem 2.1 reduces to a known result due to Bor and Srivastava [5].

4. If, in Theorem 2.1, we set

ϵ = 1, σ = 0 and β = δ + 1 − 1
k

(n ∈N; 0 5 δ < 1; k = 1),

then we get a result due to Bor [6] involving the summability factor |C, α; δ|k.

5. If the sequence {Xn}n∈N is taken to be an almost increasing sequence and σ = 0, then Theorem 2.1 would
lead us to a result of Bor and Seyhan [4].

6. By setting σ = 0 in Theorem 2.1, we readily obtain Theorem 1.2 proven earlier by Bor and Özarslan [7].
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