On Double Sequence Spaces Defined by an Orlicz Function on a Seminormed Space

Ekrem Savaş ${ }^{\text {a }}$, Rahmet Savaş Eren ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, Istanbul Ticaret University, Sütlüce-Istanbul, Turkey
${ }^{b}$ Istanbul Medeniyet University, Department of Mathematics, Istanbul,Turkey

Abstract

In this paper we introduce and study the double sequence space $m^{\prime \prime}(M, \phi, q)$ by using the Orlicz function M. Also we obtain some inclusion results involving the space $m^{\prime \prime}(M, \phi, q)$.

1. Introduction

The study of Orlicz sequence spaces was initiated with a certain specific purpose in Banach space theory. Indeed, Lindberg [2] got interested in Orlicz spaces in connection with finding Banach spaces with symmetric Schauder bases having complementary subspaces isomorphic to c_{0} or $l_{p}(1 \leq<p<\infty)$. Subsequently Lindenstrauss and Tzafriri [3] investigated Orlicz sequence spaces in more detail and they proved that every Orlicz sequence space l_{M} contains a subspace isomorphic to $l_{p}(1 \leq<p \infty)$. Parashar and Choudhary [5] have introduced and discussed some properties of the four sequence spaces defined by using an Orlicz function M, which generalized the sequence space l_{M} and strongly summable sequence spaces $[C, 1, p],[C, 1, p]_{0}$ and $[C, 1, p]_{\infty}$. The Orlicz sequence find a number of useful applications in the theory of nonlinear integral equations. Whereas the Orlicz sequence spaces are the generalizations of l_{p}-spaces, the L_{p} spaces find themselves enveloped in Orlicz spaces.

The sequence space $m(\phi)$ was introduced by Sargent [9]. He studied some of its properties and obtained its relationship with the space ℓ_{p}. In this paper we introduce and study the double sequence space $m^{\prime \prime}(M, \phi, q)$ by using the Orlicz function. Also we obtain some inclusion results involving the space $m^{\prime \prime}(M, \phi, q)$.

2. Definitions and Background

An Orlicz function is a function $M:[0, \infty) \rightarrow[0, \infty)$, which is continuous, non-decreasing and convex with $M(0)=0, M(x)>0$, for $x>0$ and $M(x) \rightarrow \infty$, as $x \rightarrow \infty$.

An Orlicz function M is said to satisfy Δ_{2}-condition for all values of x, if there exists a constant $K>0$, such that $M(2 x) \leq K M(x)$ for all $x \geq 0$. The Δ_{2}-condition is equivalent to $M(L x) \leq K L M(x)$, for all values of $x>0$ and for $L>1$.

[^0]An Orlicz function M can always be represented in the following integral form: $M(x)=\int_{0}^{x} \eta(t) d t$, where η is known as the kernel of M, is right differentiable for $t \geq 0, \eta(0)=0, \eta(t)>0$, for $t>0, \eta$ is non-decreasing and $\eta(t) \rightarrow \infty$ as $t \rightarrow \infty$.

If the convexity of the Orlicz function is replaced by $M(x+y) \leq M(x)+M(y)$, then this function is called as modulus function, introduced by Ruckle [8] and studied by Maddox [4] and others.

Remark 2.1. An Orlicz function satisfies the inequality $M(\lambda x) \leq \lambda M(x)$ for all λ with $0<\lambda<1$.
Let $\omega^{\prime \prime}$ denote the set of all double sequences of real numbers. In 1900, Pringsheim presented the following definition for the convergence of double sequences.

Definition 2.2. ([Pringsheim, [6]]) A double sequence $x=\left[x_{k, l}\right]$ has Pringsheim limit L (denoted by P$\lim x=L$) provided that given $\epsilon>0$ there exists $N \in \mathbf{N}$ such that $\left|x_{k, l}-L\right|<\epsilon$ whenever $k, l>N$. We shall describe such an x more briefly as "P-convergent".

We shall denote the space of all P-convergent sequences by $c^{\prime \prime}$.
By a bounded double sequence we shall mean there exists a positive number M such that $\left|x_{k, l}\right|<M$ for all (k, l).

We shall also denote the set of all bounded double sequences by $l_{\infty}^{\prime \prime}$. We also note in contrast to the case for single sequence, a P-convergent double sequence need not be bounded.

Let $P_{r, s}$ denotes the class of all subsets of $\mathbb{N x} \mathbb{N}$, those do not contain more than (r, s) elements. Throughout $\left\{\phi_{m, n}\right\}$ represents a non-decreasing double sequence of positive real numbers such that $(m, n) \phi_{m+1, n+1} \leq$ $(m+1)(n+1) \phi_{m n}$ for all $(m, n) \in \mathbb{N} x \mathbb{N}$.

Throughout the article $w^{\prime \prime}(X)$ and $\ell_{\infty}^{\prime \prime}(X)$ denote the spaces of all double and all double bounded sequences respectively with elements in X, where (X, q) denote a seminormed space, seminormed by q. The zero sequence is denoted by $\bar{\theta}=(\theta, \theta, \theta, \ldots)$, where θ is the zero element of X.

In the later stage different Orlicz sequence spaces were introduced and studied by Parashar and Choudhary [5], Et [1], Triphaty and Sen [17], Savaş [11-16] and many others.

In this article we introduce the following sequence spaces.

$$
\begin{aligned}
& \ell_{\infty}^{\prime \prime}(M, q)=\left\{\left(x_{k, l}\right) \in w(X): \sup _{k, l \geq 1} M\left(q\left(\frac{x_{k, l}}{\rho}\right)\right)<\infty, \text { for some } \rho>0\right\}, \\
& m^{\prime \prime}(M, \phi, q)=\left\{\left(x_{k, l}\right) \in w(X): \sup _{r, s \geq 1, \sigma \in P_{r, s}} \frac{1}{\phi_{r, s}} \sum_{k, l \in \sigma} M\left(q\left(\frac{x_{k, l}}{\rho}\right)\right)<\infty, \text { for some } \rho>0\right\} .
\end{aligned}
$$

3. Main Results

In this section we prove some results involving the sequence spaces $m^{\prime \prime}(M, \phi, q)$, and $l_{\infty}^{\prime \prime}(M, q)$.
Theorem 3.1. $m^{\prime \prime}(M, \phi, q)$ and $\ell_{\infty}^{\prime \prime}(M, q)$ are linear spaces.
Proof. Let $\left(x_{k, l}\right),\left(y_{k, l}\right) \in m^{\prime \prime}(M, \phi, q)$ and $\alpha, \beta \in \mathbb{C}$. Then there exists positive numbers ρ_{1} and ρ_{2} such that

$$
\sup _{r, s \geq 1, \sigma \in P_{r, s}} \frac{1}{\phi_{r, s}} \sum_{k, l \in \sigma} M\left(q\left(\frac{x_{k, l}}{\rho_{1}}\right)\right)<\infty
$$

and

$$
\sup _{r, s \geq 1, \sigma \in P_{r, s}} \frac{1}{\phi_{r, s}} \sum_{k, l \in \sigma} M\left(q\left(\frac{x_{k, l}}{\rho_{2}}\right)\right)<\infty .
$$

Let $\rho_{3}=\max \left(2|\alpha| \rho_{1}, 2|\beta| \rho_{2}\right)$. Since q is a semi-norm and M is a non-decreasing convex function, we have

$$
\begin{aligned}
\sum_{k, l \in \sigma} M\left[q\left(\frac{\alpha x_{k, l}+\beta y_{k, l}}{\rho_{3}}\right)\right] & \leq \sum_{k, l \in \sigma} M\left[q\left(\frac{\alpha x_{k, l}}{\rho_{3}}\right)+q\left(\frac{\beta y_{k, l}}{\rho_{3}}\right)\right] \\
& \leq \sum_{k, l \in \sigma} M\left[q\left(\frac{x_{k, l}}{\rho_{1}}\right)\right]+\sum_{k, l \in \sigma} M\left[q\left(\frac{y_{k, l}}{\rho_{2}}\right)\right] \\
& \Rightarrow \sup _{r, s \geq 1, \sigma \in P_{r, s}} \frac{1}{\phi_{r, s}} \sum_{k, l \in \sigma} M\left[q\left(\frac{\alpha x_{k, l}+\beta y_{k, l}}{\rho_{3}}\right)\right] \\
& \leq \sup _{r, s \geq 1, \sigma \in P_{r, s}} \frac{1}{\phi_{r, s}} \sum_{k, l \in \sigma} M\left[q\left(\frac{x_{k, l}}{\rho_{1}}\right)\right] \\
& +\sup _{r, s \geq 1, \sigma \in P_{r, s}} \frac{1}{\phi_{r, s}} \sum_{k, l \in \sigma} M\left[q\left(\frac{y_{k, l}}{\rho_{2}}\right)\right] \\
& <\infty \\
& \Rightarrow\left(\alpha x_{k, l}+\beta y_{k, l}\right) \in m^{\prime \prime}(M, \phi, q) .
\end{aligned}
$$

Hence $m^{\prime \prime}(M, \phi, q)$ is a linear space.
The proof for the case $\ell_{\infty}^{\prime \prime}(M, q)$ is a routine work in view of the above proof.

Theorem 3.2. The space $m^{\prime \prime}(M, \phi, q)$ is a seminormed space, seminormed by

$$
f\left(\left(x_{k, l}\right)\right)=\inf \left\{\rho>0: \sup _{r, s \geq 1, \sigma \in P_{r, s}} \frac{1}{\phi_{r, s}} \sum_{k, l \in \sigma} M\left[q\left(\frac{x_{k, l}}{\rho}\right)\right] \leq 1\right\}
$$

Proof. Obviously, $f\left(\left(x_{k, l}\right)\right) \geq 0$ for all $\left(x_{k, l}\right) \in m^{\prime \prime}(M, \phi, q)$ and $f(\bar{\theta})=0$.
Let $\rho_{1}>0$ and $\rho_{2}>0$ be such that

$$
\sup _{r, s \geq 1, \sigma \in P_{r, s}} \frac{1}{\phi_{r, s}} \sum_{k, l \in \sigma} M\left[q\left(\frac{x_{k, l}}{\rho_{1}}\right)\right] \leq 1
$$

and

$$
\sup _{r, s \geq 1, \sigma \in P_{r, s}} \frac{1}{\phi_{r, s}} \sum_{k, l \in \sigma} M\left[q\left(\frac{x_{k, l}}{\rho_{2}}\right)\right] \leq 1 .
$$

Let $\rho=\rho_{1}+\rho_{2}$. Then we have

$$
\begin{aligned}
\sup _{r, s \geq 1, \sigma \in P_{r, s}} \frac{1}{\phi_{r, s}} \sum_{k, l \in \sigma} M\left[q\left(\frac{x_{k, l}+y_{k, l}}{\rho}\right)\right]= & \sup _{r, s \geq 1, \sigma \in P_{r, s}} \frac{1}{\phi_{r, s}} \sum_{k, l \in \sigma} M\left[q\left(\frac{x_{k, l}+y_{k, l}}{\rho_{1}+\rho_{2}}\right)\right] \\
\leq & \sup _{r, s \geq 1, \sigma \in P_{r, s}} \frac{1}{\phi_{r, s}} \sum_{k, l \in \sigma}\left\{\frac{\rho_{1}}{\rho_{1}+\rho_{2}} M\left(q\left(\frac{x_{k, l}}{\rho_{1}}\right)\right)\right. \\
& \left.+\frac{\rho_{2}}{\rho_{1}+\rho_{2}} M\left(q\left(\frac{y_{k, l}}{\rho_{2}}\right)\right)\right\} \\
\leq & \frac{\rho_{1}}{\rho_{1}+\rho_{2}} \sup _{r, s \geq 1, \sigma \in P_{r, s}} \frac{1}{\phi_{r, s}} \sum_{k, l \in \sigma} M\left(q\left(\frac{x_{k, l}}{\rho_{1}}\right)\right) \\
& +\frac{\rho_{2}}{\rho_{1}+\rho_{2}} \sup _{r, s \geq 1, \sigma \in P_{r, s}} \frac{1}{\phi_{r, s}} \sum_{k, l \in \sigma} M\left(q\left(\frac{y_{k, l}}{\rho_{2}}\right)\right)
\end{aligned}
$$

≤ 1.
Since the ρ^{\prime} s are nonnegative, so we have

$$
\begin{aligned}
f(x+y)= & \inf \left\{\rho>0: \sup _{r, s \geq 1, \sigma \in P_{r, s}} \frac{1}{\phi_{r, s}} \sum_{k, l \in \sigma} M\left[q\left(\frac{x_{k, l}+y_{k, l}}{\rho}\right)\right] \leq 1\right\} \\
\leq & \inf \left\{\rho_{1}>0: \sup _{r, s \geq 1, \sigma \in P_{r, s}} \frac{1}{\phi_{r, s}} \sum_{k, l \in \sigma} M\left[q\left(\frac{x_{k, l}}{\rho_{1}}\right)\right] \leq 1\right\} \\
& +\inf \left\{\rho_{2}>0: \sup _{r, s \geq 1, \sigma \in P_{r, s}} \frac{1}{\phi_{r, s}} \sum_{k, l \in \sigma} M\left[q\left(\frac{y_{k, l}}{\rho_{2}}\right)\right] \leq 1\right\} \\
= & f(x)+f(y) .
\end{aligned}
$$

Next for $\lambda \in \mathbb{C}$, without loss of generality, let $\lambda \neq 0$, then

$$
\begin{aligned}
f\left(\lambda\left(x_{k, l}\right)\right) & =\inf \left\{\rho>0: \sup _{r, s \geq 1, \sigma \in P_{r, s}} \frac{1}{\phi_{r, s}} \sum_{k, l \in \sigma} M\left[q\left(\frac{\lambda x_{k, l}}{\rho}\right)\right] \leq 1\right\} \\
& =\inf \left\{|\lambda| r>0: \sup _{r, s \geq 1, \sigma \in P_{r, s}} \frac{1}{\phi_{r, s}} \sum_{k, l \in \sigma} M\left[q\left(\frac{x_{k, l}}{r}\right)\right] \leq 1\right\} \\
& =|\lambda| \inf \left\{r>0: \sup _{r, s \geq 1, \sigma \in P_{r, s}} \frac{1}{\phi_{r, s}} \sum_{k, l \in \sigma} M\left[q\left(\frac{x_{k, l}}{r}\right)\right] \leq 1, \text {, where } r=\frac{\rho}{|\lambda|}\right\} \\
& =|\lambda| f\left(\left(x_{k, l}\right)\right) .
\end{aligned}
$$

This completes the proof of the theorem.
The proof of the following theorem is similar to the previous theorem, so we state the result without proof.

Proposition 3.3. The space $\ell_{\infty}^{\prime \prime}(M, q)$ is a seminormed space, seminormed by

$$
g\left(\left(x_{k, l}\right)\right)=\inf \left\{\rho>0: \sup _{k, l \geq 1} M\left[q\left(\frac{x_{k, l}}{\rho}\right)\right] \leq 1\right\}
$$

Theorem 3.4. $m^{\prime \prime}(M, \phi, q) \subseteq m^{\prime \prime}(M, \psi, q)$ if and only if $\sup _{r, s \geq 1} \frac{\phi_{r, s}}{\psi_{r, s}}<\infty$.

Proof. Let $\sup _{r, s \geq 1} \frac{\phi_{r s}}{\psi_{r, s}}<\infty$ and $\left(x_{k, l}\right) \in m^{\prime \prime}(M, \phi, q)$. Then

$$
\sup _{r, s \geq 1, \sigma \in P_{r, s}} \frac{1}{\phi_{r, s}} \sum_{k, l \in \sigma} M\left[q\left(\frac{x_{k, l}}{\rho}\right)\right]<\infty, \text { for some } \rho>0
$$

so we have

$$
\sup _{r, s \geq 1, \sigma \in P_{r, s}} \frac{1}{\psi_{r, s}} \sum_{k, l \in \sigma} M\left[q\left(\frac{x_{k, l}}{\rho}\right)\right] \leq\left\{\sup _{r, s \geq 1} \frac{\phi_{r, s}}{\psi_{r, s}}\right\}\left\{\sup _{r, s \geq 1, \sigma \in P_{r, s}} \frac{1}{\phi_{r, s}} \sum_{k, l \in \sigma} M\left[q\left(\frac{x_{k, l}}{\rho}\right)\right]\right\} \quad \lll \lll<
$$

Thus $\left(x_{k, l}\right) \in m^{\prime \prime}(M, \psi, q)$.
Therefore $m^{\prime \prime}(M, \phi, q) \subseteq m^{\prime \prime}(M, \psi, q)$.
Conversely, let $m^{\prime \prime}(M, \phi, q) \subseteq m^{\prime \prime}(M, \psi, q)$. Suppose that $\sup _{r, s \geq 1} \frac{\phi_{r s}}{\psi_{r, s}}=\infty$. Then there exists a sequence of naturals $\left\{r_{i} s_{j}\right\}$ such that $\lim _{i, j \rightarrow \infty} \frac{\phi_{r_{i} s_{j}}}{\psi_{r_{i} s_{j}}}=\infty$. Let $\left(x_{k, l}\right) \in m(M, \phi, q)$. Then there exists $\rho>0$ such that

$$
\sup _{r, s \geq 1, \sigma \in P_{r, s}} \frac{1}{\phi_{r, s}} \sum_{k, l \in \sigma} M\left[q\left(\frac{x_{k, l}}{\rho}\right)\right]<\infty .
$$

Now we have

$$
\begin{aligned}
\sup _{r, s \geq 1, \sigma \in P_{r, s}} \frac{1}{\psi_{r, s}} \sum_{k, l \in \sigma} M\left[q\left(\frac{x_{k, l}}{\rho}\right)\right] & \geq\left\{\sup _{i, j \geq 1} \frac{\phi_{r_{i} s_{j}}}{\psi_{r_{i} s_{j}}}\right\}\left\{\sup _{i, j \geq 1, \sigma \in P_{r_{i} s_{j}}} \frac{1}{\phi_{r_{i} s_{j}}} \sum_{k, l \in \sigma} M\left[q\left(\frac{x_{k, l}}{\rho}\right)\right]\right\} \\
& =\infty .
\end{aligned}
$$

Therefore $\left(x_{k, l}\right) \notin m^{\prime \prime}(M, \psi, q)$. As such we arrive at a contradiction.
Hence $\sup _{r, s \geq 1} \frac{\phi_{r, s}}{\psi_{r, s}}<\infty$.
The following result follows from Theorem 3.4.
Corollary 3.5. Let M be an Orlicz function. Then $m^{\prime \prime}(M, \phi, q)=m^{\prime \prime}(M, \psi, q)$ if and only if $\sup _{r, s \geq 1} \eta_{r, s}<\infty$ and $\sup _{r, s \geq 1} \eta_{r, s}^{-1}<\infty$, where $\eta_{r, s}=\frac{\phi_{r, s}}{\psi_{r, s}}$ for all $r, s=1,2,3, \ldots$.

Theorem 3.6. Let M, M_{1}, M_{2} be Orlicz functions satisfying Δ_{2} - condition. Then
(i) $m^{\prime \prime}\left(M_{1}, \phi, q\right) \subseteq m^{\prime \prime}\left(M \circ M_{1}, \phi, q\right)$,
(ii) $m^{\prime \prime}\left(M_{1}, \phi, q\right) \cap m^{\prime \prime}\left(M_{2}, \phi, q\right) \subseteq m^{\prime \prime}\left(M_{1}+M_{2}, \phi, q\right)$.

Proof. (i) Let $\left(x_{k, l}\right) \in m^{\prime \prime}\left(M_{1}, \phi, q\right)$. Then there exists $\rho>0$ such that

$$
\sup _{r, s \geq 1, \sigma \in P_{r, s}} \frac{1}{\phi_{r, s}} \sum_{k, l \in \sigma} M_{1}\left[q\left(\frac{x_{k, l}}{\rho}\right)\right]<\infty .
$$

Let $0<\varepsilon<1$ and δ with $0<\delta<1$ such that $M(t)<\varepsilon$ for $0 \leq t<\delta$.
Let $y_{k, l}=M_{1}\left(q\left(\frac{x_{k, l}}{\rho}\right)\right)$ and for any $\sigma \in P_{r, s,}$ let

$$
\sum_{k, l \in \sigma} M\left(y_{k, l}\right)=\sum_{1} M\left(y_{k, l}\right)+\sum_{2} M\left(y_{k, l}\right)
$$

where the first summation is over $y_{k, l} \leq \delta$ and the second is over $y_{k, l}>\delta$.

By the remark we have

$$
\begin{equation*}
\sum_{1} M\left(y_{k, l}\right) \leq M(1) \sum_{1}\left(y_{k, l}\right)+M(2) \sum_{2}\left(y_{k, l}\right) \tag{1}
\end{equation*}
$$

For $y_{k, l}>\delta$

$$
y_{k, l}<\frac{y_{k, l}}{\delta} \leq 1+\frac{y_{k, l}}{\delta}
$$

since M is non-decreasing and convex, so

$$
M\left(y_{k, l}\right)<M\left(1+\frac{y_{k, l}}{\delta}\right)<\frac{1}{2} M(2)+\frac{1}{2} M\left(\frac{2 y_{k, l}}{\delta}\right)
$$

Since M satisfies Δ_{2} - condition, so

$$
\begin{aligned}
M\left(y_{k, l}\right) & <\frac{1}{2} K \frac{y_{k, l}}{\delta} M(2)+\frac{1}{2} K \frac{y_{k, l}}{\delta} M(2) \\
& =K \frac{y_{k, l}}{\delta} M(2)
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\sum_{2} M\left(y_{k, l}\right) \leq \max \left(1, K \delta^{-1} M(2)\right) \sum_{2}\left(y_{k, l}\right) . \tag{2}
\end{equation*}
$$

By 1 and 2 we have $\left(x_{k, l}\right) \in m^{\prime \prime}\left(M \circ M_{1}, \phi, q\right)$.
Thus $m^{\prime \prime}\left(M_{1}, \phi, q\right) \subseteq m^{\prime \prime}\left(M \circ M_{1}, \phi, q\right)$.
(ii) $\left(x_{k, l}\right) \in m^{\prime \prime}\left(M_{1}, \phi, q\right) \cap m^{\prime \prime}\left(M_{2}, \phi, q\right)$.

Then there exists $\rho>0$ such that

$$
\sup _{r, s \geq 1, \sigma \in P_{r, s}} \frac{1}{\phi_{r, s}} \sum_{k, l \in \sigma} M_{1}\left[q\left(\frac{x_{k, l}}{\rho}\right)\right]<\infty
$$

and

$$
\sup _{r, s \geq 1, \sigma \in P_{r, s}} \frac{1}{\phi_{r, s}} \sum_{k, l \in \sigma} M_{2}\left[q\left(\frac{x_{k, l}}{\rho}\right)\right]<\infty .
$$

The rest of the proof follows from the equality

$$
\sum_{k, l \in \sigma}\left(M_{1}+M_{2}\right)\left[q\left(\frac{x_{k, l}}{\rho}\right)\right]=\sum_{k, l \in \sigma} M_{1}\left[q\left(\frac{x_{k, l}}{\rho}\right)\right]+\sum_{k, l \in \sigma} M_{2}\left[q\left(\frac{x_{k, l}}{\rho}\right)\right] .
$$

Taking $M_{1}(x)=x$ in Theorem 3.6 (i) we have the following result.
Corollary 3.7. Let M be an Orlicz function satisfying $\Delta_{2}-$ condition. Then

$$
m^{\prime \prime}(\phi, q) \subseteq m^{\prime \prime}(M, \phi, q)
$$

We now have from Theorem 3.4 and Corollary 3.7:
Corollary 3.8. Let M be an Orlicz function satisfying Δ_{2} - condition. Then

$$
m^{\prime \prime}(\phi, q) \subseteq m^{\prime \prime}(M, \psi, q) \quad \text { if and only if } \quad \sup _{r, s \geq 1} \frac{\phi_{r, s}}{\psi_{r, s}}<\infty
$$

Theorem 3.9. $\ell_{1}^{\prime \prime}(M, q) \subseteq m^{\prime \prime}(M, \phi, q) \subseteq \ell_{\infty}^{\prime \prime}(M, q)$, where

$$
\ell_{1}^{\prime \prime}(M, q)=\left\{\left(x_{k, l}\right) \in w(X): \sum_{k, l=1,1}^{\infty, \infty} M\left(q\left(\frac{x_{k, l}}{\rho}\right)\right)<\infty, \text { for some } \rho>0\right\} .
$$

Proof. Let $\left(x_{k, l}\right) \in \ell_{1}^{\prime \prime}(M, q)$. Then we have

$$
\begin{equation*}
\sum_{k, l=1,1}^{\infty, \infty} M\left[q\left(\frac{x_{k, l}}{\rho}\right)\right]<\infty, \text { for some } \rho>0 \tag{3}
\end{equation*}
$$

Since $\left(\phi_{m, n}\right)$ is monotonic increasing, so we have

$$
\begin{aligned}
\frac{1}{\phi_{r, s}} \sum_{k, l \in \sigma} M\left[q\left(\frac{x_{k, l}}{\rho}\right)\right] & \leq \frac{1}{\phi_{1,1}} \sum_{k, l \in \sigma} M\left[q\left(\frac{x_{k, l}}{\rho}\right)\right] \\
& \leq \frac{1}{\phi_{1,1}} \sum_{k, l=1,1}^{\infty, \infty} M\left[q\left(\frac{x_{k, l}}{\rho}\right)\right] \\
& <\infty
\end{aligned}
$$

Thus,

$$
\sup _{r, s \geq 1, \sigma \in P_{r, s}} \frac{1}{\phi_{r, s}} \sum_{k, l \in \sigma} M\left[q\left(\frac{x_{k, l}}{\rho}\right)\right]<\infty .
$$

Hence, $\left(x_{k, l}\right) \in m^{\prime \prime}(M, \phi, q)$.
Therefore $\ell_{1}^{\prime \prime}(M, q) \subseteq m^{\prime \prime}(M, \phi, q)$.
Next let $\left(x_{k, l}\right) \in m^{\prime \prime}(M, \phi, q)$. Then we have

$$
\begin{aligned}
\sup _{r, s \geq 1, \sigma \in P_{r, s}} \frac{1}{\phi_{r, s}} \sum_{k \in \sigma} M\left[q\left(\frac{x_{k, l}}{\rho}\right)\right] \quad & <\infty, \text { for some } \rho>0 . \\
\Rightarrow & \sup _{k, l \in \mathbb{N} \times \mathbb{N}} \frac{1}{\phi_{1,1}} M\left[q\left(\frac{x_{k, l}}{\rho}\right)\right]<\infty, \text { for some } \rho>0, \\
& (\text { on taking cardinality of } \sigma \text { to be } 1) \\
\Rightarrow & \left(x_{k, l}\right) \in \ell_{\infty}^{\prime \prime}(M, q) .
\end{aligned}
$$

Therefore $m^{\prime \prime}(M, \phi, q) \subseteq \ell_{\infty}^{\prime \prime}(M, q)$.
This completes the proof of the theorem.
Finally we conclude this paper by stating the following theorem. We omit the proof since it involves known arguments.

Theorem 3.10. Let (X, q) be complete, then $m^{\prime \prime}(M, \phi, q)$ is also complete.
If one considers a normed linear space $(X,\|\cdot\|)$ instead of a seminormed space (X, q), then one will get $m^{\prime \prime}(M, \phi,\|\cdot\|)$, which will be a normed linear space, normed by

$$
\left\|\left(x_{k, l}\right)\right\|_{M}=\inf \left\{\rho>0: \sup _{r, s \geq 1, \sigma \in P_{r, s}} \frac{1}{\phi_{r, s}} \sum_{k, l \in \sigma} M\left(\left\|\frac{x_{k, l}}{\rho}\right\|\right) \leq 1\right\}
$$

The space $m^{\prime \prime}(M, \phi,\|\cdot\|)$ will be a Banach space if X is a Banach space.

References

[1] M. Et, Sequence spaces defined by Orlicz function, J. Anal. 9 (2001) 21-28.
[2] K. Lindberg, On subspaces of Orlicz sequence spaces, Studia Math. 45 (1973) 119-146.
[3] J. Lindenstrauss, L. Tzafriri, On Orlicz sequence spaces, Israel J. Math. 10 (1971) 379-390.
[4] I.J. Maddox, Some new sequence spaces defined by a modulus, Math. Proc. Camb. Phil. Soc. 100 (1986) 161-166.
[5] S.D. Parashar, B. Choudhary, Sequence spaces defined by Orlicz function, Indian J. Pure Appl. Math. 25 (1994) 419-428.
[6] A. Pringsheim, Zur theorie der zweifach unendlichen Zahlenfolgen, Math. Ann. 53 (1900) 289-321.
[7] D. Rath, B.C. Triphaty, Characterization of certain matrix operators, J. Orissa Math. Soc. 8 (1989) 121-134.
[8] W.H. Ruckle, FK spaces in which the sequence of coordinate vectors is bounded, Canad. J. Math. 25 (1973) 973-978.
[9] W.L.C. Sargent, Some sequence spaces related to ℓ^{p} spaces, J. London Math. Soc. 35 (1960) 161-171.
[10] E. Savaş, R. Savaş, Some λ-sequence spaces defined by Orlicz functions, Indian J. Pure Appl. Math. 34 (2003) 1673-1680.
[11] E. Savaş, On fuzzy real-valued double A-sequence spaces defined by Orlicz functions, Math. Commun. 16 (2011) 609-619.
[12] E. Savaş, $(A)_{\Delta}$-double sequence spaces of fuzzy numbers via Orlicz function, Iran. J. Fuzzy Syst. 8:2 (2011) 91-103.
[13] E. Savaş, R.F. Patterson, Some double lacunary sequence spaces defined by Orlicz functions, Southeast Asian Bull. Math. 35 (2011) 103-110.
[14] E. Savaş, A-sequence spaces in 2-normed space defined by ideal convergence and an Orlicz function, Abstr. Appl. Anal. 2011 (2011), Article ID 741382, 9 pages.
[15] E. Savaş, Some new double sequence spaces defined by Orlicz function in n-normed space, J. Inequal. Appl. 2011 (2011), Article ID 592840, 9 pages.
[16] E. Savaş, On some new sequence spaces in 2-normed spaces using ideal convergence and an Orlicz function, J. Inequal. Appl. 2010 (2010), Article ID 482392, 8 pages.
[17] B.C. Triphaty, M. Sen, On a new class of sequences related to the space ℓ^{p}, Tamkang J. Math. 33 (2002) 167-171.
[18] B.C. Triphaty, M. Sen, On a new class of sequences related to the space ℓ^{p} space defined by Orlicz functions, Soochow J. Math. 29 (2003) 379-391.

[^0]: 2010 Mathematics Subject Classification. Primary 40A99; Secondary 40A05
 Keywords. Double sequence, seminormed space, Orlicz function
 Received: 05 July 2015; Revised: 14 November 2015; Accepted: 04 December 2015
 Communicated by Ljubiša D.R. Kočinac
 Email addresses: ekremsavas@yahoo.com (Ekrem Savaş), rahmet.savas@medeniyet.edu.tr (Rahmet Savaş Eren)

