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Suborbital Graphs for a Special Subgroup of the SL(3,Z)

Murat Beşenka

aKaradeniz Technical University, Faculty of Science, Department of Mathematics, 61080 Trabzon, Turkey

Abstract. In this paper we examine some properties of suborbital graphs for the group SL∗(3,Z). We first
introduce an invariant equivalence relation by using the congruence subgroup SL∗(3,Z) instead of Γ0(n) and
obtain some results for the newly constructed subgraphs Fu,n whose vertices form the block [∞]. We obtain
edge and circuit conditions and some relations between lengths of circuits in Fu,n and elliptic elements of
Γ0(n).

1. Introduction

Let Ẑ denote the set (Z × Z) ∪ {∞} and SL(3,Z) the special linear group of all matrices with integer
coefficients with determinant 1. Also

SL∗(3,Z) :=



a b 0
c d 0
0 0 1

 : a, b, c, d ∈ Z, ad − bc = 1


is subgroup of SL(3,Z).

Let PSL(3,Z) be the group SL(3,Z)/{±I}. Then there is a homomorphism µ : SL(3,Z) 7→ PSL(3,Z) with
kernel {±I}. It is known that G.A. Jones, D. Singerman and K. Wicks [6] used the notion of the imprimitive
action [3, 4] for a Γ-invariant equivalence relation induced on Q ∪ {∞} by the congruence subgroup

Γ0(n) =


a b
c d

 : c ≡ 0 (mod n)


to obtain some suborbital graphs and their properties.

In this study, we consider the action of the group SL∗(3,Z) on the set Ẑ in the spirit of the theory of
permutation groups, and graph arising from this action in hyperbolic geometric terms.
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2. The Action of SL∗(3,Z) on Ẑ

Any element of Ẑ is represented as


x
y
0

, with x, y ∈ Z and also ∞ is represented as


1
0
0

 =


−1
0
0

. The

action of SL∗(3,Z) on Ẑ now becomes
a b 0
c d 0
0 0 1

 :


x
y
0

→

ax + by
cx + dy

0

 .
Theorem 2.1. The action of SL∗(3,Z) on Ẑ is transitive.

Proof. It is enough to prove that the orbit containing ∞ is Ẑ. If


a
b
0

 ∈ Ẑ then there exist α, β ∈ Z with

aα − bβ = 1. Then the element


a β 0
b α 0
0 0 1

 is in SL∗(3,Z) and sends∞ to


a
b
0

.

We now consider the imprimitivity of the action of SL∗(3,Z) on Ẑ, beginning with a general discussion
of primitivity of permutation groups. Let (G,Ω) be a transitive permutation group, consisting of a group
G acting on a set Ω transitively. An equivalence relation ≈ on Ω is called G-invariant if, whenever α, β ∈ Ω
satisfy α ≈ β, then 1(α) ≈ 1(β) for all 1 ∈ G. The equivalence classes are called blocks, and the block
containing α is denoted by [α].

We call (G,Ω) imprimitive if Ω admits some G-invariant equivalence relation different from
(i) the identity relation, α ≈ β if and only if α = β;
(ii) the universal relation, α ≈ β for all α, β ∈ Ω.
Otherwise (G,Ω) is called primitive. These two relations are supposed to be trivial relations. Clearly,

a primitive group must be transitive, for if not the orbits would form a system of blocks. The converse is
false, but we have the following useful result in [3].

Lemma 2.2. Let (G,Ω) be a transitive permutation group. (G,Ω) is primitive if and only if Gα,the stabilizer of
α ∈ Ω, is a maximal subgroup of G for each α ∈ Ω.

From the above lemma we see that whenever, for some α, Gα < H < G, then Ω admits some G-invariant
equivalence relation other than the trivial cases. Because of the transitivity, every element of Ω has the
form 1(α) for some 1 ∈ G. Thus one of the non-trivial G-invariant equivalence relation on Ω is given as
follows:

1(α) ≈ 1′(α) if and only if 1′ ∈ 1H.
The number of blocks ( equivalence classes ) is the index |G : H| and the block containing α is just the

orbit H(α).
We can apply these ideas to case where G is the SL∗(3,Z) and Ω is Ẑ.

Lemma 2.3. The stabilizer of∞ in SL∗(3,Z) is the set



1 λ 0
0 1 0
0 0 1

 : λ ∈ Z

 denoted by SL∗(3,Z)∞.



M. Beşenk / Filomat 30:3 (2016), 593–602 595

Proof. The stabilizer of a point in Ẑ is a infinite cyclic group. Since the action is transitive, stabilizers of any
two points are conjugate. Therefore it is enough to look at the stabilizer of∞ in SL∗(3,Z).

T


1
0
0

 =


a b 0
c d 0
0 0 1



1
0
0

 =


1
0
0


and so


a
c
0

 =


1
0
0

. Then a = 1, c = 0 and as detT = 1, d = 1. Therefore b = λ ∈ Z. So T =


1 λ 0
0 1 0
0 0 1

. This

shows that the stabilizer of∞ in SL∗(3,Z) is
〈

1 1 0
0 1 0
0 0 1


〉
.

Definition 2.4. SL∗(3,Z)0 := {T ∈ SL∗(3,Z)| c ≡ 0(modn),n ∈ Z} is a subgroup of SL∗(3,Z).

We must point out that the above equivalence relation is different from the one in [6]. Here let us take
the group SL∗(3,Z)0 instead of Γ0(n).

It is clear that SL∗(3,Z)∞ < SL∗(3,Z)0 < SL∗(3,Z). We shall define an equivalence relation ≈ induced on

Ẑ by SL∗(3,Z). Now let


r
s
0

 ,

x
y
0

 ∈ Ẑ. Corresponding to these there are two matrices

T1 :=


r ∗ 0
s ∗ 0
0 0 1

 ,T2 :=


x ∗ 0
y ∗ 0
0 0 1


in SL∗(3,Z) for which T1(∞) =


r
s
0

 and T2(∞) =


x
y
0

. We get the following imprimitive SL∗(3,Z)-invariant

equivalence relation on Ẑ by SL∗(3,Z)0 as
r
s
0

 ≈

x
y
0

 if and only if T−1
1 T2 ∈ SL∗(3,Z)0,

and so from the above we can easily verify that


r
s
0

 ≈

x
y
0

 if and only if ; ry − sx ≡ 0 (mod n). Here, the

number ψ(n) of blocks is |SL∗(3,Z) : SL∗(3,Z)0|.

Theorem 2.5. The index |SL∗(3,Z) : SL∗(3,Z)0| = n
∏

p|n

(
1 +

1
p

)
, where the product is over the distinct primes p

dividing n ∈ Z.

Proof. By our general discussion of imprimitivity, the number of equivalence classes under ≈m is given by
ψ(n) = |SL∗(3,Z) : SL∗(3,Z)0|, the following formula for ψ(n) is well-known but for completeness we will
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sketch a proof here. Firstly, we show that ψmultiplicative function. Let n = lm with (l,m) = 1. Then, v ≈n w
if and only if v ≈l w and v ≈m w, so by counting equivalence classes we have

ψ(n) = ψ(l)ψ(m)

as required. Now the function n→ n
∏

p|n

(
1 +

1
p

)
on the right-hand side is clearly also multiplicative, so to

prove the theorem it is sufficient to consider the case where n is a power of some prime p.

If v =


r
s
0

 ∈ Ẑ and is therefore a unit modn we see that


r
s
0

 ≈n


1
i
0

 or


r
s
0

 ≈n


1
j
0

 for some i ∈ Zn or j ∈ Zn.

Hence 2n classes are distinct.The number of such coincident pairs is Euler’s function φ(n) = n(1 − 1
p ), so

the number of distinct classes is 2n − φ(n) = n(1 + 1
p ) as required. Consequently we have ψ(n) = |SL∗(3,Z) :

SL∗(3,Z)0| = n
∏

p|n

(
1 +

1
p

)
.

3. Suborbital Graphs of SL∗(3,Z) on Ẑ

In [9], Sims introduced the idea of the suborbital graphs of a permutation group G acting on a set Ω,
these are graphs with vertex-set Ω, on which G induces automorphisms. We summarize Sims’ theory as
follows:

Let (G,Ω) be transitive permutation group. Then G acts on Ω ×Ω by

1(α, β) = (1(α), 1(β))

where 1 ∈ G, α, β ∈ Ω. The orbits of this action are called suborbitals of G. The orbit containing (α, β) is
denoted by O(α, β). From O(α, β) we can form a suborbital graph G(α, β) : its vertices are the elements of
Ω, and there is a directed edge from γ to δ if (γ, δ) ∈ O(α, β). A directed edge from γ to δ is denoted by
γ→ δ. If (γ, δ) ∈ O(α, β), then we will say that there exists an edge γ→ δ in G(α, β). This theory reveals the
relationship between graphs and permutation groups. In this paper our calculation concerns SL∗(3,Z), so
we can draw this edge as a hyperbolic geodesic in the upper half-spaceH3 :=

{
(x, y, z)|x, y, z ∈ R, z ≥ 0

}
.

The orbit O(β, α) is also a suborbital graph and it is either equal to or disjoint from O(α, β). In the latter
case G(β, α) is just G(α, β) with the arrows reserved and we call, in this case, G(α, β) and G(β, α) paired
suborbital graphs. In the former case G(α, β) = G(β, α) and the graph consists of pairs of oppositely directed
edges; it is convenient to replace each such pair by a single undirected edge, so that we have an undirected
graph which we call self paired.

The above ideas are also described in a paper by Neumann[7] and in books by Tsuzuku [10] and by Bigg
and White [3], the emphasis being on applications to finite groups.

In this study, G and Ω will be SL∗(3,Z) and Ẑ, respectively. Since SL∗(3,Z) acts transitively on Ẑ, each
suborbital contains a pair (∞, v) for some v ∈ Ẑ; writing v = u

n , we denote this suborbital by Ou,n and the
corresponding suborbital graph by Gu,n.

Definition 3.1. By a directed circuit in Gu,n we mean that a sequence v1, v2, . . . , vm of different vertices such
that v1 −→ v2 −→ . . . −→ vm −→ v1, where m ≥ 3; an anti-directed circuit will denote a configuration like
the above with at least an arrow ( not all ) reversed.

If m = 2, then we will call the configuration v1 −→ v2 −→ v1 a self paired edge: it consists of a loop
based at each vertex.

If m = 3 or m = 4 , then the circuit, directed or not, is called a triangle or quadrilateral.
We call a graph a forest if it does not contain any circuits.
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Figure 1: Circuits

3.1. Graph Gu,n

We now investigate the suborbital graphs for the action SL∗(3,Z) on Ẑ. We use the following theorem
frequently in our calculation.

Theorem 3.2. Let r, s, x, y ∈ Z+ and then only the following occur

(I) there exists an edge


r
s
0

 →

x
y
0

 or


−r
−s
0

 →

−x
−y
0

 in Gu,n if and only if x ≡ −ur (mod n), y ≡ −us (mod n)

and ry − sx = −n,

(II) there exists an edge


r
s
0

 →

−x
−y
0

 or


−r
−s
0

 →

x
y
0

 in Gu,n if and only if x ≡ ur (mod n), y ≡ us (mod n)

and ry − sx = n,

(III) there exists an edge


−r
s
0

→

−x
y
0

 or


r
−s
0

→


x
−y
0

 in Gu,n if and only if x ≡ −ur (mod n), y ≡ −us (mod n)

and ry − sx = n,

(IV) there exists an edge


−r
s
0

 →


x
−y
0

 or


r
−s
0

 →

−x
y
0

 in Gu,n if and only if x ≡ ur (mod n), y ≡ us (mod n)

and ry − sx = −n.

Proof. Let r, s, x, y in positive integer.We suppose that there exists an edge


r
s
0

→

x
y
0

 in Gu,n and



r
s
0

 ,

x
y
0


 ∈

Ou,n. Therefore there exist some T in SL∗(3,Z) such that T sends the pair



−1
0
0

 ,

u
n
0


 to the pair



r
s
0

 ,

x
y
0


,

that is T


−1
0
0

 =


r
s
0

 and T


u
n
0

 =


x
y
0

. Now let T :=


a b 0
c d 0
0 0 1

 , a, b, c, d ∈ Z. Then we have that


−a
−c
0

 =


r
s
0
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and


au + bn
cu + dn

0

 =


x
y
0

 . Therefore −a = r,−c = s, au + bn = x and cu + dn = y. Hence, we write that


a b 0
c d 0
0 0 1



−1 u 0
0 n 0
0 0 1

 =


r x 0
s y 0
0 0 1

 .
From the determinant, we get −n = ry − sx. Thus, we obtain that x ≡ −ur(modn), y ≡ −us(modn) and

ry − sx = −n.
Conversely, we assume that x ≡ −ur(modn), y ≡ −us(modn) and ry − sx = −n. Then there exist b, d ∈ Z

such that x = −ur + bn, y = −us + dn. Taking a = −r and c = −s, then x = au + bn, y = cu + dn and so
a b 0
c d 0
0 0 1



−1 u 0
0 n 0
0 0 1

 =


r x 0
s y 0
0 0 1

 .As ry− sx = −n, we have ad−bc = 1, so


a b 0
c d 0
0 0 1

 ∈ SL∗(3,Z) and hence


r
s
0

→

x
y
0

 in Gu,n. The proof for


−r
−s
0

→

−x
−y
0

 is similar. We can prove cases (II), (III) and (IV) similarly.

Theorem 3.3. Gu,n is self-paired if and only if u2 + 1 ≡ 0(modn).

Proof. We suppose that Gu,n is self-paired. If ∞ →


x
y
0

, then it must also be


x
y
0

 → ∞. From the edge


u
n
0

→

1
0
0

, we have that 1 ≡ −u2(modn). Therefore, u2 + 1 ≡ 0(modn).

Conversely, assume that u2 + 1 ≡ 0(modn). There exists some integer b such that u2 + 1 ≡ bn. Hence

−u2 + bn = 1. Let T :=


u −b 0
n −u 0
0 0 1

, then T(∞) =


u
n
0

,T


u
n
0

 = ∞ and detT = 1.

If


r
s
0

 →

x
y
0

 in Gu,n, then Theorem 3.2 implies that ry − sx = ±n, so


r
s
0

 ≈

x
y
0

. Thus each connected

component of Gu,n lies in a single block for ≈, of which there are ψ(n), so we have:

Corollary 3.4. Gu,n has at least ψ(n) connected components; in particular, Gu,n is not connected if n is not a unit.

3.2. Subgraph Fu,n

As we saw, each Gu,n is a disjoint union of ψ(n) subgraphs, the vertices of each subgraph forming a
single block with respect to the relation ≈. Since SL∗(3,Z) acts transitively on Ẑ, it permutes these blocks
transitively, so the subgraphs are all isomorphic. We let Fu,n be the subgraph of Gu,n whose vertices form
the block

[∞] :=


±1
0
0

 =



x
y
0

 | x, y ∈ Z and y ≡ 0 (mod n)

 ,
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so that Gu,n consists of ψ(n) disjoint copies of Fu,n.

Theorem 3.5. Let r, s, x, y ∈ Z+ and


r
s
0

 ,

x
y
0

 ∈ [∞]. Then

(I) there exists an edge


(−1)ir
(−1)is

0

 →

(−1)ix
(−1)iy

0

 in Fu,n where i = 0 or i = 1 if and only if x ≡ −ur (mod n) and

ry − sx = −n,

(II) there exists an edge


(−1)ir
(−1)is

0

→

(−1) jx
(−1) jy

0

 in Fu,n where i = 0, j = 1 or i = 1, j = 0 if and only if x ≡ ur (mod n)

and ry − sx = n,

(III) there exists an edge


(−1)ir
(−1) js

0

→

(−1)ix
(−1) jy

0

 in Fu,n where i = 1, j = 0 or i = 0, j = 1 if and only if x ≡ −ur (mod n)

and ry − sx = n,

(IV) there exists an edge


(−1)ir
(−1) js

0

→

(−1) jx
(−1)iy

0

 in Fu,n where i = 1, j = 0 or i = 0, j = 1 if and only if x ≡ ur (mod n)

and ry − sx = −n.

An automorphism of the graph Fu,n is a permutation of [∞] which takes edges to edges. In view of this
it can easily seen that SL∗(3,Z)0 < AutFu,n.

Theorem 3.6. SL∗(3,Z)0 permutes the vertices and the edges of Fu,n transitively.

Proof. Suppose that u, v ∈ [∞]. As SL∗(3,Z) acts on Ẑ transitively, 1(u) = v for some 1 ∈ SL∗(3,Z). Since
u ≈ ∞ and ≈ is SL∗(3,Z)-invariant equivalence relation, 1(u) ≈ 1(∞); that is v ≈ 1(∞). Thus, as v ≈ 1(∞),
1 ∈ SL∗(3,Z)0.

Assume that v,w ∈ [∞]; k1, k2 ∈ [∞] and v → w, k1 → k2 ∈ Fu,n. Then (v,w), (k1, k2) ∈ O

∞,

u
n
0


.

Therefore, for some S,T ∈ SL∗(3,Z);

S(∞) = v, S


u
n
0

 = w; T(∞) = k1, T


u
n
0

 = k2.

Hence S,T ∈ SL∗(3,Z)0 as S(∞),T(∞) ∈ [∞]. Furthermore TS−1(v) = k1 and TS−1(w) = k2; that is TS−1
∈

SL∗(3,Z)0.

Theorem 3.7. Fu,n contains directed triangles if and only if u2 + u + 1 ≡ 0(modn).
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Proof. Suppose that Fu,n contains a directed triangle. Because of the transitive action, the form of directed

triangle can be taken as∞→


u
n
0

→


x0

y0n
0

→∞. Since


u
n
0

→


x0

y0n
0

, then uy0 − x0 = −1 and x0 ≡ −u2(modn).

From


x0

y0n
0

→

1
0
0

 y0 = 1 is obtained. Hence x0 = u + 1. Consequently, we have that u2 + u + 1 ≡ 0(modn).

Conversely, assume that u2 + u + 1 ≡ 0(modn). Then by Theorem 3.2 the circuit ∞ → v1 → v2 → ∞ is a
directed triangle in Fu,n.

3.3. Some results

Corollary 3.8. Transformationsφ1 =

u −
u2+u+1

n

n −u − 1

,φ2 =

 u u2+u+1
n

−n −u − 1

,φ3 =

−u u2+u+1
n

−n u + 1

,φ4 =

−u −
u2+u+1

n

n u + 1


in Γ0(n), which are defined by means of the congruence u2 + u + 1 ≡ 0(modn), are elliptic element of order 3.

And also ϕ1 :=


u −

u2+u+1
n 0

n −u − 1 0
0 0 1

 , detϕ1 = 1. Furthermore, it is easily seen that

ϕ1


1
0
0

 =


−u
n
0

, ϕ1


−u
n
0

 =


−u − 1

n
0

, ϕ1


−u − 1

n
0

 =


−1
0
0

.

Similarly, the others are also illustrated. The transformations φi, where 1 ≤ i ≤ 4, establish a connection between
circuits in the graph and elliptic elements in the group Γ0(n).

Example 3.9. Let n = 3,u = 1. Then we have eight triangles in F1,3 :
±1
0
0

→

1
3
0

→

2
3
0

→

±1
0
0

 ,

±1
0
0

→

−1
−3
0

→

−2
−3
0

→

±1
0
0

 ,

±1
0
0

→

1
3
0

→

−2
−3
0

→

±1
0
0

 ,

±1
0
0

→

−1
−3
0

→

2
3
0

→

±1
0
0

 ,

±1
0
0

→

−1
3
0

→

−2
3
0

→

±1
0
0

 ,

±1
0
0

→


1
−3
0

→


2
−3
0

→

±1
0
0

 ,

±1
0
0

→

−1
3
0

→


2
−3
0

→

±1
0
0

 ,

±1
0
0

→


1
−3
0

→

−2
3
0

→

±1
0
0

 .
These are pictured as,
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Figure 2: Triangles in F1,3

Example 3.10. Let n = 2,u = 1. Then, since u2 + u + 1 ≡ 0 (mod n) does not hold , there are not any triangles
in F1,2. But there are 2-gons in F1,2 :


±1
0
0

→

1
2
0

→

±1
0
0

 ,

±1
0
0

→

−1
−2
0

→

±1
0
0

 ,

±1
0
0

→

−1
2
0

→

±1
0
0

 ,

±1
0
0

→


1
−2
0

→

±1
0
0

 .
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Figure 3: Self paired edges in F1,2
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