Fuzzy Hyper p-ideals of Hyper BCK-algebras

M. Aslam Malika, Muhammad Touqeerb

aDepartment of Mathematics, University of the Punjab, Quaid-e-Azam Campus, Lahore-54590, Pakistan
bDepartment of Mathematics, University of the Punjab, Quaid-e-Azam Campus, Lahore-54590, Pakistan

Abstract. The paper is a reflection of “fuzzy sets” applied to “hyper p-ideals” and their comparison with simple “fuzzy hyper BCK-ideals”. The idea of “fuzzy (weak, strong) hyper p-ideals” is presented and characterization of these ideals is conferred using different concepts like that of “level subsets, hyper homomorphic pre-image” etc. The connections between “fuzzy (weak, strong) hyper p-ideals” are discussed and “the strongest fuzzy relation” on a “hyper BCK-algebra” is conferred.

1. Introduction

The “hyper structure theory” was presented by Marty [16], in 1934, at the “8th Congress of Scandinavian Mathematicians”. Now a days hyperstructures are widely used in both pure and applied mathematics. During the exploration of properties of set difference, Imai and Iseki in 1966 bring together a set of axioms commonly known as BCK-algebras. Komori [14] in 1983, introduced a new class of algebras called BCC-algebras or BIC^+-algebras. Dudek et al. [5, 8] discussed the properties of branches, ideals and atoms in weak BCC-algebras. Dudek [4] introduced the concept of solid weak BCC-algebras and further, he and Thomys [6] generalized the concept of BCC-algebras. Borzooei et al. [2] discussed the applications of hyperstructures in BCC-algebras. Later in 2000, this theory was applied to BCK-algebras by Jun et al. [13]. Jun et al. [12], deliberated the properties of “fuzzy strong hyper BCK-ideals”. The most apposite theory of “fuzzy sets” which is a tool for handling with uncertainties was presented by Zadeh [17] in 1965. Dudek et al. [7], “applied the fuzzy sets to BCC-algebras”. Moreover in 2001, “Jun and Xin [10] applied the fuzzy set
theory to hyper BCK-algebras”. This paper confers, “the concept of fuzzification of (weak, strong) hyper p-ideals in hyper BCK-algebras” and associated properties.

2. Preliminaries

“If H is a non-empty set with the hyperoperation ‘o’ from $H \times H$ into $P^*(H)$ the collection of all non-empty subsets of H, then for any subsets A and B of H by $A \circ B$ we denote the set $\bigcup \{a \circ b | a \in A, b \in B\}$”. “If $A = \{a\}$, then instead of $\{a\} \circ B$ we write $a \circ B$”.

Definition 2.1. [13] “Hyper BCK-algebra is a non-empty set H equipped with a hyperoperation “\circ” and a constant 0 fulfilling the following conditions:

(HK1) $(u \circ w) \circ (v \circ w) \ll u \circ v$

(HK2) $(u \circ v) \circ w = (u \circ w) \circ v$

(HK3) $u \circ H \ll \{u\}$

(HK4) $u \ll v$ and $v \ll u$ imply $u = v$

for any $u, v, w \in H$. Here $u \ll v$ is defined by $0 \in u \circ v$ and for any $G, I \subseteq H$, $G \ll I$ is defined as $\forall a \in G, \exists b \in I$ such that $a \ll b$. The relation “\ll” is called the hyper order in H”.

Proposition 2.2. [13] “For a hyper BCK-algebra H, the following properties are obvious:

(i) $u \circ 0 = \{u\}$

(ii) $u \circ v \ll u$

(iii) $0 \circ G = \{0\}$

(iv) $v \ll w$ implies $u \circ w \ll u \circ v$

(v) $G \subseteq I$ implies $G \ll I$

for any $u, v, w \in H$ and for non-empty subsets G and I of H”.

Moreover for the basic study relevant to “hyper BCK-subalgebras and (weak, strong, reflexive) hyper BCK-ideals”, please see [13]. From now onwards, H will represent a “hyper BCK-algebra”.

Lemma 2.3. [12, 13] For any H,

(i) “any strong hyper BCK-ideal of H is a hyper BCK-ideal of H”.

(ii) “any hyper BCK-ideal of H is a weak hyper BCK-ideal of H”.

Lemma 2.4. [12] “For any reflexive hyper BCK-ideal I of H, if $u \circ v \cap I \neq \emptyset$ then $u \circ v \ll I$, $\forall u, v \in H$”.

Proposition 2.5. [11] “If G is a subset of H and I is any hyper BCK-ideal of H, such that, $G \ll I$ then $G \subseteq I$”.

Definition 2.6. For a “hyper BCK-algebra” H, a non-empty subset $I \subseteq H$, containing 0 is known as

- a “weak hyper p-ideal” of H if $(a \circ c) \circ (b \circ c) \subseteq I$ and $b \in I$ imply $a \in I$.

- a “hyper p-ideal” of H if $(a \circ c) \circ (b \circ c) \ll I$ and $b \in I$ imply $a \in I$.

- a “strong hyper p-ideal” of H if $(a \circ c) \circ (b \circ c) \cap I \neq \emptyset$ and $b \in I$ imply $a \in I$.
Theorem 2.7. Every “(strong, weak) hyper p-ideal” is a “(strong, weak) hyper BCK-ideal”.

Proof. Let \(I \) be a “hyper p-ideal of \(H \)”. Then, for any \(i, j, k \in H \),
\[
(i \circ k) \circ (j \circ k) \ll I \text{ and } j \in I \text{ imply } i \in I.
\]
Putting \(k = 0 \) we get
\[
(i \circ 0) \circ (j \circ 0) \ll I \text{ and } j \in I \text{ imply } i \in I.
\]
Therefore, \((i \circ j) \ll I \text{ and } j \in I \Rightarrow i \in I. \) Hence proved. \(\square \)

Generally, every “(strong, weak) hyper BCK-ideal” is not a “(strong, weak) hyper p-ideal”. It can be observed with the help of examples given below:

Example 2.8. “Let \(H = \{0, a, b\} \). We contemplate the following table:

<table>
<thead>
<tr>
<th>(\circ)</th>
<th>0</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>[0]</td>
<td>[0]</td>
<td>[0]</td>
</tr>
<tr>
<td>a</td>
<td>[0,a]</td>
<td>[0]</td>
<td>[0,a]</td>
</tr>
<tr>
<td>b</td>
<td>[b]</td>
<td>[b]</td>
<td>[0,a]</td>
</tr>
</tbody>
</table>

Then \(H \) is a hyper BCK-algebra. Take \(I = \{0, a\} \). Then \(I \) is a “weak hyper BCK-ideal”, however, not a “weak hyper p-ideal of \(H \)” as \((b \circ b) \circ (0 \circ b) = \{0, a\} \subseteq I \text{ and } 0 \in I \text{ but } b \notin I. \)

Example 2.9. “Let \(H = \{0, a, b\} \). We contemplate the following table:

<table>
<thead>
<tr>
<th>(\circ)</th>
<th>0</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>[0]</td>
<td>[0]</td>
<td>[0]</td>
</tr>
<tr>
<td>a</td>
<td>[0]</td>
<td>[0]</td>
<td>[0]</td>
</tr>
<tr>
<td>b</td>
<td>[b]</td>
<td>[b]</td>
<td>[0,b]</td>
</tr>
</tbody>
</table>

Then \(H \) is a hyper BCK-algebra”. Take \(I = \{0, b\} \). Then, \(I \) is a “hyper BCK-ideal” but not a “hyper p-ideal” as \((a \circ a) \circ (0 \circ a) = \{0\} \ll I, 0 \in I \text{ but } a \notin I. \)

Here \(I = \{0, b\} \) is also a “strong hyper BCK-ideal” however, it is not a “strong hyper p-ideal of \(H \)” as \((a \circ a) \circ (0 \circ a) = \{0\} \cap I \neq \emptyset \text{ and } 0 \in I \text{ but } a \notin I. \)

Theorem 2.10. For any “hyper BCK-algebra”,
(i) “any hyper p-ideal is also a weak hyper p-ideal”,
(ii) “any strong hyper p-ideal is also a hyper p-ideal”.

Proof. (i) Let \(I \) is a “hyper p-ideal of \(H \)”. Let, \((i \circ k) \circ (j \circ k) \subseteq I \text{ and } j \in I \). Then, \((i \circ k) \circ (j \circ k) \subseteq I \text{ implies } (i \circ k) \circ (j \circ k) \ll I \) (by Proposition 2.2(v)), which along with \(j \in I \) implies \(i \in I \), which is our required condition.

(ii) Let, \(I \) is a “strong hyper p-ideal of \(H \)”. Let, \((i \circ k) \circ (j \circ k) \ll I \text{ and } j \in I \). Then, \(\forall \alpha \in (i \circ k) \circ (j \circ k), \exists \beta \in I \) such that \(\alpha \ll \beta \). Thus \(0 \in \alpha \circ \beta \) and \((\alpha \circ \beta) \cap I \neq \emptyset \), which along with \(\beta \in I \) implies \(\alpha \in I \), that is \((i \circ k) \circ (j \circ k) \subseteq I \). Thus \((i \circ k) \circ (j \circ k) \cap I \neq \emptyset \), which along with \(j \in I \) implies \(i \in I \), which is our required condition. \(\square \)
Generally, the converse of above theorem doesn’t hold. It can be observed by the following examples:

Example 2.11. “Let \(H = \{0, a, b\} \). We contemplate the following table:

<table>
<thead>
<tr>
<th>o</th>
<th>0</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>{0}</td>
<td>{0}</td>
<td>{0}</td>
</tr>
<tr>
<td>a</td>
<td>{a}</td>
<td>{0, a}</td>
<td>{0, a}</td>
</tr>
<tr>
<td>b</td>
<td>{b}</td>
<td>{b}</td>
<td>{0, a, b}</td>
</tr>
</tbody>
</table>

Then \(H \) is a hyper BCK-algebra”. Take \(I = \{0, b\} \). Clearly, \(I \) is a “weak hyper \(p \)-ideal of \(H \)”. But for \((a \circ a) \circ (0 \circ a) = \{0, a\} \ll I \) and \(0 \in I, a \notin I \), so \(I \) isn’t a “hyper \(p \)-ideal”.

Example 2.12. “We cogitate the table given below which explains the hyper BCK-algebra \(H = \{0, a, b\} \):

<table>
<thead>
<tr>
<th>o</th>
<th>0</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>{0}</td>
<td>{0}</td>
<td>{0}</td>
</tr>
<tr>
<td>a</td>
<td>{a}</td>
<td>{0, a}</td>
<td>{0, a}</td>
</tr>
<tr>
<td>b</td>
<td>{b}</td>
<td>{a, b}</td>
<td>{0, a, b}</td>
</tr>
</tbody>
</table>

Take \(I = \{0, a\} \)”. Clearly, \(I \) is a “hyper \(p \)-ideal” but not a “strong hyper \(p \)-ideal of \(H \)” as, \((b \circ 0) \circ (a \circ 0) \cap I = \{a, b\} \cap I \neq \emptyset \) and \(a \in I \) but \(b \notin I \).

For detail study of “fuzzy (weak, strong) hyper BCK-ideals”, one must consult [10].

Theorem 2.13. [10] For any \(H \),
(i) “any fuzzy hyper BCK-ideal of \(H \) is a fuzzy weak hyper BCK-ideal of \(H \)”.
(ii) “any fuzzy strong hyper BCK-ideal of \(H \) is a fuzzy hyper BCK-ideal of \(H \)”.

3. Fuzzy Hyper \(p \)-ideals

Now we present the idea of “fuzzy (weak, strong) hyper \(p \)-ideals” and confer associated properties.

Definition 3.1. For a “hyper BCK-algebra” \(H \), a “fuzzy set” \(\omega \) in \(H \) is called a

- “fuzzy weak hyper \(p \)-ideal of \(H \)” if, for any \(a, b, c \in H \)
 \[\omega(0) \geq \omega(a) \geq \min \{ \inf_{x \in \{0\}} \omega(x), \omega(b) \} \]

- “fuzzy hyper \(p \)-ideal of \(H \)” if, for any \(a, b, c \in H \)
 \[\omega(a) \geq \min \{ \inf_{x \in \{0\}} \omega(x), \omega(b) \} \]

- “fuzzy strong hyper \(p \)-ideal of \(H \)” if, for any \(a, b, c \in H \)
 \[\inf_{x \in \{0\}} \omega(x) \geq \omega(a) \geq \min \{ \sup_{x \in \{0\}} \omega(x), \omega(b) \} \]

Theorem 3.2. Any “fuzzy (weak, strong) hyper \(p \)-ideal” is a “fuzzy (weak, strong) hyper BCK-ideal”.
Proof. Let, $\tilde{\omega}$ is a “fuzzy hyper p-ideal of H”. Then, $\forall \ i, j, k \in H$ we get,

$$\tilde{\omega}(i) \geq \min \{ \inf_{a \in \mathcal{P}(i \lor (j \land k))} \tilde{\omega}(a), \tilde{\omega}(j) \}$$

Putting $k = 0$ we get,

$$\tilde{\omega}(i) \geq \min \{ \inf_{a \in \mathcal{P}(i \lor (j \lor 0))} \tilde{\omega}(a), \tilde{\omega}(j) \}$$

which gives,

$$\tilde{\omega}(i) \geq \min \{ \inf_{a \in \mathcal{P}(i \lor j)} \tilde{\omega}(a), \tilde{\omega}(j) \}$$

Hence proved. □

Generally, the converse of above theorem doesn’t hold. Consider the “hyper BCK-algebra $H = [0, a, b]$” defined by the table, given in Example (2.9). Define a “fuzzy set $\tilde{\omega}$ in H” by:

$$\tilde{\omega}(0) = 1, \tilde{\omega}(a) = 0.6, \tilde{\omega}(b) = 0$$

It is easy to substantiate that $\tilde{\omega}$ is a “fuzzy weak hyper BCK-ideal” but not a “fuzzy weak hyper p-ideal of H” as

$$\tilde{\omega}(a) = 0.6 < 1 = \min \{ \inf_{a \in \mathcal{P}(a \lor 0)} \tilde{\omega}(a), \tilde{\omega}(0) \}$$

Now, again consider the “hyper BCK-algebra $H = [0, a, b]$” defined by the table given in Example (2.9) and define a “fuzzy set $\tilde{\omega}$ in H” by:

$$\tilde{\omega}(0) = 0.8, \tilde{\omega}(a) = 0.5, \tilde{\omega}(b) = 0.3$$

Clearly $\tilde{\omega}$ is a “fuzzy hyper BCK-ideal” but not a “fuzzy hyper p-ideal” of H since

$$\tilde{\omega}(a) = 0.5 < 0.8 = \min \{ \inf_{a \in \mathcal{P}(a \lor 0)} \tilde{\omega}(a), \tilde{\omega}(0) \}$$

Example 3.3. “Let $H = [0, a, b, c]$ be a hyper BCK-algebra defined by the table given below:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>[a]</td>
<td>[0, a]</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>[b]</td>
<td>[b]</td>
<td>[0, a]</td>
<td>[0, a]</td>
</tr>
<tr>
<td>c</td>
<td>[c]</td>
<td>[c]</td>
<td>[c]</td>
<td>[0, a]</td>
</tr>
</tbody>
</table>

Define a fuzzy set $\tilde{\omega}$ in H by”:

$$\tilde{\omega}(0) = \tilde{\omega}(a) = 1, \tilde{\omega}(b) = \frac{1}{2}, \tilde{\omega}(c) = \frac{1}{2}$$

Clearly, $\tilde{\omega}$ is a “fuzzy strong hyper BCK-ideal” of but not a “fuzzy strong hyper p-ideal” of H since

$$\tilde{\omega}(b) = \frac{1}{2} < 1 = \min \{ \sup_{b \in \mathcal{P}(b \lor 0)} \tilde{\omega}(b), \tilde{\omega}(a) \}$$

Theorem 3.4. For any “hyper BCK-algebra”,

(i) “Any fuzzy hyper p-ideal is a fuzzy weak hyper p-ideal”.

(ii) “Any fuzzy strong hyper p-ideal is a fuzzy hyper p-ideal”.

Proof. (i) Let, $\tilde{\omega}$ be a “fuzzy hyper p-ideal of H”. Since, “every fuzzy hyper p-ideal is a fuzzy hyper BCK-ideal” (by Theorem 3.2) and “every fuzzy hyper BCK-ideal is a fuzzy weak hyper BCK-ideal” (by Theorem 2.13(i)), therefore $\tilde{\omega}$ is also a “fuzzy weak hyper BCK-ideal of H”. Hence $\tilde{\omega}$ satisfies $\tilde{\omega}(i) \geq \tilde{\omega}(i)$, for all $i \in H$. Also being a “fuzzy hyper p-ideal” $\tilde{\omega}$ satisfies:

$$\tilde{\omega}(i) \geq \min \{ \inf_{a \in \mathcal{P}(i \lor (j \lor k))} \tilde{\omega}(a), \tilde{\omega}(j) \}$$

$\forall \ i, j, k \in H$. Hence $\tilde{\omega}$ is a “fuzzy weak hyper p-ideal of H".
(ii) Let ω is a “fuzzy strong hyper p-ideal of H”. Since, “every fuzzy strong hyper p-ideal is a fuzzy strong hyper BCK-ideal” (by Theorem 3.2) and “every fuzzy strong hyper BCK-ideal is a fuzzy hyper BCK-ideal” (by Theorem 2.13(ii)), therefore ω is also a “fuzzy hyper BCK-ideal” of H. Hence for any $i, j \in H$, if $i \ll j$ then $\omega(i) \geq \omega(j)$.

Also being a “fuzzy strong hyper p-ideal”, ω satisfies for any $i, j, k \in H$

$$\omega(i) \geq \min \{\sup_{x \in (i \circ k) \cap (j \circ k)} \omega(x), \omega(j)\}$$

Since $\sup_{x \in (i \circ k) \cap (j \circ k)} \omega(x) \geq \omega(y), \forall y \in (i \circ k) \circ (j \circ k)$, therefore we get,

$$\omega(i) \geq \min \{\sup_{x \in (i \circ k) \cap (j \circ k)} \omega(x), \omega(j)\} \geq \min \{\omega(y), \omega(j)\},$$

for all $y \in (i \circ k) \circ (j \circ k)$

Since $\omega(y) \geq \inf_{x \in (i \circ k) \cap (j \circ k)} \omega(k), \forall y \in (i \circ k) \circ (j \circ k)$, therefore we have,

$$\omega(i) \geq \min \{\omega(y), \omega(j)\} \geq \min \{\inf_{x \in (i \circ k) \cap (j \circ k)} \omega(z), \omega(j)\},$$

that is

$$\omega(i) \geq \min \{\inf_{x \in (i \circ k) \cap (j \circ k)} \omega(z), \omega(j)\}$$

Hence proved. \square

Generally, the converse of above theorem doesn’t hold. Consider the “hyper BCK-algebra $H = [0, a, b]$” defined by the table given in Example (2.11). Define a “fuzzy set ω in H” by:

$$\omega(0) = 1, \omega(a) = 0.6, \omega(b) = 0.9$$

Then ω is a “fuzzy weak hyper p-ideal” but not a “fuzzy hyper p-ideal of H” as:

$$a \leq b \text{ but } \omega(a) = 0.6 < 0.9 = \omega(b)$$

Example 3.5. “Consider a hyper BCK-algebra $H = [0, a, b]$ defined by the following table:

<table>
<thead>
<tr>
<th></th>
<th>$[0]$</th>
<th>$[a]$</th>
<th>$[b]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$[0]$</td>
<td>$[0]$</td>
<td>$[0]$</td>
</tr>
<tr>
<td>a</td>
<td>$[0, a]$</td>
<td>$[a]$</td>
<td>$[a]$</td>
</tr>
<tr>
<td>b</td>
<td>$[b]$</td>
<td>$[b]$</td>
<td>$[0, b]$</td>
</tr>
</tbody>
</table>

Define a fuzzy set ω in H by”:

$$\omega(0) = \omega(a) = 1, \omega(b) = \frac{1}{2}$$

Then ω is a “fuzzy hyper p-ideal” but it is not a “fuzzy strong hyper p-ideal of H” as:

$$\omega(b) = \frac{1}{2} < 1 = \min \{\sup_{x \in [0, b]} \omega(x), \omega(a)\}$$

Theorem 3.6. A “fuzzy set ω in H”, ω is a “fuzzy (weak, strong) hyper p-ideal of H” iff $\forall t \in [0, 1], \omega_t \neq \emptyset$ is a “(weak, strong) hyper p-ideal of H”.

Proof. Let, ω is a “fuzzy hyper p-ideal of H”. Since $\omega_t \neq \emptyset$, so for any $i \in \omega_t$, $\omega(i) \geq t$. “Since every fuzzy hyper p-ideal is also a fuzzy weak hyper p-ideal” (by Theorem 3.4(ii)), so ω is also a “fuzzy weak hyper p-ideal of H”. Thus $\omega(0) \geq \omega(i) \geq t$, for all $i \in H$, which implies $0 \in \omega_t$.

Let $(i \circ k) \circ (j \circ k) \ll \omega_t$ and $j \in \omega_t$, then $\forall x \in (i \circ k) \circ (j \circ k), \exists y \in \omega_t$ such that $x \ll y$. So $\omega(x) \geq \omega(y) \geq t, \forall x \in (i \circ k) \circ (j \circ k)$. Thus $\inf_{x \in (i \circ k) \cap (j \circ k)} \omega(x) \geq t$. Also $\omega(j) \geq t$, as $j \in \omega_t$. Therefore

$$\omega(i) \geq \min \{\inf_{x \in (i \circ k) \cap (j \circ k)} \omega(x), \omega(j)\} \geq \min \{t, t\} = t$$

$\Rightarrow i \in \omega_t$. Hence ω_t is “hyper p-ideal” of H.

Conversely, Let, “$\omega_t \neq \emptyset$ is a “hyper p-ideal of H”, $\forall t \in [0, 1]$”. Let $i \ll j$ for some $i, j \in H$ and put $\omega(j) = t$.

Then $j \in \omega_t$. So $i \ll j \in \omega_t \Rightarrow i \ll \omega_t$. “Being a hyper p-ideal, ω_t is also a hyper BCK-ideal of H” (By Theorem
(2.7)) therefore by Proposition 2.5, \(i \in \omega_i \). Hence \(\bar{\omega}(i) \geq t = \omega(j) \). That is \(i \ll j \Rightarrow \bar{\omega}(i) \geq \bar{\omega}(j) \), for all \(i, j \in H \).

Moreover, for any \(i, j, k \in H \), let \(d = \min \{ \inf_{x \in (i \circ k) \cap (j \circ k)} \bar{\omega}(x), \ \bar{\omega}(j) \} \). Then \(\bar{\omega}(j) \geq d \Rightarrow j \in \omega_d \) and for all \(e \in (i \circ k) \cap (j \circ k), \bar{\omega}(e) \geq \inf_{x \in (i \circ k) \cap (j \circ k)} \bar{\omega}(z) \geq d \), which implies \(e \in \omega_d \). Thus \((i \circ k) \cap (j \circ k) \subseteq \omega_d \). By Proposition 2.2(v), \((i \circ k) \cap (j \circ k) \subseteq \omega_d \Rightarrow (i \circ k) \circ (j \circ k) \ll \omega_d \), which along with \(j \in \omega_d \) implies \(i \in \omega_d \). Hence we get

\[\bar{\omega}(i) \geq d = \min \{ \inf_{x \in (i \circ k) \circ (j \circ k)} \bar{\omega}(x), \ \bar{\omega}(j) \}. \]

Hence proved. \(\square \)

Theorem 3.7. If \(\bar{\omega} \) is a “fuzzy (weak, strong) hyper p-ideal of \(H \)" then, \(A = \{ i \in H | \omega(i) = \omega(0) \} \) is a “(weak, strong) hyper p-ideal of \(H \)".

Proof. Let, \(\bar{\omega} \) is a “fuzzy strong hyper p-ideal of \(H \)”. Clearly, \(0 \in A \). Let \((i \circ k) \cap (j \circ k) \neq \emptyset \) and \(j \in A \) for some \(i, j, k \in H \). Then \(\exists i_0, \in (i \circ k) \cap (j \circ k) \cap A \) such that \(\bar{\omega}(i_0) = \omega(0) \). Also \(\bar{\omega}(j) = \omega(0) \). Then

\[
\bar{\omega}(i) \geq \min \{ \sup_{x \in (i \circ k) \cap (j \circ k)} \bar{\omega}(x), \ \bar{\omega}(j) \} \geq \min \{ \bar{\omega}(i_0), \ \bar{\omega}(j) \} = \min \{ \bar{\omega}(0), \ \bar{\omega}(0) \} = \bar{\omega}(0) \Rightarrow \bar{\omega}(i) \geq \bar{\omega}(0)
\]

“Being a fuzzy strong hyper p-ideal, \(\bar{\omega} \) is also a fuzzy weak hyper p-ideal of \(H \)” (by Theorem 3.4), so it satisfies \(\bar{\omega}(0) \geq \bar{\omega}(i), \ \forall i \in H \). Therefore \(\bar{\omega}(0) = \bar{\omega}(i) \) and so \(i \in A \). Hence proved. \(\square \)

Likewise, as done above, we can Corroborate the result for the other two cases. The “transfer principle” for “fuzzy sets” described in [15] suggest the following result.

Theorem 3.8. Let \(\bar{\omega} \) be a “fuzzy set in \(H \)” defined by:

\[
\bar{\omega}(a) = \begin{cases}
 t & \text{if } a \in A \\
 0 & \text{if } a \notin A
\end{cases}
\]

\(\forall a \in H, \text{ where, } A \subseteq H \text{ and } t \in (0, 1] \). Then, “\(A \) is a (weak, strong) hyper p-ideal iff \(\bar{\omega} \) is a fuzzy (weak, strong) hyper p-ideal”.

Proof. Let, \(A \) is a “strong hyper p-ideal of \(H \)”. Then for any \(i, j, k \in H \) if \((i \circ k) \cap (j \circ k) \neq \emptyset \) and \(j \in A \) then \(i \in A \). Thus we have

\[
\bar{\omega}(i) = t = \min \{ \sup_{x \in (i \circ k) \cap (j \circ k)} \bar{\omega}(x), \ \bar{\omega}(j) \}
\]

If \((i \circ k) \cap (j \circ k) \cap A = \emptyset \) and \(j \notin A \) then \(\bar{\omega}(y) = 0 \), \(\forall y \in (i \circ k) \cap (j \circ k) \) and \(\bar{\omega}(j) = 0 \), therefore

\[
\min \{ \sup_{x \in (i \circ k) \cap (j \circ k)} \bar{\omega}(x), \ \bar{\omega}(j) \} = 0 \
\]

Now by Proposition 2.2(ii), “we have \(i \circ i \leq i, \ \forall i \in H \)”. Then, \(\forall z \in i \circ i, z \ll i \).

“Being a strong hyper p-ideal of \(H, A = \omega_i \) is a hyper p-ideal of \(H \)” (by Theorem 2.10(ii)) and hence \(\bar{\omega} \) is a “fuzzy hyper p-ideal” of \(H \) (by Theorem 3.6). Therefore

\[
z \ll i \Rightarrow \bar{\omega}(z) \geq \bar{\omega}(i), \ \forall z \in i \circ i
\]

Hence \(\bar{\omega} \) is a “fuzzy strong hyper p-ideal” of \(H \).

Conversely, Let \(\bar{\omega} \) is a “fuzzy strong hyper p-ideal of \(H \)”. Then, by Theorem 3.6, “\(\forall t \in (0, 1], \omega_t = A \) is a strong hyper p-ideal of \(H \)”. Correspondingly, we can verify the result for the other two types of ideals. \(\square \)
Theorem 3.9. The family of “fuzzy strong hyper p-ideals” is a “completely distributive lattice with respect to join and meet”.

Proof. Let \(\{ \omega_i \mid i \in I \} \) be a family of “fuzzy strong hyper p-ideals of \(H \)”. “Since \([0,1]\) is a completely distributive lattice with respect to the usual ordering in \([0,1]\), it is sufficient to corroborate that, \(\bigvee_{i \in I} \omega_i \) and \(\bigwedge_{i \in I} \omega_i \) are “fuzzy strong hyper p-ideals of \(H \)”.

For any \(a \in H \) we have,
\[
\inf_{x \in H} (\bigvee_{i \in I} \omega_i)(x) = \inf_{x \in H} (\sup_{i \in I} \omega_i(x))
\]
\[
= \sup_{i \in I} (\inf_{x \in H} \omega_i(x)) \geq \sup_{i \in I} \omega_i(a) = (\bigvee_{i \in I} \omega_i)(a)
\]
\[
\Rightarrow \inf_{x \in H} (\bigvee_{i \in I} \omega_i)(x) \geq (\bigvee_{i \in I} \omega_i)(a)
\]
Moreover, for any \(a, b, c \in H \), we have
\[
(\bigvee_{i \in I} \omega_i)(a) = \sup_{i \in I} \omega_i(a) \geq \sup_{i \in I} [\min \{\sup_{y \in [0,1]} \omega_i(y), \omega_i(b)\}]
\]
\[
= \min \{\sup_{i \in I} (\sup_{y \in [0,1]} \omega_i(y)), \sup_{i \in I} \omega_i(b)\}
\]
\[
= \min \{\sup_{y \in [0,1]} (\bigvee_{i \in I} \omega_i)(y), (\bigvee_{i \in I} \omega_i)(b)\}
\]
\[
\Rightarrow (\bigvee_{i \in I} \omega_i)(a) \geq \min \{\sup_{y \in [0,1]} (\bigvee_{i \in I} \omega_i)(y), (\bigvee_{i \in I} \omega_i)(b)\}
\]
Hence \(\bigvee_{i \in I} \omega_i \) is a “fuzzy strong hyper p-ideal” of \(H \).

Now, we prove that \(\bigwedge_{i \in I} \omega_i \) is a “fuzzy strong hyper p-ideal of \(H \)”.

For any \(a \in H \) we have,
\[
\inf_{x \in H} (\bigwedge_{i \in I} \omega_i)(x) = \inf_{x \in H} (\inf_{i \in I} \omega_i(x))
\]
\[
= \inf_{i \in I} (\inf_{x \in H} \omega_i(x)) \geq \inf_{i \in I} \omega_i(a) = (\bigwedge_{i \in I} \omega_i)(a)
\]
\[
\Rightarrow \inf_{x \in H} (\bigwedge_{i \in I} \omega_i)(x) \geq (\bigwedge_{i \in I} \omega_i)(a)
\]
Moreover, for any \(a, b, c \in H \), we have
\[
(\bigwedge_{i \in I} \omega_i)(a) = \inf_{i \in I} \omega_i(a) \geq \inf_{i \in I} [\min \{\sup_{y \in [0,1]} \omega_i(y), \omega_i(b)\}]
\]
\[
= \min \{\inf_{i \in I} (\sup_{y \in [0,1]} \omega_i(y)), \inf_{i \in I} \omega_i(b)\}
\]
\[
= \min \{\inf_{y \in [0,1]} (\bigwedge_{i \in I} \omega_i)(y), (\bigwedge_{i \in I} \omega_i)(b)\}
\]
\[
\Rightarrow (\bigwedge_{i \in I} \omega_i)(a) \geq \min \{\inf_{y \in [0,1]} (\bigwedge_{i \in I} \omega_i)(y), (\bigwedge_{i \in I} \omega_i)(b)\}
\]
Hence \(\bigwedge_{i \in I} \omega_i \) is a “fuzzy strong hyper p-ideal of \(H \)”.

Hence proved. \(\square \)

Correspondingly, as done above, we can Corroborate the result for the other two cases. For the definition of “the stronges fuzzy relation on \(H \)”, one must see [1].

Theorem 3.10. Let \(\omega \) be a “fuzzy set” and let \(\lambda_{ab} \) be “the strongest fuzzy relation on \(H \)”. \(\omega \) is a “fuzzy strong hyper p-ideal iff \(\lambda_{ab} \) is a fuzzy strong hyper p-ideal of \(H \times H \)”.

Proof. Let, \(\omega \) is a “fuzzy strong hyper p-ideal of \(H \)”. Consider
\[
\inf_{(x,y) \in (i_1,i_2) \times (j_1,j_2)} \lambda_{ab}(x,y) = \inf_{(x,y) \in (i_1,i_2) \times (j_1,j_2)} [\min \{\omega(x), \omega(y)\}]
\]
\[
= \min \{\inf_{(x,y) \in (i_1,i_2)} \omega(x), \inf_{(x,y) \in (i_1,i_2)} \omega(y)\} \geq \min \{\omega(i_1), \omega(i_2)\} = \lambda_{ab}(i_1,i_2)
\]
\[
\Rightarrow \inf_{(x,y) \in (i_1,i_2) \times (j_1,j_2)} \lambda_{ab}(x,y) \geq \lambda_{ab}(i_1,i_2), \forall (i_1,i_2) \in H \times H
\]
Now, for any \((i_1,i_2), (j_1,j_2), (k_1,k_2) \in H \times H\), consider
\[\lambda_\omega(i_1, i_2) = \min \{ \omega(i_1), \omega(i_2) \} \geq \min \{ \sup_{z \in (i_1 \circ k_1) \circ (j_1 \circ k_1)} \omega(z), \sup_{d \in (i_2 \circ k_2) \circ (j_2 \circ k_2)} \omega(d) \}, \omega(j_2) \]

where

\[z \in (i_1 \circ k_1) \circ (j_1 \circ k_1) \quad \text{and} \quad d \in (i_2 \circ k_2) \circ (j_2 \circ k_2) \]

\[\Rightarrow \lambda_\omega(i_1, i_2) \geq \min \{ \sup \{ \min \{ \omega(z), \omega(d) \}, \lambda_\omega(j_1, j_2) \} \} \]

Hence, \(\lambda_\omega \) is a “fuzzy strong hyper \(p \)-ideal of \(H \times H \).

Conversely, let \(\lambda_\omega \) is a “fuzzy strong hyper \(p \)-ideal of \(H \times H \). Then, we have

\[\inf_{(x,y) \in \{(i_1,i_2)\circ(k_1,k_2)\}} \lambda_\omega(x,y) \geq \lambda_\omega(i_1, i_2), \forall (i_1,i_2) \in H \times H \]

\[\Rightarrow \inf_{(x,y) \in \{(i_1,i_2)\circ(k_1,k_2)\}} \min \{ \omega(x), \omega(y) \} \geq \min \{ \omega(i_1), \omega(i_2) \} \]

\[\Rightarrow \min \{ \inf_{x \in i_1} \omega(x), \inf_{x \in i_2} \omega(x) \} \geq \min \{ \omega(i_1), \omega(i_2) \} \]

\[\Rightarrow \inf_{x \in i_1} \omega(x) \geq \sup \{ \omega(i), \omega(i) \}, \forall i \in H \]

Hence the first condition for \(\omega \) to be a “fuzzy strong hyper \(p \)-ideal” is satisfied.

Note that “being a fuzzy strong hyper \(p \)-ideal of \(H \times H \), \(\lambda_\omega \) is also a fuzzy weak hyper \(p \)-ideal of \(H \times H \)” (by Theorem 3.4), thus \(\lambda_\omega \) satisfies

\[\lambda_\omega(0, 0) \geq \lambda_\omega(i, i), \forall (0, 0), (i, i) \in H \times H \]

\[\Rightarrow \min \{ \omega(0), \omega(0) \} \geq \min \{ \omega(i), \omega(i) \} \]

\[\Rightarrow \omega(0) \geq \omega(i), \forall i \in H \]

Now, for any, \((i_1, i_2), (j_1, j_2), (k_1, k_2) \) in \(H \times H \), \(\lambda_\omega \) satisfies

\[\Rightarrow \lambda_\omega(i_1, i_2) \geq \min \{ \sup \lambda_\omega(e, f), \lambda_\omega(j_1, j_2) \} \]

where

\[(e, f) \in ((i_1, i_2) \circ (k_1, k_2)) \circ ((j_1, j_2) \circ (k_1, k_2)) \]

\[\Rightarrow \min \{ \omega(i_1), \omega(i_2) \} \geq \min \{ \sup \{ \min \{ \omega(e), \omega(f) \}, \min \{ \omega(j_1), \omega(j_2) \} \} \}

Putting \(i_1 = j_1 = k_1 = 0 \) we get

\[\Rightarrow \min \{ \omega(0), \omega(0) \} \geq \min \{ \sup \{ \min \{ \omega(0), \omega(f) \}, \min \{ \omega(0), \omega(j_2) \} \} \}

Where

\[(e, f) \in (0, (i_2 \circ k_2) \circ (j_2 \circ k_2)) \]

\[\Rightarrow \omega(i_2) \geq \min \{ \sup_{e \circ k_2} \omega(f), \omega(j_2) \} \], \text{since} \ \omega(0) \geq \omega(i), \ \forall i \in H \]

Similarly by putting \(i_2 = j_2 = k_2 = 0 \), we get,
Hence proved.

Hence we confer the product of two fuzzy hyper p-ideals.

\[\Rightarrow \omega(i_1) \geq \min \{\sup_{x \in (i_1 \times k_1) \cap (j_1 \times k_1)} \omega(e), \ \omega(j_1)\} \]

\[\text{Hence } \omega \text{ is a “fuzzy strong hyper } p \text{-ideal of } H'. \]

Identically, as done above, we can corroborate the statement for the other two cases.

Theorem 3.11. Let, \(f : X \to Y \) be an onto hyper BCK-algebras from a hyper BCK-algebra \(X \) to a hyper BCK-algebra \(Y \). If, \(\nu \) is a “fuzzy strong hyper \(p \)-ideal of \(Y \) then the hyper homomorphic pre-image \(\omega \) of \(\nu \) under \(f \) is a fuzzy strong hyper \(p \)-ideal of \(X \).

Proof. Let, \(\nu \) is a “fuzzy strong hyper \(p \)-ideal of \(Y \)”. Since, \(\omega \) is a “hyper homomorphic pre-image” of \(\nu \) under \(f \), so \(\omega \) is defined by \(\omega = \nu \circ f \) that is \(\omega(i) = \nu(f(i)), \forall i \in X \). Since \(\nu \) satisfies \(\inf_{f(i) = f(j), f(k) = f(l)} (\nu(f(i)), \nu(f(j))) \geq (\nu(f(k)), \nu(f(l))) \), \(\forall i, j, k, l \in X \) and \(f(i), f(j), f(k), f(l) \in Y \)

\[\Rightarrow \inf_{x \in \omega} \omega(x) \geq \omega(i), \forall i \in X \]

Now for any \(i, j, k \in X \) consider

\[\omega(i) = \nu(f(i)) \geq \min \{\sup_{y \in (i_1 \times k_1) \cap (j_1 \times k_1)} \nu(f(y)), \ \nu(f')\} \]

where \(f', k' \in Y \). Since \(f : X \to Y \) is an onto “hyper BCK-algebras”, so for \(f', k' \in Y, \exists j, k \in X \) such that \(f(j) = f', f(k) = k' \). Hence we get \(\omega(i) \geq \min \{\sup_{y \in (i_1 \times k_1) \cap (j_1 \times k_1)} \nu(f(y)), \ \nu(f(j))\} \)

\[\Rightarrow \omega(i) \geq \min \{\sup_{y \in (i_1 \times k_1) \cap (j_1 \times k_1)} \omega(y), \ \omega(j)\}, \forall i, j, k \in X \]

Hence proved.

Correspondingly, as done above, we can corroborate the statement for “fuzzy (weak) hyper \(p \)-ideals”. Lastly, we confer the product of two fuzzy \(p \)-ideals. One may consult [3], for basic material on the “product of fuzzy hyper BCK-ideals”.

Theorem 3.12. A fuzzy set \(\omega = \omega_1 \times \omega_2 \) is a “fuzzy (weak, strong) hyper \(p \)-ideal” of \(H = H_1 \times H_2 \) iff \(\omega_1 \) and \(\omega_2 \) are “fuzzy (weak, strong) hyper \(p \)-ideals” of \(H_1 \) and \(H_2 \) respectively.

Proof. Let \(\omega = \omega_1 \times \omega_2 \) be a “fuzzy hyper \(p \)-ideal” of \(H = H_1 \times H_2 \) and let \(i_1 \ll i_2 \) for some \(i_1, i_2 \in H_1 \). Then \((i_1, 0) \ll (i_2, 0) \) which implies \(\omega((i_1, 0)) = \omega_1(i_1) \geq \omega((i_2, 0)) = \omega_1(i_2) \), that is, \(\omega_1(i_1) \geq \omega_1(i_2) \)

Moreover for any \(i_1, j_1, k_1 \in H_1 \), let \(t = \min\{\inf_{i \in (i_1 \times k_1) \cap (j_1 \times k_1)} \omega_1(a), \omega_1(j_1)\} \)

Then, \(\forall b \in (i_1 \circ k_1) \circ (j_1 \circ k_1), \omega_1(b) \geq \inf_{i \in (i_1 \times k_1) \cap (j_1 \times k_1)} \omega_1(a) \geq t \) and \(\omega_1(j_1) \geq t \)

\[\Rightarrow \omega((b, 0)) \geq t \text{ and } \omega((j_1, 0)) \geq t, \forall (b, 0) \in ((i_1, 0) \circ (k_1, 0)) \circ ((j_1, 0) \circ (k_1, 0)) \]

\[\Rightarrow \omega((b, 0)) \in \omega_1 \text{ and } (j_1, 0) \in \omega_1 \]

\[\Rightarrow ((i_1, 0) \circ (k_1, 0)) \circ ((j_1, 0) \circ (k_1, 0)) \subseteq \omega_1 \text{ and } (j_1, 0) \in \omega_1 \]

\[\Rightarrow ((i_1, 0) \circ (k_1, 0)) \circ ((j_1, 0) \circ (k_1, 0)) \ll \omega_1 \text{ and } (j_1, 0) \in \omega_1 \]

\[\Rightarrow (i_1, 0) \in \omega_1, “\text{since } \omega_1 \text{ is a hyper } p \text{-ideal}” \text{ (by Theorem 3.6).} \]

Therefore, \(\omega((i_1, 0)) \geq t \). Thus \(\omega_1(i_1) \geq t = \min\{\inf_{i \in (i_1 \times k_1) \cap (j_1 \times k_1)} \omega_1(a), \omega_1(j_1)\} \), which is our required condition. Likewise, it can be proved that \(\omega_2 \) is a “fuzzy hyper \(p \)-ideal” of \(H_2 \). Conversely suppose that \(\omega_1 \) and \(\omega_2 \) are “fuzzy hyper \(p \)-ideals of \(H_1 \) and \(H_2 \)” respectively. For any \((i, l), (j, m) \in H = H_1 \times H_2 \), where \(i, j \in H_1 \) and \(l, m \in H_2 \), let \((i, l) \ll (j, m) \).
Hence proved. □

Correspondingly, as done above, we can corroborate the statement for the other two cases.

4. Conclusion

From our above discussion we can conclude that:

• a “(fuzzy) strong hyper p-ideal” is a “(fuzzy) hyper p-ideal” and a “(fuzzy) hyper p-ideal” is a “(fuzzy) weak hyper p-ideal”.

• λ_ω, “the strongest fuzzy relation” on a “hyper BCK-algebra”, is a “fuzzy (weak, strong) hyper p-ideal” in case, ω is a “fuzzy (weak, strong) hyper p-ideal”.

• “Hyper homomorphic pre-image”, defined on an “onto hyper homomorphism”, of a “fuzzy (weak, strong) hyper p-ideal” is also a “fuzzy (weak, strong) hyper p-ideal”.

• The product of two “fuzzy (weak, strong) hyper p-ideal” is again a “fuzzy (weak, strong) hyper p-ideal”.

References