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Some Symmetry Identities for the Unified Apostol-Type
Polynomials and Multiple Power Sums

Veli Kurta

aAkdeniz University, Faculty of Sciences Department of Mathematics, Antalya, TR-07058, Turkey

Abstract. The purpose of this paper is to introduce and investigate a new unification of unified family of
Apostol-type polynomials and numbers.We obtain some symmetry identities between these polynomials
and the generalized sum of integer powers.We give explicit relations for these polynomials and recurrence
relations related to multiple power sums.

1. Introduction, Definitions and Notations

The generalized Apostol-Bernoulli polynomials Bαn(x, λ) of orderα in x are defined by Luo and Srivastava
in [10, 11] through the generating relation

( t
λet − 1

)α
ext =

∞∑
n=0

Bαn(x, λ)
tn

n!
, (

∣∣∣t + logλ
∣∣∣ < 2π, 1α := 1),

where α and λ are arbitrary real or complex parameters and x ∈ R. The Apostol-Bernoulli polynomials and
the Apostol-Bernoulli numbers can be obtained from the generalized Apostol-Bernoulli polynomials by

Bn(x, λ) = B1
n(x, λ), Bn(λ) = Bn(0, λ) n ∈N,

respectively. The case λ = 1 in the above relations gives the classical Bernoulli polynomials Bn(x) and the
Bernoulli numbers Bn. Recently for the arbitrary real or complex parameters α and λ and x ∈ R. Luo in
[9, 11] and Liu et al. [8] generalized the Apostol-Euler polynomials Eαn(x, λ) by the generating relation

( 2
λet + 1

)α
ex.t =

∞∑
n=0

Eαn(x, λ), (
∣∣∣t + logλ

∣∣∣ < π, 1α := 1).
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The Apostol-Euler polynomials and the Apostol-Euler numbers are given by

En(x, λ) = E1
n(x, λ), En(λ) = En(1, λ),

respectively. The above relations give the classical Euler polynomials En(x) and the Euler members En when
λ = 1.

Let x ∈ R. For arbitrary real or complex parameters α and λ, the Apostol-Genocchi polynomials Gn(x, λ)
of order α are defined by [8, 11, 17]

( 2t
λet + 1

)(α)

ex.t =

∞∑
n=0

Gα
n(x, λ)

tn

n!
, (

∣∣∣t + logλ
∣∣∣π, 1α := 1).

The Apostol-Genocchi polynomials and the Apostol-Genocchi numbers are given by

Gn(x, λ) = G(1)
n (x, λ), Gn(λ) = Gn(0, λ),

respectively. When λ = 1, the above relation give the classical Genocchi polynomials Gn(x) and the
classical Genocchi numbers Gn. We should note that the above polynomials have recently been studied
and investigated in the papers [7, 11, 17, 20, 22, 23]. A unified Apostol-Bernoulli, Apostol-Euler, Apostal-
Genocchi polynomials are defined by Simsek et al. [2] as:

fa,b(x; t, a, b) =
21−ttkext

βbet − ab
=

∞∑
n=0

Yn,β(x; k, a, b)
tn

n!
,

(∣∣∣∣∣t + b log(
β

a
)
∣∣∣∣∣ < 2π

)
(x ∈ R, k ∈N0, a, b ∈ R+, β ∈ C),

where the associated numbers are given by

Yn,β(0; k, a, b) = Yn,β(k, a, b).

The following unified Apostol-Bernoulli, Euler and Genocchi polynomials are defined by Ozarslan in
[13] as

f (α)
a,b (x; t, a, b) =

 21−ttk

βbet − ab

(α)

ext =

∞∑
n=0

P(α)
n,β(x; k, a, b)

tn

n!
,

k ∈ N0, a, b ∈ R \ {0} , α, β ∈ C. (1)

For the convergence of the series involved in (1) we have

i. If ab > 0 and k ∈N, then
∣∣∣∣t + b log

(
β
a

)∣∣∣∣ < 2π, 1α := 1, x ∈ R, β ∈ C;

ii. If ab > 0 and k = 0, then 0 <Im
(
t + b log

(
β
a

))
< 2π, 1α := 1, x ∈ R, β ∈ C;

iii. If ab < 0, then
∣∣∣∣t + b log

(
β
a

)∣∣∣∣ < π, 1α := 1, x ∈ R, k ∈N0, β ∈ C (for details on this subject see [13]).

Remark 1.1. Setting k = a = b = 1 and β = λ in (1), we get

P(α)
n,λ(x; 1, 1, λ) = B(α)

n (x, λ),

where B(α)
n (x, λ) are the generalized Apostol-Bernoulli polynomials of order α.
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Remark 1.2. Choosing k + 1 = −a = b = 1 and β = λ in (1), we get

P(α)
n,λ(x; 0,−1, 1) = E(α)

n (x, λ),

where E(α)
n (x, λ) are the generalized Apostol-Euler polynomials of order α.

Remark 1.3. Letting k = −2a = b = 1 and 2β = λ in (1), we get

P(α)
n, λ2

(
x; 1,
−1
2
, 1

)
= G(α)

n (x, λ),

where G(α)
n (x, λ) are the generalized Apostol-Genocchi polynomials of order α.

Recently, Garg et al. in [5, 19]) introduced the following generalization of the Hurwitz-Lerch zeta
function Φ(z, s; a):

Φ(P,σ)
µ,ν (z, s; a) =

∞∑
n=0

(µ)pn

(ν)σn

zn

(n + a)s

(
m ∈ C, a, ν ∈ C \Z−0 , p, σ ∈ R, p < σ when s,z ∈ C (|z| = 1); p = σ and R(s −m + ν) > 0, when |z| = 1

)
.

It is obvious that

Φ(1,1)
(µ,1)(z, s; a) = Φ∗µ(z, s; a) =

∞∑
n=0

(µ)n

n!
zn

(n + a)s (2)

(for details on this subject, see [5, 19]).
The multiple power sums are defined by Luo in [10, 11] as follows:

S(l)
k (m, λ) =

∑
0≤ν1≤...≤νm=l
ν1+ν2+...+νm=n

(
l

ν1, ν2, ..., νm

)
λν1+2ν2+...+mνm (ν1 + 2ν2 + ... + mνm)k. (3)

From (3), we have

(
1 − λmemt

1 − λet

)(l)

= λ(−l)
∞∑

n=0

 n∑
k=0

(
n
k

)
(−l)n−kS(l)

k (m, λ)

 tn

n!
. (4)

From (4), for l = 1, we have

1 − λmemt

1 − λet =
1
λ

∞∑
n=0

 n∑
k=0

(
n
k

)
(−1)n−kSk(m, λ)

 tn

n!
. (5)

The generalized Stirling numbers of second kinds S(n, v, a, b, β) of order υ are defined in [16] as follows:

∞∑
n=0

S(n, υ, a, b, β)
tn

n!
=

(βbet
− ab)υ

υ!
(6)
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By using (1), we easily have the following relations

i. P(α1+α2)
n,β (x + y, k, a, b) =

n∑
k=0

(
n
k

)
P(α1)

k,β (x; k, a, b)P(α2)
n−k,β(y; k, a, b);

ii. P(α1+α2)
n,β (x, k, a, b) =

n∑
l=0

(
n
l

)
P(α1)

l,β (0; k, a, b)P(α2)
n−l,β(x, k, a, b).

In last ten years many mathematicians studied the Apostol-type Bernoulli polynomials. Srivastava in
[17] and Srivastava et al. in [18, 19, 23] investigated and proved some relations and theorems for Bernoulli-
type polynomials and Apostol-Bernoulli-type polynomials. Luo in [10, 11] proved the multiplication
theorems for the Apostol-Bernoulli and Apostol-Euler polynomials of higher order and multiple alternating
sums. Luo et al. in [9] and Liu et al. in [8] gave some symmetry relations between for the Apostol-Bernoulli
polynomials and Apostol-Euler polynomials.

Firstly, Karende et al. in [6] introduced the unification of the Bernoulli and Euler polynomials. Ozden et
al. in [13–15] introduced and investigated the unified Apostol-Bernoulli, Apostol-Euler, Apostol-Genocchi
polynomials.

They applied the Mellin transformation to this unified polynomial Yn,β(x; k, a, b) and obtained the unified
zeta function Jβ(n; k, a, b). Ozarslan in [13] defined uniform form of the Apostol-Bernoulli, Euler and
Genocchi polynomials P(α)

n,β(x, k, a, b) of order α. He gave the explicit representation of this unified family
in terms of a Gaussian hypergeometric function. Also, he gave the recurrence relations and symmetry
properties for the unified Apostol-type polynomials. At most, B.S. H-Desouky et al. in [3, 4] defined
and investigated the unified family M(r)

n (x, k, ᾱr) of generalized Apostol-Bernoulli, Euler and Genocchi
polynomials. They proved some recurrence relations and the addition formula for this unified family
M(r)

n (x, k, ᾱr).
This paper is organized as follows. In Section 2, we give some explicit relation for the Unified Apostol

type polynomials. In section 3, we prove the relation between Hurwitz-Lerch zeta function and the unified
Apostol-type polynomials and give some symetry relations for these unified Apostol-type polynomials.

2. Some Explicit Relations for the Unified Family of Generalized Apostol-Type Polynomials

In this section, we aim to obtain the explicit relations of the polynomials P(α)
n,β(x, k, a, b). By the motivation

of the M.El-Mikkay and F.Altan’s article [12], we prove some relations for these polynomials and give the
relations between the unified family of generalized Apostol-type polynomials and the Stirling numbers of
second kind S(n, υ, a, b, β) of order υ.

For α = 1, we write again the equation (1) as

F(x; k, a, b, β, t) =

∞∑
n=0

P(1)
n,β(x, k, a, b)

tn

n!
=

21−ktk

βbet − ab
ext. (7)

We can obtain the following equation easily from (7)

F(x + 1; k, a, b, β, t) = etF(x; k, a, b, β, t), (2.1.a)

(βbet + ab)F(x; k, a, 2b, β, 2t) = F(2x; k, a, b, β, t), (2.1.b)
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(βbet
− ab)F(x; k, a, 2b, β, 2t) = F(2x; k,−a, 2b + 1, β, t), (2.1.c)

F(x; k, a, b, β, t)F(y; k, a, b, β, t) = F(2)(0; k, a, b, β, t)e(x+y)t, (2.1.d)

(
βbet + ab

)
F(x; k, a2, b, β2, t) = 2kF(2x; k, a, b, β, t) (2.1.e)

and

F(x; k, a, b, β, t)F(y; k, a, b, β, t) = F(k; a, b, β, t)F(x + y; k, a, b, β, t). (2.1.f)

Proposition 2.1. The unified Apostol-type Bernoulli polynomials satisfy the following relation

βbP(α)
n,β(x + 1; k, a, b) − abP(α)

n,β(x; k, a, b) = 21−k n!
(n − k)!

P(α−1)
n−k,β(x; k, a, b). (8)

Proof. From (1), we have

βb

 21−ktk

βbet − ab

(α)

e(x+1)t
− ab

 21−ktk

βbet − ab

(α)

ext = 21−ktk
∞∑

n=0

P(α−1)
n,β (x, k, a, b)

tn

n!

∞∑
n=0

{
βbP(α)

n,β(x + 1, k, a, b) − abP(α)
n,β(x, k, a, b)

} tn

n!

= 21−k
∞∑

n=k

(n + k)!
n!

P(α−1)
n,β (x, k, a, b)

tn+k

(n + k)!
.

Comparing of the coefficient of tn

n! of both sides, we have (8).

Corollary 2.2. The following relation is true

Pn,β(x + 1, k, a, b) =

n∑
l=0

(
n
l

)
Pl,β(x, k, a, b).

Proof. This corollary can be proved by using (2.1.a).

Corollary 2.3. The following relation holds true:

βb
n∑

p=0

(
n
p

)
Pp,β(x, k, a, 2b)2p + abPn,β(x, k, a, 2b)2n = 2kPn,β(2x, k, a, b).

Proof. By using (2.1.b), we have the result.
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Corollary 2.4. The following relation holds true

βb
n∑

q=0

(
n
q

)
Pq,β(x, k, a, 2b)2q

− abPn,β(x, k, a, 2b)2n = Pn,β(2x, k,−a, 2b + 1).

Proof. From (2.1.c), we obtain the corollary.

Corollary 2.5. There is the following relation

n∑
q=0

(
n
q

)
Pn−q,β(x, k, a, b)Pq,β(y, k, a, b) =

n∑
r=0

(
n
r

)
P(2)

r,β(k, a, b)(x + y)n−r,

=

n∑
q=0

(
n
q

)
P(2)

q,β(x + y, k, a, b)P(−1)
n−q,β(k, a, b).

Proof. From (2.1.d), we have the result.

Corollary 2.6. The following relation holds true

βb
n∑

q=0

(
n
q

) {
Pq,β2 (x; k, a2, b)2r + abPn,β2 (x; k, a2, b)

}
2n = 2kPn,β(2x, k, a, b).

Proof. By using (2.1.e), we have the result.

Corollary 2.7. The unified Apostol-type Bernoulli polynomials satisfy the following relation

n∑
q=0

(
n
q

)
Pq,β(x, k, a, b)Pn−q,β(y, k, a, b) =

n∑
q=0

(
n
q

)
Pq,β(k, a, b)Pn−q,β(x + y; k, a, b).

Proof. By using (2.1.f), we prove easily the corollary.

Theorem 2.8. There is the following relation between theλ-Stirling numbers of second kinds and the unified Apostol-
type polynomials P(α)

n,β(x; k, a, b):

α!abα
n∑

r=0

(
n
r

)
P(α)

n−r,β(x; k, a, b)S

r, α,
(
β

a

)b = 2(1−k)α n!
(n − kα)!

xn−kα. (9)

Proof. The λ-Stirling numbers of second kinds is defined by Simsek in [16] as

(λet
− 1)k

k!
=

∞∑
n=0

S(n, k, λ)
tn

n!
. (10)

By using equation (1) and (10), we write
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∞∑
n=0

P(α)
n,β(x; k, a, b)

tn

n!
=

 21−ktk

βbet − ab

(α)

ext

=
2(1−k)αtkα

abα
((
β
a

)b
et − 1

)α ext =
2(1−k)αtkαext

abαα!
∑
∞

n=0 S
(
n, α,

(
β
a

)b
)

tn

n!

,

∞∑
n=0

P(α)
n,β(x; k, a, b)

tn

n!
abαα!

∞∑
n=0

S

n, α,
(
β

a

)b tn

n!
= 2(1−k)αtkα

∞∑
n=0

xn tn

n!
.

By using Cauchy product, comparing the coefficient of tn

n! , we have (9).

Theorem 2.9. There is the following relation between the generalized Stirling numbers of second kind S(n, υ, a, b, β)
of order υ and the unified Apostol-type Bernoulli polynomials P(α)

n,β(x; k, a, b):

P(α−γ)
n−kγ,β(x; k, a, b) =

2(k−1)γγ!(n − kγ)!
n!

n∑
r=0

(
n
r

)
P(α)

n−r,β(x; k, a, b)S(r, γ, a, b, β). (11)

Proof. By using (1) and (6), we have

∞∑
n=0

P(α−γ)
n,β (x; k, a, b)

tn

n!
=

 21−ktk

βbet − ab

(α)

ext

βbet
− ab

21−ktk

γ

∞∑
n=0

P(α−γ)
n,β (x; k, a, b)

tn+kγ

n!
= 2(k−1)γ

∞∑
n=0

P(α)
n,β(x; k, a, b)

tn

n!

∞∑
n=0

S(r, γ, a, b, β)
tn

n!
.

Using the Cauchy product, comparing the coefficient of tn

n! , we have (11).

3. Some Symmetry Identities for the Unified Generalized Apostol-Type Polynomials

Kurt in [7] proved some symmetry identities for the Apostol-Bernoulli and Apostol-Euler polynomials.
Ozarslan in [13] proved some symmetry identities for the unified Apostol-type polynomials. In this section,
we give new one symmetry identities for the unified Apostol-type polynomials. Also we prove the relation
between for the unified Apostol-type polynomials and Hurwitz-Lerch Zeta Function.

Theorem 3.1. The following symmetry relations for the unified Apostol-type polynomials hold true:

c−1∑
m=0

(
β

a

)bm n∑
l=0

(
n
l

)
Pn−l,β(dx; k, a, b).cn−k−l(dm)l

=

d−1∑
m=0

(
β

a

)bm n∑
l=0

(
n
l

)
Pn−l,β(cx; k, a, b).dn−k−l(cm)l. (12)
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Proof. We have

f (t) =
21−ktk

βbedt − ab
ecdxt β

bdecdt
− abd

βbect − ab

=
1
dk

 21−k(dt)k

βbedt − ab

 ecdxtab(d−1)

1 −
(
β
a

)bd
edct

1 −
(
β
a

)b
ect


= ab(d−1)d(−k)

∞∑
n=0

Pn,β(cx; k, a, b)
dntn

n!

d−1∑
m=0

(
β

a

)bm

ectm

= ab(d−1)d(−k)
∞∑

r=0

Pr,β(cx; k, a, b)
drtr

r!

d−1∑
m=0

(
β

a

)bm ∞∑
l=0

(cm)l tl

l!

= ab(d−1)d(−k)
∞∑

n=0

d−1∑
m=0

(
β

a

)bm
 n∑

l=0

(
n
l

)
Pn−l,β(cx; k, a, b)dn−l(cm)l

 tn

n!
.

In a similar manner

f (t) =
2(1−k)tk

βbect − ab
ecdxt

βbdecdt
− abd

βbedt − ab


=

1
ck

 21−k(ct)k

βbect − ab

 ecdxtab(d−1)

1 − ( βa )bdedct

1 − ( βa )bedt


=

ab(d−1)

ck

∞∑
r=0

Pr,β(dx; k, a, b)cr tn

n!

c−1∑
m=0

(
β

a

)bm

edmt

= ab(d−1)c(−k)
c−1∑
m=0

(
β

a

)bm ∞∑
r=0

Pr,β(dx; k, a, b)cr tr

r!

∞∑
l=0

(dm)l tl

l!

= ab(d−1)c(−k)
∞∑

n=0

c−1∑
m=0

(
β

a

)bm
 n∑

l=0

(
n
l

)
Pn−l,β(dx; k, a, b)cn−l(dm)l

 tn

n!
.

Comparing the coefficient of tn

n! , we have result.

Theorem 3.2. The unified Apostol-type numbers satisfy the following relation:

ck
d−1∑
m=0

(
β

a
)mb

n∑
l=0

(
n
l

) {
Pn−l,β(k, a, b)dn−lcl(dx + m)l

}
= dk

c−1∑
m=0

(
β

a
)bm

n∑
l=0

(
n
l

) {
Pn−l,β(k, a, b)cn−ldl(xc + m)l

}
. (13)

Proof. Let

f (t) =
21−ktk

βbedt − ab
ecdxt β

bdecdt
− abd

βbect − ab

=
ab(d−1)

dk

 21−k(dt)k

βbedt − ab


1 −

(
β
a

)bd
edct

1 −
(
β
a

)b
ect

 ecdxt
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=
ab(d−1)

dk

∞∑
n=0

Pn,β(k, a, b)
dntn

n!

d−1∑
m=0

(
β

a

)bm

e(m+dx)ct

=
ab(d−1)

dk

∞∑
n=0

n∑
s=0

(
n
s

) Pn−l,β(k, a, b)dn−lcl
d−1∑
m=0

(
β

a

)bm

(m + dx)l

 tn

n!
.

In a similar manner

f (t) =
2(1−k)tk

βbect − ab
ecdxt

βbdecdt
− abd

βbedt − ab


=

ab(d−1)

dk

∞∑
n=0

n∑
l=0

(
n
l

) Pn−l,β(k, a, b)cn−ldl
c−1∑
m=0

(
β

a

)bm

(m + cx)l

 tn

n!
.

From here, we obtain (13).

Theorem 3.3. For all c, d, r ∈ N , s, p ∈ N0, we have the following symmmetry relation between Hurwitz-Lerch
zeta function and unified Apostol-type polynomials:

dk
n−kα∑
p=0

(
n − kα

p

)
dn−kα−p

p∑
s=0

(
p
s

)  r∑
s=0

(
r
s

)
(−α)r−sS(α)

s

d,
(
β

a

)b Pn−r,β(dy; k, a, b)cp

Φ∗α

((
β

a

)α
, p + kα − n, cx

)}
= ck

n−kα∑
p=0

(
n − kα

p

)
cn−kα−p

p∑
s=0

(
p
s

)  r∑
s=0

(
r
s

)
(−α)r−sS(α)

s

c,
(
β

a

)b dpPn−r,β(cx; k, a, b)

Φ∗α

((
β

a

)α
, p + kα − n, dy

)}
. (14)

Proof. Let

f (t) =
tk(α+1)2(1−k)(α+1)ecdxt(βbdecdt

− abd)αecdyt

(βbedt − ab)α+1(βbect − ab)α+1

=
tkα2(1−k)αecdxt

ck(βbedt − ab)α+1

βbdecdt
− abd

βbect − ab

α (ct)k21−k

βbect − ab
dyct.

By using (1), (2) and (4)

=
2(1−k)αabdα−bα−bβ−αbtkα

ck(−1)α+1

∞∑
m=0

(
m + α

m

) βb

ab

m

edt(m+cx)
∞∑

n=0

n∑
s=0

(
n
s

)
(−α)n−s

×S(α)
s

d,
(
β

a

)b cr tr

r!

∞∑
n=0

Pp−r,β(dy, k, a, b)cn tn

n!

=

∞∑
n=kα

n!
(n − kα)!

2(1−k)αab(dα−α−1)β−αb

ck(−1)α+1


n−kα∑
p=0

(
n − kα

p

)
dn−kα−p

p∑
s=0

(
p
s

) r∑
s=0

(
r
s

)
(−α)r−s

S(α)
s

(
d,

(
β

a

)α)
cpPp−r,β(dy, k, a, b)cpΦ∗α

(βa
)b

, p + kα − n, cx


 tn

n!
.
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In a similar manner

f (t) =
tk(α+1)2(1−k)(α+1)ecdyt(βbdecdt

− abd)αecxdt

(βbect − ab)α+1(βbedt − ab)α+1

=

∞∑
n=kα

n!
(n − kα)!

2(1−k)αab(dα−α−1)β−αb


n−kα∑
p=0

(
n − kα

p

)
dn−kα−p

p∑
s=0

(
p
s

)
r∑

s=0

(
r
s

)
(−α)r−sS(α)

s

c,
(
β

a

)b dpPp−r,β(cx, k, a, b)Φ∗α

(βa
)b

, p − kα − n, dy


 tn

n!
.

Comparing the coefficients of tn

n! , we have (14).
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