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Abstract. Random compact operators are useful to study random differentiation and random integral
equations. In this paper, we define the random norm of R-bounded operators and study random norms of
differentiation operators and integral operators. The definition of random norm of R-bounded operators
led us to study the random operator theory.

1. Preliminaries

In this section, we adopt the usual terminology, notations and conventions of the theory of random
normed spaces, as in [1–3], and then we consider random normed algebras. Throughout this paper, ∆+ is
the space of distribution functions, that is, the space of all mappings F : R ∪ {−∞,∞} → [0, 1] such that F
is left-continuous and non-decreasing on R, F(0) = 0 and F(+∞) = 1. D+ is a subset of ∆+ consisting of all
functions F ∈ ∆+ for which l−F(+∞) = 1, where l− f (x) denotes the left limit of the function f at the point x,
that is, l− f (x) = limt→x− f (t). The space ∆+ is partially ordered by the usual point-wise ordering of functions,
i.e., F ≤ G if and only if F(t) ≤ G(t) for all t in R. For example, an element for ∆+ is the distribution function
εa given by

εa(t) =

 0, if t ≤ a,
1, if t > a.

The maximal element for ∆+ in this order is the distribution function ε0.

Definition 1.1. ([3]) A mapping T : [0, 1] × [0, 1]→ [0, 1] is a continuous triangular norm (briefly, a contin-
uous t-norm) if T satisfies the following conditions:

(a) T is commutative and associative;
(b) T is continuous;
(c) T(a, 1) = a for all a ∈ [0, 1];
(d) T(a, b) ≤ T(c, d) whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].

Typical examples of continuous t-norms are TP(a, b) = ab, TM(a, b) = min(a, b) and TL(a, b) = max(a + b −
1, 0) (the Łukasiewicz t-norm).

If T is a t-norm, then, for all x ∈ [0, 1] and n ∈ N ∪ {0}, x(n)
T is defined by 1 if n = 0 and T(x(n−1)

T , x) if n ≥ 1.
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We say the t-norm T has Σ property and write T ∈ Σ whenever, for any λ ∈ (0, 1), there exists γ ∈ (0, 1)
(which does not depend on n) such that

Tn−1(1 − γ, · · · , 1 − γ) > 1 − λ (1)

for each n ≥ 1.

Definition 1.2. ([3]) A random normed space (briefly, RN-space) is a triple (X, µ,T), where X is a vector space,
T is a continuous t-norm and µ is a mapping from X into D+ such that the following conditions hold:

(RN1) µx(t) = ε0(t) for all t > 0 if and only if x = 0;
(RN2) µαx(t) = µx( t

|α| ) for all x ∈ X, α , 0;
(RN3) µx+y(t + s) ≥ T(µx(t), µy(s)) for all x, y ∈ X and all t, s ≥ 0.

Example 1.3. Every normed space (X, ‖.‖) defines a random normed space (X, µ,TM), where

µx(t) =
t

t + ‖x‖

for all t > 0, and µx(t) = 0 for t ≤ 0 in which TM is the minimum t-norm. This space is called the induced
random normed space. Note that, if T = TP, the product t-norm, then the last example is a RN-space.

Definition 1.4. Let (X, µ,T) be an RN-space.
(1) A sequence {xn} in X is said to be convergent to x in X if, for every ε > 0 and λ > 0, there exists a

positive integer N such that µxn−x(ε) > 1 − λ whenever n ≥ N.
(2) A sequence {xn} in X is called a Cauchy sequence if, for every ε > 0 and λ > 0, there exists a positive

integer N such that µxm−xn (ε) > 1 − λ whenever n ≥ m ≥ N.
(3) An RN-space (X, µ,T) is said to be complete if and only if every Cauchy sequence in X is convergent

to a point in X. A complete RN-space is called Banach random space.

Definition 1.5. Let (X, µ,T) be an RN-space. We define the open ball Bx(r, t) and the closed ball Bx[r, t] with
center x ∈ X and radius 0 < r < 1 for any t > 0 as follows:

Bx(r, t) = {y ∈ X : µx−y(t) > 1 − r},

Bx[r, t] = {y ∈ X : µx−y(t) ≥ 1 − r}.

Theorem 1.6. ([5]) Let (X, µ,T) be an RN-space. Every open ball Bx(r, t) is an open set.

Different kinds of topologies can be introduced in a random normed space [3]. The (r, t)-topology is
introduced by a family of neighborhoods

{Bx(r, t)}x∈X, t>0, r∈(0,1).

In fact, every random norm µ on X generates a topology ((r, t)-topology) on X which has as a base the family
of open sets of the form

{Bx(r, t)}x∈X, t>0, r∈(0,1).

Remark 1.7. Since
{
Bx

(
1
n ,

1
n

)
: n = 1, 2, 3, · · ·

}
is a local base at x, the (r, t)-topology is first countable.

Theorem 1.8. ([5]) Every RN-space (X, µ,T) is a Hausdorff space.

Definition 1.9. Let (X, µ,T) be an RN-space. A subset A of X is said to be R-bounded if there exist t > 0 and
r ∈ (0, 1) such that µx−y(t) > 1 − r for all x, y ∈ A.

Ones can find others definitions of boundedness at [1].
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Definition 1.10. The RN-space (X, µ,T) is said to be randomly compact (simply R-compact) if every se-
quence {pm}m in X has a convergent subsequence {pmk }. A subset A of a RN-space (X, µ,T) is said to be
R-compact if every sequence {pm} in A has a subsequence {pmk } convergent to a vector p ∈ A.

Theorem 1.11. ([5]) Every R-compact subset A of an RN-space (X, µ,T) is closed and R-bounded.

Theorem 1.12. ([3]) If (X, µ,T) is an RN-space and {xn} is a sequence such that xn → x, then limn→∞ µxn (t) = µx(t)
almost everywhere.

Theorem 1.13. ([5]) Let (X, µ,T) be an RN-space such that every Cauchy sequence in X has a convergent subsequence.
Then (X, µ,T) is complete.

Lemma 1.14. ([5]) If (X, µ,T) is an RN-space, then
(1) The function (x, y) −→ x + y is continuous.
(2) The function (α, x) −→ αx is continuous.

Note that, in [6] the authors proved that every RN-space is topological vector space (see also Theorem
2 of [7], and [8, 11]).

Lemma 1.15. Let (X, µ,T) be RN-space, in which T ∈ Σ. If we define Eλ,µ : X2
−→ R+

∪ {0} by

Eλ,µ(x) = inf{t > 0 : µx(t) > 1 − λ}

for each λ ∈]0, 1[ and x ∈ X, then we have the following:
(1) For any κ ∈]0, 1[, there exists λ ∈]0, 1[ such that

Eκ,µ(x1 − xk) ≤ Eλ,µ(x1 − x2) + Eλ,µ(x2 − x3) + · · · + Eλ,µ(xk−1 − xk)

for any x1, ..., xk ∈ X;

(2) For any sequence {xn} in X, we have, µxn−x(t) −→ 1 if and only if Eλ,µ(xn − x)→ 0. Also the sequence {xn} is
Cauchy w.r.t. f if and only if it is Cauchy with Eλ,µ.

Proof. The proof is the same as in Lemma 1.6 of [9].

Note that, λ in Lemma 1.15 (1) does not depend on k (see [9]).

Definition 1.16. A linear operator Λ : (X, µ,T) −→ (Y, ν,T′) is said to be R-bounded if there exists a constant
h ∈ R − {0} such that

νΛx(t) ≥ µhx(t) (2)

for all x ∈ X and t > 0.

Theorem 1.17. (Continuity and boundedness) Let (X, µ,T) and (Y, ν,T′) be RN-spaces, in which T,T′ ∈ Σ. Let
Λ : X −→ Y be a linear operator. Then:

(a) Λ is continuous if and only if Λ is R-bounded;
(b) If Λ is continuous at a single point, it is continuous.

Proof. See Theorem 3.2 of [10].
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2. Random Norm of Operators

Let (X, µ,T) and (Y, µ,T) be RN-spaces and Λ : X −→ Y be a R-bounded linear operator. Define

η(Λ) = inf{h > 0 : µΛx(t) ≥ µhx(t)}, (3)

for each x ∈ X and t > 0. η(Λ) is called the operator random norm.

Lemma 2.1. Let (X, µ,T) and (Y, µ,T) be RN-spaces and Λ : X −→ Y be a R-bounded linear operator. Then

µΛx(t) ≥ µη(Λ)x(t), (4)

for each x ∈ X and t > 0.

Proof. Since Λ : X −→ Y is a R-bounded linear operator, then by (3) there exists a non-increasing sequence
{hn} converges to η(Λ) and satisfies at

µΛx(t) ≥ µhnx(t) (5)

for each x ∈ X and t > 0. Take the limit on n from the last inequality, we get (4).

Example 2.2. Let (X, µ,T) be RN-space. The identity operator I : X −→ X is R-bounded and

η(I) = inf{h > 0 : µIx(t) = µx(t)} = 1

for each x ∈ X and t > 0.

Example 2.3. Let (X, µ,T) and (Y, µ,T) be RN-spaces. The zero operator 0 : X −→ Y is R-bounded and

η(0) = inf{h > 0 : µ0(x)(t) = µ0(t) = 1} = 0

for each x ∈ X and t > 0.

Example 2.4. (Differentiation operator) Consider the Example 1.3. Let X be the RN-space of all polynomi-
als on J = [0, 1] with random norm given

µx(t) =

 0, if t ≤ 0,
minp∈J

t
t+|x(p)| , if t > 0.

A differentiation operator D is defined on X by

Dx(p) = x′(p),

where the prime denotes differentiation with respect to p. This operator is linear but not R-bounded.
Indeed, let xn(p) = pn where n ∈N. Then,

µx(t) = min
p∈J

t
t + |x(p)|

=
t

t + 1
,

for t > 0 and
Dxn(p) = npn−1.

Then
µDx(t) = min

p∈J

t
t + npn−1 =

t
t + n

,

for t > 0 and n ∈N. Now

η(D) = inf
{
h > 0 :

t
t + n

≥
t

t + h

}
= n.

Note that, n depended to choice of x ∈ X.
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Example 2.5. (Integral operator) Consider the Example 1.3. Let X be the RN-space of all continuous
function on J = [0, 1] i.e., C[0, 1] with random norm given

µx(t) =

 0, if t ≤ 0,
minp∈J

t
t+|x(p)| , if t > 0.

We can define an integral operator

S : C[0, 1]→ C[0, 1]

by y = Sx where

y(p) =

∫ 1

0
κ(p, α)x(α)dα.

Here κ is a given function, which is called the kernel of S and is assumed to be continuous on the closed
square G = J × J in the pα-plane, where J = [0, 1]. This operator is linear and R-bounded. The continuity of
κ on the closed square implies that κ is bounded, say, κ(p, α) ≤ k for all (p, α) ∈ G, where k is a positive real
number. Then,

µx(t) = min
p∈J

t
t + |x(p)|

=
t

t + 1
,

for t > 0 and

µSx(t) = min
p∈J

t

t + |
∫ 1

0 κ(p, α)x(α)dα|

≥ min
p∈J

t

t +
∫ 1

0 |k||x(α)|dα

≥ min
p∈J

t
t + |k||x(p)|

≥ µkx(t)

for t > 0 i.e., the integral operator S is R-bounded.

Theorem 2.6. Let (X, µ,T) be an RN-space, in which T ∈ Σ and X is finite dimensional on the field (F, µ′,T), then
every linear operator on X is R-bounded.

Proof. Let dim X = n and {e1, .., en} a basis for X. We take any

x =

n∑
j=1

α je j,

and consider any linear operator Λ on X. Since Λ is linear,

µΛx(t) = µ∑n
j=1 α jΛe j

(t)

for t > 0. By Theorem 6.1 of [5] and since T ∈ Σ, for every λ ∈ (0, 1), there exists γ ∈ (0, 1) and K0 ∈ F such
that

Eλ,µ′ (K0) ≥ 1
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and

Eλ,µ(Λx) = Eλ,µ(
n∑

j=1

α jΛe j)

≤

n∑
j=1

Eγ,µ(α jΛe j)

≤

n∑
j=1

|α j|max
1≤ j≤n

Eγ,µ(Λe j)

≤

n∑
j=1

|α j|M0Eλ,µ′ (K0)

≤ Eλ,µ′ (M0K0

n∑
j=1

|α j|)

≤ Eλ,µ(M0K0cx)

in which M0 = max1≤ j≤n Eγ,µ(Λe j). Put M0K0c = h, by Theorem 1.17, Λ is R-bounded.

Corollary 2.7. (Continuity, null space) Let (X, µ,T) and (Y, µ,T) be RN-spaces. Let Λ : X −→ Y be a R-bounded
linear operator. Then:

(a) xn → x implies Λxn → Λx;
(b) The null spaceN(Λ) = {x ∈ X : Λx = 0} is closed.

Proof. (a) Since Λ : X −→ Y is a R-bounded linear operator, we have

µΛxn−Λx(t) = µΛ(xn−x)(t)
≥ µη(Λ)(xn−x)(t)
→ 1,

for every t > 0.
(b) Let x ∈ N(Λ), then there exists a sequence {xn} inN(Λ) such that xn → x. By part (a) of this corollary,

we have Λxn → Λx. Since Λxn = 0, then Λx = 0 which implies that x ∈ N(Λ). Since x ∈ N(Λ) was arbitrary,
N(Λ) is closed.

3. Random Operator Space

Let (X, µ,T) and (Y, µ,T) be RN-spaces. In this section, first, we consider the set B(X,Y) consisting of all
R-bounded linear operators from X into Y. We want to show that B(X,Y) can itself be made into a normed
space. The whole matter is quite simple. First of all, B(X,Y) becomes a vector space if we define the sum
Λ1 + Λ2 of two operators Λ1,Λ2 ∈ B(X,Y) in a natural way by

(Λ1 + Λ2)x = Λ1x + Λ2x

and the product αΛ of Λ ∈ B(X,Y) and a scalar α by

(αΛ)x = αΛx.

Note that, if (3) hold, then for every λ ∈ (0, 1) we have

η(Λ) = inf{h > 0 : Eλ,µ(Λx) ≤ Eλ,µ(hx)} (6)
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and therefore

Eλ,µ(Λx) ≤ η(Λ)Eλ,µ(x) (7)

for x ∈ X. Then

Eµ(Λx) ≤ η(Λ)Eµ(x) (8)

for x ∈ X in which

Eµ(Λx) = sup
λ∈(0,1)

Eλ,µ(Λx) < ∞. (9)

Theorem 3.1. Let (X, µ,T) and (Y, µ,T) be RN-spaces, in which T ∈ Σ and X. The vector space B(X,Y) of all
R-bounded linear operators from X into Y is itself a normed space with norm defined by (3) whenever Eµ(x) < ∞.

Proof. In Example 2.3 we showed that η(0) = 0. Now, if η(Λ) = 0 we have µΛx(t) = 1 for each x ∈ X and
t > 0, which implies that Λx = 0 and Λ = 0. On the other hand,

η(αΛ) = inf{h > 0 : µαΛx(t) ≥ µhx(t)}
= inf{h > 0 : µΛx(t) ≥ µ h

α x(t)}

= |α| inf{h > 0 : µΛx(t) ≥ µhx(t)}
= |α|η(Λ).

Now, we prove triangle inequality for η. Let Λ,Γ ∈ B(X,Y). Then

µ(Λ+Γ)x(t) ≥ µη(Λ+Γ)x(t),

for each x ∈ X and t > 0. For every λ ∈ (0, 1) there exists γ ∈ (0, 1) such that both

Eλ,µ((Λ + Γ)x) ≤ η(Λ + Γ)Eλ,µ(x)

which implies that,

Eµ((Λ + Γ)x) ≤ η(Λ + Γ)Eµ(x) (10)

and

Eλ,µ((Λ + Γ)x) ≤ Eγ,µ(Λx) + Eγ,µ(Γx)
≤ [η(Λ) + η(Γ)]Eγ,µ(x)

which implies that,

Eµ((Λ + Γ)x) ≤ [η(Λ) + η(Γ)]Eµ(x) (11)

for each x ∈ X. From (10) and (11) we have

η(Λ + Γ) ≤ η(Λ) + η(Γ).

Theorem 3.2. Let (X, µ,T) and (Y, µ,T) be RN-spaces, in which T ∈ Σ and X. If Y is complete RN-space then
(B(X,Y), η) is complete whenever Eµ(x) < ∞.
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Proof. We consider an arbitrary Cauchy sequence {Λn} in (B(X,Y), η) and show that {Λn} converges to an
operator Λ ∈ B(X,Y). Since {Λn} is Cauchy, for every h > 0, there exists N ∈N such that if m,n ≥ N then

η(Λn −Λm) < h,

or
η(Λn −Λm)→ 0

whenever m,n tend to∞. For all x ∈ X and t > 0 we have

µΛnx−Λmx(t) = µ(Λn−Λm)x(t)

≥ µx

(
t

η(Λn −Λm)

)
(12)

→ 1

whenever m,n tend to∞. Then the sequence {Λnx} is Cauchy in complete RN-space (Y, µ,T) and so converges
to y ∈ Y depends on the choice of x ∈ X. This defines an operator Λ : X → Y, where y = Λx. The operator
Λ is linear since

lim Λn(αx + βz) = limαΛnx + lim βΛnz = α lim Λnx + β lim Λnz,

for x, z ∈ X and scalers α, β.
Now, we show that Λ is R-bounded and Λn → Λ. For every m,n ≥ N we have

µΛnx−Λmx(t) = µ(Λn−Λm)x(t)

≥ µx

(
t

η(Λn −Λm)

)
(13)

≥ µx

( t
h

)
.

On the other hand, Λmx → Λx when m tend to ∞. Using the continuity of the random norm, we obtain
from (12), for every n > N, x ∈ X and t > 0

µΛnx−Λx(t) = lim
m→∞

µ(Λn−Λm)x(t)

≥ lim
m→∞

µx

(
t

η(Λn −Λm)

)
(14)

≥ µx

( t
h

)
.

This shows that (Λn−Λ) with n > N is a R-bounded linear operator. Since Λn is R-bounded, Λ = Λn−(Λn−Λ)
is R-bounded, that is, Λ ∈ B(X,Y). From (14) we have

µx

(
t

η(Λn −Λ)

)
≥ µx

( t
h

)
.

Then
η(Λn −Λ) ≤ h

for every n > N. Hence
Λn

η
−→ Λ.

A functional is an operator whose range lies on the real line R or in the complex plane C. A R-bounded
linear functional is a R-bounded linear operator with range in the scalar field of the RN-space (X, µ,T). It
is of basic importance that the set of all linear functionals defined on a vector space X can itself be made
into a vector space. Let (F, µ′,T) be RN-space (F = R or C). The set X′ = B(X,F) is said to be random dual
space. The random dual space X′ is Banach space with the norm η.
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4. Compact Operators

Definition 4.1. (R-Compact linear operator). Let (X, µ,T) and (Y, µ,T′) be RN-spaces. An operator Λ :
X −→ Y is called a R-compact linear operator if Λ is linear and if for every R-bounded subset M of X, the
closure Λ(M) is R-compact.

Lemma 4.2. Let (X, µ,T) and (Y, µ,T) be RN-spaces. Then, every R-compact linear operator Λ : X −→ Y is
R-bounded, hence continuous.

Proof. Let U be a R-bounded set, then there exists r0 ∈ (0, 1) and t0 > 0 such that

µx(t0) ≥ 1 − r0,

for every x ∈ U. On the other hand, Λ(U) is R-compact and by Theorem 1.11 is R-bounded, then there exists
r1 ∈ (0, 1) and t1 > 0 such that

µΛx(t1) ≥ 1 − r1,

for every x ∈ U. By the intermediate value theorem there exists a positive real number h0 such that

µΛx(h0t0) ≥ µx(t0),

for every x ∈ U (note that by the last inequality h0 can not tend to zero), and so η(Λ) < ∞. Hence Λ is
R-bounded and by Theorem 1.17 is continuous.
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