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Abstract. In this paper we consider trigonometric polynomials of semi-integer degree orthogonal with
respect to a linear functional, defined by a nonnegative Borel measure. By using a suitable vector form we
consider the corresponding Fourier sums and reproducing kernels for trigonometric polynomials of semi-
integer degree. Also, we consider the Christoffel function, and prove that it satisfies extremal property
analogous with the algebraic case.

1. Introduction

A trigonometric polynomial of semi-integer degree n + 1/2 is a trigonometric function of the following
form

n∑
ν=0

[
cν cos

(
ν +

1
2

)
x + dν sin

(
ν +

1
2

)
x
]
, (1)

where cν, dν ∈ R, |cn| + |dn| , 0. The coefficients cn and dn are called the leading coefficients.
The orthogonal trigonometric polynomials of semi-integer degree are connected with quadrature rules

with an even maximal trigonometric degree of exactness (an odd number of nodes). These quadrature
rules have application in the numerical integration of 2π-periodic functions. The first results on orthogonal
trigonometric polynomials of semi-integer degree on [0, 2π) with respect to a suitable weight function were
given in 1959 by Abram Haimovich Turetzkii (see [8]). Such orthogonal systems were studied in detail in
[2, 4, 5].

Let us denote by Tn, n ∈ N0, the linear space of all trigonometric polynomials of degree less than or
equal to n, i.e., the linear span of the following set {1, cos x, sin x, . . . , cos nx, sin nx}, by T

1/2
n , n ∈ N0, the

linear space of all trigonometric polynomials of semi-integer degree less than or equal to n + 1/2, i.e., the
linear span of {cos(k + 1/2)x, sin(k + 1/2)x : k = 0, 1, . . . ,n}, and by T and T1/2 the set of all trigonometric
polynomials and the set of trigonometric polynomials of semi-integer degree, respectively.
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A concept of orthogonality in the space T1/2 was considered more generally in [6], where orthogonal
trigonometric polynomials of semi-integer degree with respect to a linear functional, defined on the vector
space T, are investigated (the theory of orthogonal algebraic polynomials with respect to a moment func-
tional is well-known (see [1, 3])). This paper is in some sense a continuation of [6], and therefore we briefly
repeat some basic facts from [6].

Definition 1.1. Let m0 be a real number, {mC
n }, {mS

n}, n ∈ N, two sequences of real numbers, and let L be a
linear functional defined on the vector space T by

L[1] = m0, L[cos nx] = mC
n , L[sin nx] = mS

n, n ∈N.

Then L is called the moment functional determined by m0 and by the sequences {mC
n }, {mS

n}.

For the brevity, for a 2 × 2 type matrix [ti j] with trigonometric polynomials as its entries, by L[[ti j]] we
denote the following 2 × 2 type matrix [L[ti j]]. For each k ∈N0 by xk we denote the column vector

xk =
[
cos
(
k +

1
2

)
x sin

(
k +

1
2

)
x
]T
.

For k, j ∈N0, we define matrices mk, j by mk, j = L[xk(x j)T]. For each n ∈N0, the matrices mk, j, k, j = 0, 1, . . . ,n,
are used to define the so-called moment matrix Mn = [mk, j]n

k, j=0, and we denote its determinant by ∆n, i.e.,
∆n = det Mn.

When we talk about orthogonal trigonometric polynomials of semi-integer degree, the orthogonality
is considered only in terms of trigonometric polynomials of different semi-integer degrees, which means
that trigonometric polynomials of the same semi-integer degree have to be orthogonal to all trigonometric
polynomials of lower semi-integer degrees, but they may not be orthogonal among themselves. By

Ak(x) =
[
A(1)

k+1/2(x) A(2)
k+1/2(x)

]T
, k ∈N0,

we denote the vector whose elements are two linearly independent trigonometric polynomials of semi-
integer degree k+1/2, and we may also call Ak(x) a trigonometric polynomial of semi-integer degree k+1/2.
By

S{A0(x), . . . ,An(x)} =
{
A(1)

1/2(x),A(2)
1/2(x), . . . ,A(1)

n+1/2(x),A(2)
n+1/2(x)

}
, n ∈N0,

we denote the set consisting of components of the vectors Ak(x), k = 0, 1, . . . ,n. By 0 we denote the zero
vector [0 0]T, as well as the 2× 2 type zero matrix, which will be clear from the context, and finally, by I we
denote the identity matrix of type 2 × 2 and

Î =
[

0 −1
1 0

]
.

Definition 1.2. Let L be a moment functional. A sequence of trigonometric polynomials of semi-integer
degree {An(x)}+∞n=0 is said to be orthogonal with respect to L if the following conditions are satisfied:

L[xkAT
n ] = 0, k < n; L[xnAT

n ] = Kn, (2)

where Kn, n ∈N0, is an invertible 2 × 2 type matrix.

A system of orthogonal trigonometric polynomials of semi-integer degree with respect to the moment
functional L exists if and only if ∆n , 0, n ∈ N0 ([6, Theorem 2]), and it is uniquely determined by the
matrix Kn ([6, Theorem 1]).
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A moment functional L is said to be regular if ∆n , 0 for all n ∈ N0, and positive definite if for all
t ∈ T1/2, t , 0, the following inequality L[t2] > 0 holds. If a moment functional L is positive definite, then
∆n > 0 for all n ∈N0 ([6, Theorem 3]). Therefore, every positive definite moment functional is regular.

For an orthogonal system of trigonometric polynomials of semi-integer degree {An} with respect to a
regular moment functional L, by µn, n ∈N0, we denote the following matrix

µn = L[AnAT
n ]. (3)

The matrix µn, n ∈ N0, given by (3) is symmetric and invertible ([6, Lemma 4]). If L is a positive definite
moment functional, then all of the matrices µn, n ∈N0, given by (3), are positive definite ([6, Lemma 5]).

The set S{A0,A1, . . . ,An} forms a basis for T1/2
n , n ∈N0 ([6, Lemma 2]).

If L is a positive definite moment functional, then there exists a system of orthonormal trigonometric
polynomials of semi-integer degree {A∗n(x)}with respect toL, such that the following conditions are satisfied

L[A∗m(A∗n)T] = δm,nI, m,n ∈N0,

where δm,n is Kronecker delta function. The system of orthonormal trigonometric polynomials of semi-
integer degree with respect to a positive definite moment functional is uniquely determined up to the
multiplication by an orthogonal 2 × 2 type matrix.

In the sequel, by {An(x)}we will denote the sequence of the monic orthogonal trigonometric polynomials
of semi-integer degree with respect to a regular moment functional L (existence was proved in [6]), i.e.,
orthogonal trigonometric polynomials of semi-integer degree of the following form

An(x) =

 AC
n+1/2(x)

AS
n+1/2(x)

 ,
where AC

n+1/2(x) and AS
n+1/2(x) have the following expanded forms

AC
n+1/2(x) = cos

(
n +

1
2

)
x +

n−1∑
ν=0

[
c(n)
ν cos

(
ν +

1
2

)
x + d(n)

ν sin
(
ν +

1
2

)
x
]
, (4)

AS
n+1/2(x) = sin

(
n +

1
2

)
x +

n−1∑
ν=0

[
f (n)
ν cos

(
ν +

1
2

)
x + 1(n)

ν sin
(
ν +

1
2

)
x
]
, (5)

for some real coefficients c(n)
ν , d(n)

ν , f (n)
ν and 1(n)

ν , ν = 0, 1, . . . ,n − 1.
In [6, §3] it was proved that {An(x)} satisfies the following three-term recurrence relation

2 cos xAn = An+1 + αC
n An + β

C
n An−1, n = 0, 1, . . . ; A−1 = 0, (6)

with αC
n = L[2 cos xAnAT

n ]µ−1
n , n ∈N0 and βC

n = µnµ
−1
n−1, n ∈N, βC

0 = µ0, as well as the three-term recurrence
relation

2 sin xAn = −ÎAn+1 + αS
nAn + β

S
nAn−1, n = 0, 1, . . . ; A−1 = 0, (7)

where αS
n = L[2 sin xAnAT

n ]µ−1
n , n ∈N0, βS

n = µn Îµ−1
n−1, n ∈N.

If L is a positive definite moment functional, then by {A∗n(x)} we will denote the sequence of the
orthonormal trigonometric polynomials of semi-integer degree with respect toL, given by A∗n(x) = ν−1

n An(x),
where the matrix νn is the positive square root of the matrix µn, n ∈N0 (see [6, 9]). As it was said, {An(x)} is
a sequence of the monic orthogonal trigonometric polynomials of semi-integer degree with respect to L.

The paper is organized as follows. In the Section 2 an orthogonality with respect to a moment functional,
defined by using a nonnegative Borel measure on [−π, π), is considered. Special attention is devoted to the
cases of the Borel measures determined by a symmetric weight function as well as by a π-periodic weight
function. Fourier orthogonal series and reproducing kernels are investigated in Section 3. Also, it is proved
that the corresponding Christoffel function satisfies extremal property analogous with the algebraic case.
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2. Orthogonality with respect to a nonnegative Borel measure

Let dµ be a nonnegative Borel measure on R with an infinite set as its support. Then by

L[t] =
∫

t(x) dµ(x), t ∈ T,

is given the positive definite linear functional. Let us suppose also that the measure dµ is such that it has
finite moments of all orders, i.e.,

0 < m0 = L[1] =
∫

dµ(x) < +∞,

mC
n = L[cos nx] < +∞, mS

n = L[sin nx] < +∞, n ∈N.
In such cases we will refer to the measure dµ instead of to the positive definite linear functional L.

Of a special interest are examples of L expressible as integrals with respect to a nonnegative weight
function w on some interval of length 2π, vanishing there only on a set of measure zero. Here, we choose
the interval [−π, π). The orthogonality on any other interval [L,L+ 2π) can be reduced to [−π, π) by a linear
transformation (see Corollary 2.1 and Theorem 3.3 in [4]). Thus, we consider

L[t] =
∫ π

−π
t(x)w(x) dx, t ∈ T,

and refer it to the weight function w.
According to the previously introduced notation, by

An(x) =
[
AC

n+1/2(x) AS
n+1/2(x)

]T
we denote the monic orthogonal trigonometric polynomial of semi-integer degree n+ 1/2 with respect to a
weight function w on [−π, π).

2.1. Symmetric weight function

The first important case is an orthogonality with respect to a symmetric weight function w, such that
w(−x) = w(x), x ∈ (−π, π). It was proved in [4] that for such a weight function, orthogonal trigonometric
polynomials of semi-integer degree have a quite simple structure, i.e., AC

n+1/2(x) depends only on cosine
functions, and AS

n+1/2(x) depends only on sine functions, i.e.,

AC
n+1/2(x) =

n∑
ν=0

c(n)
ν cos

(
ν +

1
2

)
x, c(n)

n = 1

and

AS
n+1/2(x) =

n∑
ν=0

1
(n)
ν sin

(
ν +

1
2

)
x, 1(n)

n = 1.

Since AC
n+1/2(x), n ∈N0, is an even function and AS

n+1/2(x), n ∈N0, is an odd function,L[AC
n+1/2(x)AS

n+1/2(x)]
must be equal to zero. Therefore, all of the matrices µn, n ∈N0, are diagonal.

The recurrence relations (6) and (7) can be written in the following forms

An+1 = 2 cos xAn − αC
n An − βC

n An−1, n = 0, 1, . . . , (8)

and

An+1 = −2 sin xÎAn + ÎαS
nAn + ÎβS

nAn−1, n = 0, 1, . . . , (9)

where A−1 = 0. It can be easily seen that for a symmetric weight function w on [−π, π), all of the following
matrices αC

n , βC
n , ÎαS

n and ÎβS
n are diagonal.
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2.2. π-periodic weight function

The second interesting case is of a π-periodic weight function, i.e., w(x) = w(x + π), x ∈ [−π, 0). The
following theorem was proved in [2].

Theorem 2.1. If the weight function is periodic with the period π, then for the orthogonal trigonometric polynomials
of semi-integer degree the following equalities

AS
k+1/2(x) = (−1)k+1AC

k+1/2(x + π), AC
k+1/2(x) = (−1)kAS

k+1/2(x + π), k ∈N0,

hold.

Using Theorem 2.1, the following result can be easily proved.

Corollary 2.2. In a case of a π-periodic weight function the following equalities

L[(AC
n+1/2(x))2] = L[(AS

n+1/2(x))2], L[AC
n+1/2(x)AS

n+1/2(x)] = 0,

L[2 cos x(AC
n+1/2(x))2] = −L[2 cos x(AS

n+1/2(x))2],

L[2 sin x(AC
n+1/2(x))2] = −L[2 sin x(AS

n+1/2(x))2]

hold.

Lemma 2.3. In a case of a π-periodic weight function we have the following:

• all of the matrices βC
n in (8) and ÎβS

n in (9) are diagonal with the equal entries on the main diagonal;

• all of the matrices αC
n in (8) and ÎαS

n in (9) are symmetric with the opposite numbers as entries on the main
diagonal.

Proof. According to Corollary 2.2, in a case of a π-periodic weight function all of the matrices µn, n ∈ N0,
are diagonal with the equal entries on the main diagonal. By using that fact, Corollary 2.2 and obtained
formulas for the recursion coefficients for the monic orthogonal trigonometric polynomials of semi-integer
degree, it is easy to get what is stated by direct calculation.

3. Fourier orthogonal series and reproducing kernels

Let L2(dµ) denotes a Hilbert space of measurable functions f for which∫
R

| f (x)|2 dµ(x) < +∞,

and let define the linear functional L on L2(dµ) by

L[ f ] =
∫

f (x) dµ(x), f ∈ L2(dµ). (10)

The inner product ( · , · ) is given by

( f , 1) = L[ f1] =
∫

f (x)1(x) dµ(x), f , 1 ∈ L2(dµ).

Let {A∗n}n∈N0
, A∗n = [A∗(1)

n+1/2 A∗(2)
n+1/2]T, be a sequence of orthonormal trigonometric polynomials with

respect to L. Such a sequence exists, because L is a positive definite functional. For any function f ∈ L2(dµ),
we can consider its Fourier orthogonal series with respect to {A∗n}:

f ∼
∞∑

n=0

(
a(1)

n ( f )A∗(1)
n+1/2 + a(2)

n ( f )A∗(2)
n+1/2

)
, a(i)

n ( f ) = L[ f A∗(i)n+1/2], i = 1, 2,
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or, using the vector notation:

f ∼
∞∑

n=0

aT
n ( f )A∗n, an( f ) =

∫
f (x)A∗n(x) dµ(x) = L[ f A∗n]. (11)

Let us denote the product aT
n ( f )A∗n by An( f ). Then

An( f ; x) =
∫

f (y)An(x, y) dµ(y), An(x, y) = (A∗n(x))TA∗n(y).

The n-th partial sum of the Fourier expansion (11) can be written as follows

sn( f ; x) =
n∑

k=0

aT
n ( f )A∗n =

∫
Kn(x, y) f (y) dµ(y), (12)

where the function (x, y) 7→ Kn(x, y) is defined by

Kn(x, y) =
n∑

k=0

Ak(x, y). (13)

It is easy to see that An(x, y) = An(y, x) and then also Kn(x, y) = Kn(y, x). The function Kn is called the
reproducing kernel. The reason for that name lies in the following simple property.

Theorem 3.1. For all t ∈ T1/2
n we have the following representation

t(x) = L[Kn(x, ·)t(·)] =
∫

Kn(x, y)t(y) dµ(y).

Proof. Let {A∗n} be a sequence of orthonormal trigonometric polynomials of semi-integer degree. Every
t ∈ T1/2

n can be expanded in terms of the basis S{A∗0,A∗1, . . . ,A∗n} in the following way

t(x) =
n∑

k=0

cT
k (t)A∗k,

where, because of orthogonality, we have ck(t) = L[tA∗k]. Thus, we get

t(x) =
n∑

k=0

(L[tA∗k])TA∗k = L[Kn(x, ·)t(·)],

what was stated.

Notice that for x ∈ R and n ≥ 0 one has

Kn(x, x) =
n∑

k=0

Ak(x, x) =
n∑

k=0

(A∗k(x))TA∗k(x) =
n∑

k=0

∥A∗k(x)∥2 > 0,

where ∥ · ∥ denotes Euclidean norm on R2. The reciprocal of this function is the Christoffel function

λn(x) = (Kn(x, x))−1, (14)

and it satisfies the extremal property given in the following statement.
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Theorem 3.2. Let L be a positive definite linear functional. Then, for an arbitrary point x ∈ R the following equality

λn(x) = min
{
L[t2] : t(x) = 1, t ∈ T1/2

n

}
holds.

Proof. Let {A∗n} be a sequence of orthonormal trigonometric polynomials of semi-integer degree with respect
to L. If t ∈ T1/2

n it can be written as follows

t(x) =
n∑

k=0

aT
k (t)A∗k(x), ak(t) = L[tA∗k].

By the orthogonality we have

L[t2] =
n∑

k=0

aT
k (t)ak(t) =

n∑
k=0

∥ak(t)∥2.

If x is a fixed number and t ∈ T1/2
n such that t(x) = 1, then, by Cauchy’s inequality (see [7]), we get

1 = t2(x) =

 n∑
k=0

aT
k (t)A∗k(x)


2

≤
 n∑

k=0

∥ak(t)∥∥A∗k(x)∥


2

≤
n∑

k=0

∥ak(t)∥2
n∑

k=0

∥A∗k(x)∥2 = L[t2]Kn(x, x),

from which follows

L[t2] ≥ 1
Kn(x, x)

= λn(x).

Equality is attained only if the sequences {ak(t)}nk=0 and {A∗k(x)}nk=0 are proportional, i.e., if ak(t) = γA∗k(x),
k = 0, 1, . . . ,n, for some real constant γ. Then we have

1 = t(x) =
n∑

k=0

aT
k (t)A∗k(x) =

n∑
k=0

γ(A∗k(x))TA∗k(x) = γKn(x, x).

Thus, equality holds if and only if ak(t) = (Kn(x, x))−1A∗k(x).

Theorem 3.3. Let L be a positive definite moment functional given by (10) and f ∈ L2(dµ). Then, among all
trigonometric polynomials of semi-integer degree t in T

1/2
n , the value L[| f − t|2] becomes minimal if and only if

t(x) = sn( f , x).

Proof. Let S{A∗1, . . . ,A∗n} be an orthonormal basis of T1/2
n . For any t ∈ T1/2

n there exist bk, k = 0, 1, . . . , n, such
that

t(x) =
n∑

k=0

bT
k A∗k(x).

According to the orhonormal property of {A∗k} and (11) we have

0 ≤ L[| f − t|2] = L[ f 2] − 2
n∑

k=0

bT
k L[ f A∗k] +

n∑
k=0

bT
k bk

= L[ f 2] − 2
n∑

k=0

bT
k ak( f ) +

n∑
k=0

bT
k bk

= L[ f 2] −
n∑

k=0

aT
k ( f )ak( f ) +

n∑
k=0

(
aT

k ( f )ak( f ) + bT
k bk − 2bT

k ak( f )
)
.
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The third term on the right hand side in previous inequality is nonnegative according to Cauchy’s inequality,
and it vanishes for bk = ak( f ), k = 0, 1, . . . ,n. Therefore, the value L[| f − t|2] is minimal if and only if
t(x) = sn( f , x).

Remark 3.4. From the previous theorem in case when minimum is attained we get Bessel’s inequality:

+∞∑
k=0

(ak( f ))Tak( f ) ≤ L[ f 2].
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[3] G. Mastroianni, G.V. Milovanović, Interpolation Processes - Basic Theory and Applications, Springer Monographs in Mathematics,
Springer - Verlag, Berlin - Heidelberg, 2008.
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