Filomat 30:3 (2016), 593–602 DOI 10.2298/FIL1603593B

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Suborbital Graphs for a Special Subgroup of the $SL(3, \mathbb{Z})$

Murat Beşenk^a

^aKaradeniz Technical University, Faculty of Science, Department of Mathematics, 61080 Trabzon, Turkey

Abstract. In this paper we examine some properties of suborbital graphs for the group $SL^*(3, \mathbb{Z})$. We first introduce an invariant equivalence relation by using the congruence subgroup $SL^*(3, \mathbb{Z})$ instead of $\Gamma_0(n)$ and obtain some results for the newly constructed subgraphs $F_{u,n}$ whose vertices form the block $[\infty]$. We obtain edge and circuit conditions and some relations between lengths of circuits in $F_{u,n}$ and elliptic elements of $\Gamma_0(n)$.

1. Introduction

Let $\hat{\mathbb{Z}}$ denote the set $(\mathbb{Z} \times \mathbb{Z}) \cup \{\infty\}$ and $SL(3, \mathbb{Z})$ the special linear group of all matrices with integer coefficients with determinant 1. Also

$$SL^{*}(3,\mathbb{Z}) := \left\{ \begin{pmatrix} a & b & 0 \\ c & d & 0 \\ 0 & 0 & 1 \end{pmatrix} : a, b, c, d \in \mathbb{Z}, ad - bc = 1 \right\}$$

is subgroup of $SL(3, \mathbb{Z})$.

Let $PSL(3, \mathbb{Z})$ be the group $SL(3, \mathbb{Z})/\{\pm I\}$. Then there is a homomorphism $\mu : SL(3, \mathbb{Z}) \mapsto PSL(3, \mathbb{Z})$ with kernel $\{\pm I\}$. It is known that G.A. Jones, D. Singerman and K. Wicks [6] used the notion of the imprimitive action [3, 4] for a Γ -invariant equivalence relation induced on $\mathbb{Q} \cup \{\infty\}$ by the congruence subgroup

$$\Gamma_0(n) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : c \equiv 0 \pmod{n} \right\}$$

to obtain some suborbital graphs and their properties.

In this study, we consider the action of the group $SL^*(3,\mathbb{Z})$ on the set $\hat{\mathbb{Z}}$ in the spirit of the theory of permutation groups, and graph arising from this action in hyperbolic geometric terms.

²⁰¹⁰ Mathematics Subject Classification. Primary 05C20; Secondary 20H10

Keywords. Modular group, imprimitive action, suborbital graph, circuit, self-paired edge

Received: 25 June 2015; Revised: 09 December 2015; Accepted: 10 December 2015

Communicated by Ljubiša D.R. Kočinac and Ekrem Savaş

Email address: mbesenk@ktu.edu.tr (Murat Beşenk)

2. The Action of $SL^*(3, \mathbb{Z})$ on $\hat{\mathbb{Z}}$

Any element of $\hat{\mathbb{Z}}$ is represented as $\begin{pmatrix} x \\ y \\ 0 \end{pmatrix}$, with $x, y \in \mathbb{Z}$ and also ∞ is represented as $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix}$. The

action of $SL^*(3, \mathbb{Z})$ on $\hat{\mathbb{Z}}$ now becomes

(a	b	0)		(x)		(ax + by)
С	d	0	:	y	\rightarrow	cx + dy
0	0	1		0		0)

Theorem 2.1. The action of $SL^*(3, \mathbb{Z})$ on $\hat{\mathbb{Z}}$ is transitive.

Proof. It is enough to prove that the orbit containing ∞ is $\hat{\mathbb{Z}}$. If $\begin{pmatrix} a \\ b \\ 0 \end{pmatrix} \in \hat{\mathbb{Z}}$ then there exist $\alpha, \beta \in \mathbb{Z}$ with $a\alpha - b\beta = 1$. Then the element $\begin{pmatrix} a & \beta & 0 \\ b & \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix}$ is in $SL^*(3, \mathbb{Z})$ and sends ∞ to $\begin{pmatrix} a \\ b \\ 0 \end{pmatrix}$. \Box

We now consider the imprimitivity of the action of $SL^*(3, \mathbb{Z})$ on \mathbb{Z} , beginning with a general discussion of primitivity of permutation groups. Let (G, Ω) be a transitive permutation group, consisting of a group G acting on a set Ω transitively. An equivalence relation \approx on Ω is called *G*-invariant if, whenever $\alpha, \beta \in \Omega$ satisfy $\alpha \approx \beta$, then $g(\alpha) \approx g(\beta)$ for all $g \in G$. The equivalence classes are called blocks, and the block containing α is denoted by $[\alpha]$.

We call (G, Ω) *imprimitive* if Ω admits some *G*-invariant equivalence relation different from

(i) the identity relation, $\alpha \approx \beta$ if and only if $\alpha = \beta$;

(ii) the universal relation, $\alpha \approx \beta$ for all $\alpha, \beta \in \Omega$.

Otherwise (G, Ω) is called *primitive*. These two relations are supposed to be trivial relations. Clearly, a primitive group must be transitive, for if not the orbits would form a system of blocks. The converse is false, but we have the following useful result in [3].

Lemma 2.2. Let (G, Ω) be a transitive permutation group. (G, Ω) is primitive if and only if G_{α} , the stabilizer of $\alpha \in \Omega$, is a maximal subgroup of G for each $\alpha \in \Omega$.

From the above lemma we see that whenever, for some α , $G_{\alpha} < H < G$, then Ω admits some *G*-invariant equivalence relation other than the trivial cases. Because of the transitivity, every element of Ω has the form $g(\alpha)$ for some $g \in G$. Thus one of the non-trivial *G*-invariant equivalence relation on Ω is given as follows:

$$g(\alpha) \approx g'(\alpha)$$
 if and only if $g' \in gH$.

The number of blocks (equivalence classes) is the index |G : H| and the block containing α is just the orbit $H(\alpha)$.

We can apply these ideas to case where *G* is the $SL^*(3, \mathbb{Z})$ and Ω is $\hat{\mathbb{Z}}$.

Lemma 2.3. The stabilizer of
$$\infty$$
 in $SL^*(3, \mathbb{Z})$ is the set $\left\{ \begin{pmatrix} 1 & \lambda & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} : \lambda \in \mathbb{Z} \right\}$ denoted by $SL^*(3, \mathbb{Z})_{\infty}$.

Proof. The stabilizer of a point in $\hat{\mathbb{Z}}$ is a infinite cyclic group. Since the action is transitive, stabilizers of any two points are conjugate. Therefore it is enough to look at the stabilizer of ∞ in $SL^*(3, \mathbb{Z})$.

$$T\begin{pmatrix}1\\0\\0\end{pmatrix} = \begin{pmatrix}a & b & 0\\c & d & 0\\0 & 0 & 1\end{pmatrix}\begin{pmatrix}1\\0\\0\end{pmatrix} = \begin{pmatrix}1\\0\\0\end{pmatrix}$$

and so $\begin{pmatrix} a \\ c \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$. Then a = 1, c = 0 and as detT = 1, d = 1. Therefore $b = \lambda \in \mathbb{Z}$. So $T = \begin{pmatrix} 1 & \lambda & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$. This $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

shows that the stabilizer of ∞ in $SL^*(3, \mathbb{Z})$ is $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$. \Box

Definition 2.4. $SL^*(3, \mathbb{Z})_0 := \{T \in SL^*(3, \mathbb{Z}) | c \equiv 0 \pmod{n, n \in \mathbb{Z}} \}$ is a subgroup of $SL^*(3, \mathbb{Z})$.

We must point out that the above equivalence relation is different from the one in [6]. Here let us take the group $SL^*(3, \mathbb{Z})_0$ instead of $\Gamma_0(n)$.

It is clear that $SL^*(3, \mathbb{Z})_{\infty} < SL^*(3, \mathbb{Z})_0 < SL^*(3, \mathbb{Z})$. We shall define an equivalence relation \approx induced on $\binom{r}{r} \binom{x}{r}$

 $\hat{\mathbb{Z}}$ by $SL^*(3,\mathbb{Z})$. Now let $\begin{pmatrix} r \\ s \\ 0 \end{pmatrix}, \begin{pmatrix} x \\ y \\ 0 \end{pmatrix} \in \hat{\mathbb{Z}}$. Corresponding to these there are two matrices

$$T_1 := \begin{pmatrix} r & * & 0 \\ s & * & 0 \\ 0 & 0 & 1 \end{pmatrix}, T_2 := \begin{pmatrix} x & * & 0 \\ y & * & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

in $SL^*(3, \mathbb{Z})$ for which $T_1(\infty) = \begin{pmatrix} r \\ s \\ 0 \end{pmatrix}$ and $T_2(\infty) = \begin{pmatrix} x \\ y \\ 0 \end{pmatrix}$. We get the following imprimitive $SL^*(3, \mathbb{Z})$ -invariant

equivalence relation on $\hat{\mathbb{Z}}$ by $SL^*(3, \mathbb{Z})_0$ as

$$\begin{pmatrix} r \\ s \\ 0 \end{pmatrix} \approx \begin{pmatrix} x \\ y \\ 0 \end{pmatrix} \quad \text{if and only if} \quad T_1^{-1}T_2 \in SL^*(3, \mathbb{Z})_0,$$

and so from the above we can easily verify that $\begin{pmatrix} r \\ s \\ 0 \end{pmatrix} \approx \begin{pmatrix} x \\ y \\ 0 \end{pmatrix}$ if and only if; $ry - sx \equiv 0 \pmod{n}$. Here, the number $\psi(n)$ of blocks is $|SL^*(3, \mathbb{Z}) : SL^*(3, \mathbb{Z})_0|$.

Theorem 2.5. The index $|SL^*(3, \mathbb{Z}) : SL^*(3, \mathbb{Z})_0| = n \prod_{p|n} \left(1 + \frac{1}{p}\right)$, where the product is over the distinct primes p dividing $n \in \mathbb{Z}$.

Proof. By our general discussion of imprimitivity, the number of equivalence classes under \approx_m is given by $\psi(n) = |SL^*(3, \mathbb{Z}) : SL^*(3, \mathbb{Z})_0|$, the following formula for $\psi(n)$ is well-known but for completeness we will

sketch a proof here. Firstly, we show that ψ multiplicative function. Let n = lm with (l, m) = 1. Then, $v \approx_n w$ if and only if $v \approx_l w$ and $v \approx_m w$, so by counting equivalence classes we have

$$\psi(n) = \psi(l)\psi(m)$$

as required. Now the function $n \to n \prod_{p|n} \left(1 + \frac{1}{p}\right)$ on the right-hand side is clearly also multiplicative, so to prove the theorem it is sufficient to consider the case where *n* is a power of some prime *p*.

If
$$v = \begin{pmatrix} r \\ s \\ 0 \end{pmatrix} \in \hat{\mathbb{Z}}$$
 and is therefore a unit *modn* we see that $\begin{pmatrix} r \\ s \\ 0 \end{pmatrix} \approx_n \begin{pmatrix} 1 \\ i \\ 0 \end{pmatrix}$ or $\begin{pmatrix} r \\ s \\ 0 \end{pmatrix} \approx_n \begin{pmatrix} 1 \\ j \\ 0 \end{pmatrix}$ for some $i \in \mathbb{Z}_n$ or $j \in \mathbb{Z}_n$.

Hence 2*n* classes are distinct. The number of such coincident pairs is Euler's function $\phi(n) = n(1 - \frac{1}{n})$, so the number of distinct classes is $2n - \phi(n) = n(1 + \frac{1}{v})$ as required. Consequently we have $\psi(n) = |SL^*(3, \mathbb{Z})|$: $SL^*(3,\mathbb{Z})_0| = n \prod_{p|n} \left(1 + \frac{1}{p}\right).$

3. Suborbital Graphs of $SL^*(3, \mathbb{Z})$ on $\hat{\mathbb{Z}}$

In [9], Sims introduced the idea of the suborbital graphs of a permutation group G acting on a set Ω , these are graphs with vertex-set Ω , on which G induces automorphisms. We summarize Sims' theory as follows:

Let (G, Ω) be transitive permutation group. Then G acts on $\Omega \times \Omega$ by

$$g(\alpha, \beta) = (g(\alpha), g(\beta))$$

where $q \in G, \alpha, \beta \in \Omega$. The orbits of this action are called *suborbitals* of *G*. The orbit containing (α, β) is denoted by $O(\alpha,\beta)$. From $O(\alpha,\beta)$ we can form a suborbital graph $G(\alpha,\beta)$: its vertices are the elements of Ω , and there is a directed edge from γ to δ if $(\gamma, \delta) \in O(\alpha, \beta)$. A directed edge from γ to δ is denoted by $\gamma \to \delta$. If $(\gamma, \delta) \in O(\alpha, \beta)$, then we will say that there exists an edge $\gamma \to \delta$ in $G(\alpha, \beta)$. This theory reveals the relationship between graphs and permutation groups. In this paper our calculation concerns $SL^*(3, \mathbb{Z})$, so we can draw this edge as a hyperbolic geodesic in the upper half-space $\mathbb{H}^3 := \{(x, y, z) | x, y, z \in \mathbb{R}, z \ge 0\}$.

The orbit $O(\beta, \alpha)$ is also a suborbital graph and it is either equal to or disjoint from $O(\alpha, \beta)$. In the latter case $G(\beta, \alpha)$ is just $G(\alpha, \beta)$ with the arrows reserved and we call, in this case, $G(\alpha, \beta)$ and $G(\beta, \alpha)$ paired *suborbital graphs.* In the former case $G(\alpha, \beta) = G(\beta, \alpha)$ and the graph consists of pairs of oppositely directed edges; it is convenient to replace each such pair by a single undirected edge, so that we have an undirected graph which we call self paired.

The above ideas are also described in a paper by Neumann[7] and in books by Tsuzuku [10] and by Bigg and White [3], the emphasis being on applications to finite groups.

In this study, *G* and Ω will be $SL^*(3,\mathbb{Z})$ and $\hat{\mathbb{Z}}$, respectively. Since $SL^*(3,\mathbb{Z})$ acts transitively on $\hat{\mathbb{Z}}$, each suborbital contains a pair (∞, v) for some $v \in \hat{\mathbb{Z}}$; writing $v = \frac{u}{n}$, we denote this suborbital by $O_{u,n}$ and the corresponding suborbital graph by $G_{u,n}$.

Definition 3.1. By a directed circuit in $G_{u,n}$ we mean that a sequence v_1, v_2, \ldots, v_m of different vertices such that $v_1 \longrightarrow v_2 \longrightarrow \ldots \longrightarrow v_m \longrightarrow v_1$, where $m \ge 3$; an anti-directed circuit will denote a configuration like the above with at least an arrow (not all) reversed.

If m = 2, then we will call the configuration $v_1 \rightarrow v_2 \rightarrow v_1$ a self paired edge: it consists of a loop based at each vertex.

If m = 3 or m = 4, then the circuit, directed or not, is called a triangle or quadrilateral.

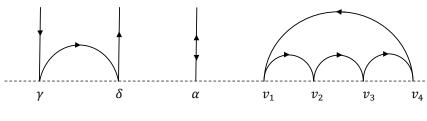


Figure 1: Circuits

3.1. Graph $G_{u,n}$

We now investigate the suborbital graphs for the action $SL^*(3,\mathbb{Z})$ on $\hat{\mathbb{Z}}$. We use the following theorem frequently in our calculation.

Theorem 3.2. Let $r, s, x, y \in \mathbb{Z}^+$ and then only the following occur

(I) there exists an edge
$$\begin{pmatrix} r \\ s \\ 0 \end{pmatrix} \rightarrow \begin{pmatrix} x \\ y \\ 0 \end{pmatrix}$$
 or $\begin{pmatrix} -r \\ -s \\ 0 \end{pmatrix} \rightarrow \begin{pmatrix} -x \\ -y \\ 0 \end{pmatrix}$ in $G_{u,n}$ if and only if $x \equiv -ur \pmod{n}$, $y \equiv -us \pmod{n}$
and $ry - sx = -n$,
(II) there exists an edge $\begin{pmatrix} r \\ s \\ 0 \end{pmatrix} \rightarrow \begin{pmatrix} -x \\ -y \\ 0 \end{pmatrix}$ or $\begin{pmatrix} -r \\ -s \\ 0 \end{pmatrix} \rightarrow \begin{pmatrix} x \\ y \\ 0 \end{pmatrix}$ in $G_{u,n}$ if and only if $x \equiv ur \pmod{n}$, $y \equiv us \pmod{n}$
and $ry - sx = n$,
(III) there exists an edge $\begin{pmatrix} -r \\ s \\ 0 \end{pmatrix} \rightarrow \begin{pmatrix} -x \\ -y \\ 0 \end{pmatrix}$ or $\begin{pmatrix} r \\ -s \\ 0 \end{pmatrix} \rightarrow \begin{pmatrix} x \\ -y \\ 0 \end{pmatrix}$ in $G_{u,n}$ if and only if $x \equiv -ur \pmod{n}$, $y \equiv -us \pmod{n}$
and $ry - sx = n$,
(IV) there exists an edge $\begin{pmatrix} -r \\ s \\ 0 \end{pmatrix} \rightarrow \begin{pmatrix} x \\ -y \\ 0 \end{pmatrix}$ or $\begin{pmatrix} r \\ -s \\ 0 \end{pmatrix} \rightarrow \begin{pmatrix} -x \\ -y \\ 0 \end{pmatrix}$ in $G_{u,n}$ if and only if $x \equiv ur \pmod{n}$, $y \equiv us \pmod{n}$
and $ry - sx = n$.

Proof. Let r, s, x, y in positive integer. We suppose that there exists an edge $\begin{pmatrix} r \\ s \\ 0 \end{pmatrix} \rightarrow \begin{pmatrix} x \\ y \\ 0 \end{pmatrix}$ in $G_{u,n}$ and $\begin{pmatrix} r \\ s \\ 0 \end{pmatrix}, \begin{pmatrix} x \\ y \\ 0 \end{pmatrix} \in O_{u,n}$. Therefore there exist some T in $SL^*(3, \mathbb{Z})$ such that T sends the pair $\begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} u \\ n \\ 0 \end{pmatrix}$ to the pair $\begin{pmatrix} r \\ s \\ 0 \end{pmatrix}, \begin{pmatrix} x \\ y \\ 0 \end{pmatrix}$, the pair $\begin{pmatrix} r \\ s \\ 0 \end{pmatrix}, \begin{pmatrix} x \\ y \\ 0 \end{pmatrix}$ that is $T\begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} r \\ s \\ 0 \end{pmatrix}$ and $T\begin{pmatrix} u \\ n \\ 0 \end{pmatrix} = \begin{pmatrix} x \\ y \\ 0 \end{pmatrix}$. Now let $T := \begin{pmatrix} a & b & 0 \\ c & d & 0 \\ 0 & 0 & 1 \end{pmatrix}$, $a, b, c, d \in \mathbb{Z}$. Then we have that $\begin{pmatrix} -a \\ -c \\ 0 \end{pmatrix} = \begin{pmatrix} r \\ s \\ 0 \end{pmatrix}$

and $\begin{pmatrix} au + bn \\ cu + dn \\ 0 \end{pmatrix} = \begin{pmatrix} x \\ y \\ 0 \end{pmatrix}$. Therefore -a = r, -c = s, au + bn = x and cu + dn = y. Hence, we write that

(a	b	0)	(-1)	и	0)		(r	x	0)
С	d	0	0	п	0	=	s	y	0
0	0	1)	00	0	1		0	0	1)

From the determinant, we get -n = ry - sx. Thus, we obtain that $x \equiv -ur(modn)$, $y \equiv -us(modn)$ and ry - sx = -n.

Conversely, we assume that $x \equiv -ur(modn)$, $y \equiv -us(modn)$ and ry - sx = -n. Then there exist $b, d \in \mathbb{Z}$ such that x = -ur + bn, y = -us + dn. Taking a = -r and c = -s, then x = au + bn, y = cu + dn and so $\begin{pmatrix} a & b & 0 \\ c & d & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & u & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} r & x & 0 \\ s & y & 0 \\ 0 & 0 & 1 \end{pmatrix}$. As ry - sx = -n, we have ad - bc = 1, so $\begin{pmatrix} a & b & 0 \\ c & d & 0 \\ 0 & 0 & 1 \end{pmatrix} \in SL^*(3, \mathbb{Z})$ and hence $\begin{pmatrix} r \\ s \\ 0 \end{pmatrix} \rightarrow \begin{pmatrix} x \\ y \\ 0 \end{pmatrix}$ in $G_{u,n}$. The proof for $\begin{pmatrix} -r \\ -s \\ 0 \end{pmatrix} \rightarrow \begin{pmatrix} -x \\ -y \\ 0 \end{pmatrix}$ is similar. We can prove cases (II), (III) and (IV) similarly. \Box

Theorem 3.3. $G_{u,n}$ is self-paired if and only if $u^2 + 1 \equiv 0 \pmod{n}$.

Proof. We suppose that $G_{u,n}$ is self-paired. If $\infty \to \begin{pmatrix} x \\ y \\ 0 \end{pmatrix}$, then it must also be $\begin{pmatrix} x \\ y \\ 0 \end{pmatrix} \to \infty$. From the edge

$$\begin{pmatrix} u \\ n \\ 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \text{ we have that } 1 \equiv -u^2(modn). \text{ Therefore, } u^2 + 1 \equiv 0(modn).$$

Conversely, assume that $u^2 + 1 \equiv 0 \pmod{n}$. There exists some integer *b* such that $u^2 + 1 \equiv bn$. Hence $\begin{pmatrix} u & -b & 0 \end{pmatrix}$ $\begin{pmatrix} u \end{pmatrix}$ $\begin{pmatrix} u \end{pmatrix}$

$$-u^2 + bn = 1$$
. Let $T := \begin{bmatrix} n & -u & 0 \\ 0 & 0 & 1 \end{bmatrix}$, then $T(\infty) = \begin{bmatrix} n \\ 0 \end{bmatrix}$, $T \begin{bmatrix} n \\ 0 \end{bmatrix} = \infty$ and $detT = 1$. \Box

If
$$\begin{pmatrix} r \\ s \\ 0 \end{pmatrix} \rightarrow \begin{pmatrix} x \\ y \\ 0 \end{pmatrix}$$
 in $G_{u,n}$, then Theorem 3.2 implies that $ry - sx = \pm n$, so $\begin{pmatrix} r \\ s \\ 0 \end{pmatrix} \approx \begin{pmatrix} x \\ y \\ 0 \end{pmatrix}$. Thus each connected

component of $G_{u,n}$ lies in a single block for \approx , of which there are $\psi(n)$, so we have:

Corollary 3.4. $G_{u,n}$ has at least $\psi(n)$ connected components; in particular, $G_{u,n}$ is not connected if n is not a unit.

3.2. Subgraph $F_{u,n}$

As we saw, each $G_{u,n}$ is a disjoint union of $\psi(n)$ subgraphs, the vertices of each subgraph forming a single block with respect to the relation \approx . Since $SL^*(3,\mathbb{Z})$ acts transitively on $\hat{\mathbb{Z}}$, it permutes these blocks transitively, so the subgraphs are all isomorphic. We let $F_{u,n}$ be the subgraph of $G_{u,n}$ whose vertices form the block

$$[\infty] := \begin{bmatrix} \pm 1 \\ 0 \\ 0 \end{bmatrix} = \left\{ \begin{pmatrix} x \\ y \\ 0 \end{pmatrix} | x, y \in \mathbb{Z} \text{ and } y \equiv 0 \pmod{n} \right\},\$$

so that $G_{u,n}$ consists of $\psi(n)$ disjoint copies of $F_{u,n}$.

Theorem 3.5. Let $r, s, x, y \in \mathbb{Z}^+$ and $\begin{pmatrix} r \\ s \\ 0 \end{pmatrix}, \begin{pmatrix} x \\ y \\ 0 \end{pmatrix} \in [\infty]$. Then (I) there exists an edge $\begin{pmatrix} (-1)^i r \\ (-1)^i s \\ 0 \end{pmatrix} \rightarrow \begin{pmatrix} (-1)^i x \\ (-1)^i y \\ 0 \end{pmatrix}$ in $F_{u,n}$ where i = 0 or i = 1 if and only if $x \equiv -ur \pmod{n}$ and

ry - sx = -n,

(II) there exists an edge
$$\begin{pmatrix} (-1)^i r \\ (-1)^i s \\ 0 \end{pmatrix} \rightarrow \begin{pmatrix} (-1)^j x \\ (-1)^j y \\ 0 \end{pmatrix}$$
 in $F_{u,n}$ where $i = 0, j = 1$ or $i = 1, j = 0$ if and only if $x \equiv ur \pmod{n}$

and ry - sx = n,

(III) there exists an edge
$$\begin{pmatrix} (-1)^{i}r \\ (-1)^{j}s \\ 0 \end{pmatrix} \rightarrow \begin{pmatrix} (-1)^{j}x \\ (-1)^{j}y \\ 0 \end{pmatrix}$$
 in $F_{u,n}$ where $i = 1, j = 0$ or $i = 0, j = 1$ if and only if $x \equiv -ur \pmod{n}$

and ry - sx = n,

(IV) there exists an edge
$$\begin{pmatrix} (-1)^{j}r \\ (-1)^{j}s \\ 0 \end{pmatrix} \rightarrow \begin{pmatrix} (-1)^{j}x \\ (-1)^{i}y \\ 0 \end{pmatrix}$$
 in $F_{u,n}$ where $i = 1, j = 0$ or $i = 0, j = 1$ if and only if $x \equiv ur \pmod{n}$

and ry - sx = -n.

An automorphism of the graph $F_{u,n}$ is a permutation of $[\infty]$ which takes edges to edges. In view of this it can easily seen that $SL^*(3, \mathbb{Z})_0 < AutF_{u,n}$.

Theorem 3.6. $SL^*(3, \mathbb{Z})_0$ permutes the vertices and the edges of $F_{u,n}$ transitively.

Proof. Suppose that $u, v \in [\infty]$. As $SL^*(3, \mathbb{Z})$ acts on $\hat{\mathbb{Z}}$ transitively, g(u) = v for some $g \in SL^*(3, \mathbb{Z})$. Since $u \approx \infty$ and \approx is $SL^*(3, \mathbb{Z})$ -invariant equivalence relation, $g(u) \approx g(\infty)$; that is $v \approx g(\infty)$. Thus, as $v \approx g(\infty)$, $g \in SL^*(3, \mathbb{Z})_0$.

Assume that $v, w \in [\infty]$; $k_1, k_2 \in [\infty]$ and $v \to w, k_1 \to k_2 \in F_{u,n}$. Then $(v, w), (k_1, k_2) \in O\left(\infty, \begin{pmatrix} u \\ n \\ 0 \end{pmatrix}\right)$.

Therefore, for some $S, T \in SL^*(3, \mathbb{Z})$;

$$S(\infty) = v, S\begin{pmatrix} u\\ n\\ 0 \end{pmatrix} = w; T(\infty) = k_1, T\begin{pmatrix} u\\ n\\ 0 \end{pmatrix} = k_2.$$

Hence $S, T \in SL^*(3, \mathbb{Z})_0$ as $S(\infty), T(\infty) \in [\infty]$. Furthermore $TS^{-1}(v) = k_1$ and $TS^{-1}(w) = k_2$; that is $TS^{-1} \in SL^*(3, \mathbb{Z})_0$. \Box

Theorem 3.7. $F_{u,n}$ contains directed triangles if and only if $u^2 + u + 1 \equiv 0 \pmod{n}$.

Proof. Suppose that $F_{u,n}$ contains a directed triangle. Because of the transitive action, the form of directed triangle can be taken as $\infty \rightarrow \begin{pmatrix} u \\ n \\ 0 \end{pmatrix} \rightarrow \begin{pmatrix} x_0 \\ y_0 n \\ 0 \end{pmatrix} \rightarrow \infty$. Since $\begin{pmatrix} u \\ n \\ 0 \end{pmatrix} \rightarrow \begin{pmatrix} x_0 \\ y_0 n \\ 0 \end{pmatrix}$, then $uy_0 - x_0 = -1$ and $x_0 \equiv -u^2(modn)$.

From $\begin{pmatrix} x_0 \\ y_0 n \\ 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} y_0 = 1$ is obtained. Hence $x_0 = u + 1$. Consequently, we have that $u^2 + u + 1 \equiv 0 \pmod{n}$.

Conversely, assume that $u^2 + u + 1 \equiv 0 \pmod{n}$. Then by Theorem 3.2 the circuit $\infty \rightarrow v_1 \rightarrow v_2 \rightarrow \infty$ is a directed triangle in $F_{u,n}$. \Box

3.3. Some results

Corollary 3.8. Transformations $\phi_1 = \begin{pmatrix} u & -\frac{u^2+u+1}{n} \\ n & -u-1 \end{pmatrix}, \phi_2 = \begin{pmatrix} u & \frac{u^2+u+1}{n} \\ -n & -u-1 \end{pmatrix}, \phi_3 = \begin{pmatrix} -u & \frac{u^2+u+1}{n} \\ -n & u+1 \end{pmatrix}, \phi_4 = \begin{pmatrix} -u & -\frac{u^2+u+1}{n} \\ n & u+1 \end{pmatrix}$ in $\Gamma_0(n)$, which are defined by means of the congruence $u^2 + u + 1 \equiv 0 \pmod{n}$, are elliptic element of order 3. And also $\varphi_1 := \begin{pmatrix} u & -\frac{u^2+u+1}{n} & 0 \\ n & -u-1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, det \varphi_1 = 1$. Furthermore, it is easily seen that $\varphi_1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} -u \\ n \\ 0 \end{pmatrix}, \varphi_1 \begin{pmatrix} -u \\ n \\ 0 \end{pmatrix} = \begin{pmatrix} -u - 1 \\ n \\ 0 \end{pmatrix}, \varphi_1 \begin{pmatrix} -u - 1 \\ n \\ 0 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix}.$

Similarly, the others are also illustrated. The transformations ϕ_i , where $1 \le i \le 4$, establish a connection between circuits in the graph and elliptic elements in the group $\Gamma_0(n)$.

Example 3.9. Let n = 3, u = 1. Then we have eight triangles in $F_{1,3}$:

$$\begin{pmatrix} \pm 1\\0\\0 \end{pmatrix} \rightarrow \begin{pmatrix} 1\\3\\0 \end{pmatrix} \rightarrow \begin{pmatrix} 2\\3\\0 \end{pmatrix} \rightarrow \begin{pmatrix} \pm 1\\0\\0 \end{pmatrix}, \begin{pmatrix} \pm 1\\0\\0 \end{pmatrix} \rightarrow \begin{pmatrix} -2\\-3\\0 \end{pmatrix} \rightarrow \begin{pmatrix} \pm 1\\0\\0 \end{pmatrix},$$

$$\begin{pmatrix} \pm 1\\0\\0 \end{pmatrix} \rightarrow \begin{pmatrix} 1\\3\\0 \end{pmatrix} \rightarrow \begin{pmatrix} -2\\-3\\0 \end{pmatrix} \rightarrow \begin{pmatrix} \pm 1\\0\\0 \end{pmatrix} \rightarrow \begin{pmatrix} \pm 1\\0\\0 \end{pmatrix}, \\ \begin{pmatrix} \pm 1\\0\\0 \end{pmatrix} \rightarrow \begin{pmatrix} -1\\-3\\0 \end{pmatrix} \rightarrow \begin{pmatrix} 2\\3\\0 \end{pmatrix} \rightarrow \begin{pmatrix} \pm 1\\0\\0 \end{pmatrix},$$

$$\begin{pmatrix} \pm 1\\0\\0 \end{pmatrix} \rightarrow \begin{pmatrix} -1\\-3\\0 \end{pmatrix} \rightarrow \begin{pmatrix} 2\\3\\0 \end{pmatrix} \rightarrow \begin{pmatrix} \pm 1\\0\\0 \end{pmatrix},$$

$$\begin{pmatrix} \pm 1\\0\\0 \end{pmatrix} \rightarrow \begin{pmatrix} -1\\-3\\0 \end{pmatrix} \rightarrow \begin{pmatrix} 2\\-3\\0 \end{pmatrix} \rightarrow \begin{pmatrix} \pm 1\\0\\0 \end{pmatrix},$$

$$\begin{pmatrix} \pm 1\\0\\0 \end{pmatrix} \rightarrow \begin{pmatrix} -1\\-3\\0 \end{pmatrix} \rightarrow \begin{pmatrix} 2\\-3\\0 \end{pmatrix} \rightarrow \begin{pmatrix} \pm 1\\0\\0 \end{pmatrix},$$

$$\begin{pmatrix} \pm 1\\0\\0 \end{pmatrix} \rightarrow \begin{pmatrix} -1\\-3\\0 \end{pmatrix} \rightarrow \begin{pmatrix} 2\\-3\\0 \end{pmatrix} \rightarrow \begin{pmatrix} \pm 1\\0\\0 \end{pmatrix},$$

$$\begin{pmatrix} \pm 1\\0\\0 \end{pmatrix} \rightarrow \begin{pmatrix} -1\\-3\\0 \end{pmatrix} \rightarrow \begin{pmatrix} -2\\-3\\0 \end{pmatrix} \rightarrow \begin{pmatrix} \pm 1\\0\\0 \end{pmatrix},$$

These are pictured as,

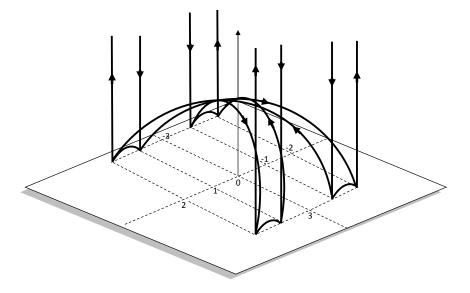


Figure 2: Triangles in $F_{1,3}$

Example 3.10. Let n = 2, u = 1. Then, since $u^2 + u + 1 \equiv 0 \pmod{n}$ does not hold, there are not any triangles in $F_{1,2}$. But there are 2-gons in $F_{1,2}$:

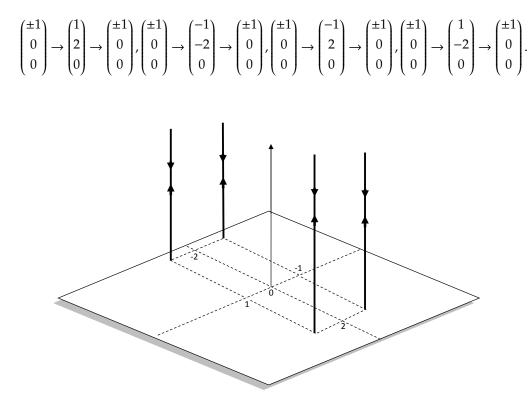


Figure 3: Self paired edges in $F_{1,2}$

Acknowledgements

I would like to express my sincere gratitude to Professor Mehmet Akbaş for his immense help during the preparation of this paper.

References

- [1] M. Akbaş, D. Singerman, The signature of the normalizer of $\Gamma_0(N)$, London Math. Soc. Lecture Note Series 165 (1992) 77–86.
- [2] M. Akbaş, On suborbital graphs for the modular group, Bull. London Math. Soc. 33 (2001) 647–652.
- [3] N.L. Bigg, A.T. White, Permutation groups and combinatorial structures, Cambridge University Press, Cambridge, 1979.
- [4] G.H. Hardy, E.M. Wright, An Introduction to the Theory of Numbers, Oxford University Press, Oxford, 1979.
- [5] G.A. Jones, D. Singerman, Complex functions: an algebraic and geometric viewpoint, Cambridge University Press, Cambridge, 1987.
- [6] G.A. Jones, D. Singerman, K. Wicks, The modular group and generalized Farey graphs, London Math. Soc. Lecture Note Series 160 (1991) 316–338.
- [7] P.M. Neumann, Finite Permutation Groups, Edge-Coloured Graphs and Matrices, Topics in Group Theory and Computation, Ed. M.P.J. Curran, Academic Press, London-New York-San Fransisco, 1977.
- [8] B. Schoeneberg, Elliptic Modular Functions, Springer, Berlin, 1974.
- [9] C.C. Sims, Graphs and finite permutation groups, Math. Z. 95 (1967) 76-86.
- [10] T. Tsuzuku, Finite Groups and Finite Geometries, Cambridge University Press, Cambridge, 1982.
- [11] B.Ö. Güler, M. Beşenk, A.H. Değer, S. Kader, Elliptic elements and circuits in suborbital graphs, Hacettepe J. Math. Stat. 40 (2011) 203–210.
- [12] Y. Kesicioğlu, M. Akbaş, M. Beşenk, Connectedness of a suborbital graph for congruence subgroups, J. Ineq. Appl. 1 (2013) 117–124.