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Abstract. In this paper, an optimal control problem with final observation for systems governed by
nonlinear time-dependent Schrödinger equation is studied. The existence and uniqueness of the solution
of considered optimal control problem are proved. The first variation of objective functional is obtained
and a necessary optimality condition in the variational form is given.

1. Introduction

The researches for the optimal control of systems governed by partial differential equations have a
long history. Especially, the optimal control problems for systems described by Schrödinger equation have
drawn a lot of attention in the last year. The optimal control problems for systems governed by Schrödinger
equation arise in quantum mechanics, nuclear physics, nonlinear optics, and the various field of modern
physics and engineering [5, 22].

Consider the partial differential equation in the form:

ε
∂ψ

∂t
+ r2(x, t, ψ)

∂2ψ

∂x2 + r1(x, t, ψ)
∂ψ

∂x
+ r0(x, t, ψ)ψ = 0. (1)

Equation (1) describes the slow variation of the function ψ(x, t) in a nonlinear medium with quadratic
dispersion, where ε = const., the function ψ(x, t) is the wave’s complex amplitute, x and t are variables
of space and time, respectively. The coefficients r j(x, t, ψ) for j = 0, 1, 2 considered as functions of x and t
describes the variation of the medium, while their dependence on the functionψ(x, t) describes the nonlinear
properties of the medium [29]. From equation (1) according to the properties of the coefficients r j(x, t, ψ) for
j = 0, 1, 2 is obtained the different variants of Schrödinger equation such as linear and nonlinear Schrödinger
equations.

In the case of r2(x, t, ψ) = r2(x, t), r1(x, t, ψ) = 0, r0(x, t, ψ) = r0(x, t) in the equation (1), a linear Schrödinger
equation is obtained from equation (1). The optimal control problems for the different variants of systems
described by linear Schrödinger equations were examined in the papers [1-5], [7, 9, 13, 19, 27]. Similarly, in
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the case of r2(x, t, ψ) = r2(x, t), r1(x, t, ψ) = 0, r0(x, t, ψ) = r0(x, t, ψ) in the equation (1), a nonlinear Schrödinger
equation is obtained from equation (1). The optimal control problems for the different variants of systems
described by nonlinear Schrödinger equations were studied in the papers [8], [10-12], [16-17], [23, 26]. Also,
in the case of r2(x, t, ψ) = r2(x, t), r1(x, t, ψ) = r1(x, t), r0(x, t, ψ) = r0(x, t) in the equation (1), the optimal
control problems for the different variants of systems described by linear Schrödinger equations obtained
from equation (1) were examined in the papers [24-25].

As the different from the above mentioned studies, in this paper, we consider an optimal control problem
for systems governed by nonlinear Schrödinger equations obtained from (1) in the case of r2(x, t, ψ) = r2(x, t),
r1(x, t, ψ) = r1(x, t), r0(x, t, ψ) = r0(x, t, ψ) in the equation (1). In Section 2, the formulation of considered
optimal control problem is given. In Section 3, the existence and uniqueness of the solutions of optimal
control problem are proved. Finally, the first variation of objective functional is obtained and a necessary
optimality condition in the variational form is given in Section 4.

2. The Formulation of Optimal Control Problem

Let l, T be given numbers, 0 ≤ x ≤ l, 0 ≤ t ≤ T, Ωt = (0, l) × (0, t),Ω = ΩT.
Let’s consider the system described by nonlinear Schrödinger equation:

i
∂ψ

∂t
+ a0

∂2ψ

∂x2 + ia1
∂ψ

∂x
− a(x)ψ + v(t)ψ + ia2|ψ|

2ψ = f (x, t) (2)

ψ(x, 0) = ϕ(x), x ∈ (0, l) (3)

ψ(0, t) = ψ(l, t) = 0, t ∈ (0,T), (4)

where ψ = ψ(x, t) is a wave function, i =
√
−1 imaginary unit, a0, a1, a2 > 0 are given real numbers, a(x) is a

measurable real-valued function which satisfies the condition

0 ≤ a(x) ≤ µ0, for almost all x ∈ (0, l) , µ0 = const. > 0, (5)

and the functions ϕ ∈ W̊2
2(0, l), f ∈ W0,1

2 (Ω) are given complex-valued functions. Here, ψ = ψ(x, t) is the
state and v = v(t) is the control.

We can roughly express the control problem as follows: to which extent can the solution ψ = ψ(x, t) of
(2)-(4) be perturbed by action of the control v at a given final time t = T in order to reach a given final target?

If we want to formulate this problem as an optimal control problem, we can write it as the problem of
finding the minimum of the objective functional

Jα(v) = ||ψ(.,T) − y||2L2(0,l) + α||v − w||2W1
2 (0,T) (6)

from the conditions (2)-(4), where y = y(x) ∈ L2(0, l) is the given final target, α ≥ 0 is a given number,
w ∈W1

2(0,T) is a given element.
The control function v = v(t) is investigated on the set

V ≡
{

v : v(t) ∈W1
2(0,T), |v(t)| ≤ b0,

∣∣∣∣∣dv(t)
dt

∣∣∣∣∣ ≤ b1 for almost all t ∈ (0,T) , b0, b1 = const. > 0
}

which is called as the set of admissible controls. Here the Sobolev space W1
2(0,T) is a Hilbert space consisting

of all the elements L2 (0,T) having square summable generalized derivatives of the first order on (0,T) . The
Sobolev spaces W̊2

2(0, l),W0,1
2 (Ω) are widely defined in [15].

In this paper, we will denote the problem of finding the minimum of the objective functional Jα(v) on
the set V under the conditions (2)-(4) as the optimal control problem (2)-(4), (6).

When an optimal control problem is examined, the some questions emerge such as the existence and
uniqueness of solutions of the optimal control problem, the differentiability of the objective functional, the
necessary and sufficient conditions for the solution of the optimal control problem. So, throughout this
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paper, we investigate the answers of mentioned questions. For this purpose, firstly, we must prove the
existence of the solution of the boundary value problem (2)-(4).

Now, let’s define the solution of the boundary value problem (2)-(4). Under given conditions, by a solu-
tion of the problem (2)-(4), we mean a functionψ(x, t) in the space B0 ≡ C0([0,T], W̊2

2(0, l))∩C1([0,T],L2(0, l)),
which satisfies the equation (2) f or almost all x ∈ (0, l) and any t ∈ [0,T], the initial condition (3) f or almost
all x ∈ (0, l) and the boundary condition (4) f or almost all t ∈ (0,T), where Ck([0,T],B) is a Banach space of
all B−valued, k ≥ 0 times continuously differentiable functions on [0,T] with the norm

||ψ||Ck([0,T],B) =

k∑
m=0

max
0≤t≤T

||
dmψ(t)

dtm ||B

for ψ ∈ Ck([0,T],B).
We prove that the following theorem is valid for the solution of the boundary value problem (2)-(4):

Theorem 2.1. Assume that ϕ ∈ W̊2
2(0, l), f ∈ W0,1

2 (Ω) and the function a(x) satisfies the conditions (5). Then, the
initial boundary value problem (2)-(4) has a unique solution ψ ∈ B0 for any v ∈ V and the following estimation is
valid for this solution:

||ψ(., t)||2
W̊2

2 (0,l)
+

∥∥∥∥∥∂ψ∂t

∥∥∥∥∥2

L2(0,l)
≤ c0

(
||ϕ||2

W̊2
2 (0,l)

+ ||ϕ||6
W̊2

2 (0,l)
+ ||ϕ||6

W̊1
2 (0,l)

+||ϕ||18
W̊1

2 (0,l)
+ || f ||2

W0,1
2 (Ω)

+ || f ||6
W0,1

2 (Ω)

)
(7)

for any t ∈ [0,T], where the constant c0 > 0 is independent from ϕ, f and t.

3. Existence and Uniqueness Theorems

In this section, two different cases are investigated for the solution of the optimal control problem (2)-(4),
(6). Firstly, it is shown that the optimal control problem (2)-(4), (6) has a unique solution for α > 0 on a dense
subset G of the space W1

2(0,T) by using theorem 3.1 and secondly, the problem has at least one solution for
any α ≥ 0 on the space W1

2(0,T).

Theorem 3.1. (The corollary of Goebel theorem [6]) Let X̃ be a uniformly convex space, U be a closed bounded
set on X̃ , the functional I(v) be lower semicontinuous and lower bounded on U, α > 0 be a given number. Then, there
is a dense subset G of the space X̃ such that for any w ∈ G the functional

Iα(v) = I(v) + α||v − w||2
X̃

takes its minimum value at a unique point on U.

Lemma 3.2. The functional J0(v) = ||ψ(.,T) − y||2L2(0,l) is continuous on the set V.

Proof. Let ∆v ∈W1
∞

(0,T) be an increment of any element v ∈ V such that v+∆v ∈ V,ψ = ψ(x, t) ≡ ψ(x, t; v) be
the solution of the problem (2)-(4) corresponding to v ∈ V and . ∆ψ = ∆ψ(x, t) ≡ ψ(x, t; v + ∆v)−ψ(x, t; v) =
ψ∆ − ψ(x, t), where the function ψ∆ = ψ(x, t; v + ∆v) is a solution of the problem (2)-(4) for any v + ∆v.From
the conditions (2)-(4) is obtained that the function ∆ψ = ∆ψ(x, t) is a solution of the following boundary
value problem:

i
∂∆ψ

∂t
+ a0

∂2∆ψ

∂x2 + ia1
∂∆ψ

∂x
− a(x)∆ψ + (v + ∆v)∆ψ

+ia2

[(
|ψ∆|

2 + |ψ|2
)
∆ψ + ψ∆ψ∆ψ̄

]
= −∆v(t)ψ, (x, t) ∈ Ω (8)
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∆ψ(x, 0) = 0, x ∈ (0, l), (9)

∆ψ(0, t) = ∆ψ(l, t) = 0, t ∈ (0,T) . (10)

Now, let’s evaluate the solution of the boundary value problem (8)-(10). For this purpose, let us multiply
both sides of the equation (8) by ∆ψ̄(x, t) and integrate over Ωt. Then, integrating by part we get∫

Ωt

i∂∆ψ∂t
∆ψ̄ − a0

∣∣∣∣∣∂∆ψ∂x

∣∣∣∣∣2 + ia1
∂∆ψ

∂x
∆ψ̄ − a(x)

∣∣∣∆ψ∣∣∣2 + (v(t) + ∆v(t))|∆ψ|2

+ia2

(
|ψ∆|

2 + |ψ|2
)
|∆ψ|2 + ia2ψ∆ψ(∆ψ̄)2

]
dxdτ

= −

∫
Ωt

∆v(t)ψ∆ψ̄dxdτ.

If we subtract the complex conjugate of the above equality from itself and use the condition (9), we obtain∥∥∥∆ψ(., t)
∥∥∥2

L2(0,l) + 2a2

∫
Ωt

(|ψ∆|
2 + |ψ|2)|∆ψ|2 dxdτ

= −2
∫
Ωt

Im
(
∆vψ∆ψ

)
dxdτ − 2a2

∫
Ωt

Re
(
ψ∆ψ

(
∆ψ

)2
)

dxdτ

and by Young’s inequality∥∥∥∆ψ(., t)
∥∥∥2

L2(0,l) + a2

∫
Ωt

(|ψ∆|
2 + |ψ|2)|∆ψ|2 dxdτ

≤ 2
∫
Ωt

|∆v|
∣∣∣ψ∣∣∣ ∣∣∣∆ψ∣∣∣ dxdτ

≤

t∫
0

l∫
0

|∆v|2
∣∣∣ψ∣∣∣2 dxdτ +

∫
Ωt

∣∣∣∆ψ∣∣∣2 dxdτ

=

t∫
0

|∆v|2
∥∥∥ψ(., t)

∥∥∥2

L2(0,l) dτ +

t∫
0

∥∥∥∆ψ(., t)
∥∥∥2

L2(0,l) dτ

≤ max
0≤t≤T

∥∥∥ψ(., t)
∥∥∥2

L2(0,l)

T∫
0

|∆v|2 dτ +

t∫
0

∥∥∥∆ψ(., t)
∥∥∥2

L2(0,l) dτ

for any t ∈ [0,T] . In the above inequality, if we use the estimation (7), we get

||∆ψ(., t)||2L2(0,l) + a2

∫
Ωt

(|ψ∆|
2 + |ψ|2)|∆ψ|2 dxdτ ≤ c1||∆v||2L2(0,T) +

t∫
0

||∆ψ(., t)||2L2(0,l)dτ. (11)

Thus, ıf we take into account a2 > 0,we have the inequality

||∆ψ(., t)||2L2(0,l) ≤ c1||∆v||2L2(0,T) +

t∫
0

||∆ψ(., t)||2L2(0,l)dτ, (12)
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for any t ∈ [0,T] , where the constant c1 > 0 is independent from ∆ψ, ∆v and t. Applying the Gronwall’s
inequality to (12), we get∥∥∥∆ψ(., t)

∥∥∥2

L2(0,l) ≤ c2||∆v||2L2(0,T) for any t ∈ [0,T] (13)

and thus∥∥∥∆ψ(., t)
∥∥∥2

L2(0,l) ≤ c2||∆v||2L2(0,T) ≤ c3||∆v||2W1
2 (0,T) ≤ c4||∆v||2W1

∞(0,T) for any t ∈ [0,T] (14)

where the constants c2, c3, c4 > 0 are independent from ∆v and t.
Now, let us find the increment of the functional J0(v) for any v ∈ V. If we use the definition of the

functional J0(v), we obtain

∆J0(v) = J0(v + ∆v) − J0(v)

=

l∫
0

∣∣∣ψ(x,T; v + ∆v) − y(x)
∣∣∣2 dx −

l∫
0

∣∣∣ψ(x,T; v) − y(x)
∣∣∣2 dx

=

l∫
0

(
ψ∆(x,T) − y(x)

) (
ψ∆(x,T) − y(x)

)
dx −

l∫
0

(
ψ(x,T) − y(x)

) (
ψ(x,T) − y(x)

)
dx

= 2

l∫
0

Re[(ψ(x,T) − y(x))(∆ψ̄(x,T)]dx +
∥∥∥∆ψ(.,T)

∥∥∥2

L2(0,l) . (15)

Applying the Cauchy-Schwarz inequality to the equality (15) and later using the estimations (7), (14), we
get the following inequality for the increment of functional J0(v) :

|J0(v + ∆v) − J0(v)| ≤ c5

(
‖∆v‖W1

2 (0,T) + ||∆v||2W1
2 (0,T)

)
for any v ∈ V, where the constant c5 > 0 is independent from ∆v.Thus, since ∆J0(v)→ 0 for ‖∆v‖W1

∞(0,T) → 0
and any v ∈ V, we can easily say that the functional J0(v) is continuous on the set V.

Now, let’s give the following theorem stated the uniqueness of the solution of the optimal control
problem (2)-(4), (6) on a dense subset G of the space W1

2(0,T).

Theorem 3.3. Assume that the conditions of Theorem (2.1) are fulfilled and w ∈ W1
2(0,T), y ∈ L2(0, l) are given

functions. Then, there is a dense subset G of the space W1
2(0,T) such that the optimal control problem (2)-(4), (6)

has a unique solution for any w ∈ G and α > 0 .

Proof. Since the functional J0(v) is continuous on the set V, it is a lower semicontinuous functional. Also,
since J0(v) ≥ 0 for any v ∈ V, the functional J0(v) is lower bounded. Additionally, the set V is a closed,
bounded and convex set of the uniformly convex space W1

2(0,T) [28]. Thus, the conditions of Theorem
3.1 hold. So, we can say that there is a dense subset G of the space W1

2(0,T) such that the optimal control
problem (2)-(4), (6) has a unique solution for any w ∈ G and α > 0.

The next theorem state that the optimal control problem (2)-(4), (6) has at least one solution for any α ≥ 0
on the space W1

2(0,T).

Theorem 3.4. Suppose that α ≥ 0, the conditions of Theorem (2.1) hold and w ∈W1
2(0,T) is a given function. Then,

the optimal control problem (2)-(4), (6) has at least one solution.
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Proof. Let {vm
} ⊂ V be a minimizing sequence such that limm−→∞ Jα(vm) = Jα∗ = infv∈V Jα(v) for the functional

Jα(v). Let ψm = ψ(x, t) ≡ ψ(x, t; vm) be a solution of the boundary value problem (2)-(4) for any vm
∈ V.

Since vm
∈ V, m = 1, 2, . . . , from theorem 2.1, we can say that the problem (2)-(4) has a unique solution

ψm = ψ(x, t) ≡ ψ(x, t; vm) ∈ B0 for each m = 1, 2, · · · . Moreover, the following estimation is valid:

||ψm(., t)||20
W2

2 (0,l)
+

∥∥∥∥∥∂ψm(., t)
∂t

∥∥∥∥∥2

L2(0,l)
≤ c6, for any t ∈ [0,T] and m = 1, 2, ... (16)

where the constant c6 > 0 is independent from m and indicates the right side of the estimation (7).
Since the set V is a closed, bounded and convex set of the Hilbert space W1

∞(0,T),we can choose a
subsequence

{
vm

p

}
of the sequence {vm

} such that

vm
p ∗-weakly
−−−−−−−→

v as m→∞ in L∞ (0,T)

dvm
p

dt
∗-weakly
−−−−−−−→

dv
dt

as m→∞ in L∞ (0,T) .

For simplicity, let’s denote the subsequence
{
vm

p

}
by {vm

}. Namely, the following limit relations for the
subsequence {vm

} are written:

vm
∗-weakly
−−−−−−−→

v as m→∞ in L∞ (0,T) (17)

dvm

dt
∗-weakly
−−−−−−−→

dv
dt

as m→∞ in L∞ (0,T) (18)

Since the set V is a closed, bounded and convex set of the Hilbert space W1
∞(0,T), it is a *-weakly closed

set on the set W1
∞(0,T) according to the known theorem from [14]. Namely, v ∈ V. So, from (17) and (18) we

can write the following limit relations:

T∫
0

vm(t)q(t)dt −→

T∫
0

v(t)q(t)dt for any q ∈ L1(0,T) as m→∞, (19)

T∫
0

dvm(t)
dt

q1(t)dt −→

T∫
0

dv(t)
dt

q1(t)dt for any q1 ∈ L1(0,T) as m→∞. (20)

From the estimation (16), it is obtained the sequence {ψm} is uniformly bounded in B0. Hence, we can choose

a subsequence {ψp
m} of the sequence {ψm} such that the subsequences {ψp

km(x, t)}, {
∂ψ

p
km(x,t)
∂x }, {

∂2ψ
p
km(x,t)
∂x2 }, {

∂ψ
p
km(x,t)
∂t }

weakly converge to the functions ψk,
∂ψk

∂x ,
∂2ψk

∂x2 ,
∂ψk

∂t in L2 (0, l) for each t ∈ [0,T] and m→∞, respectively. For
simplicity, let’s denote the subsequence {ψp

m} by {ψm}. Thus, we can write the limit relations:

ψm weakly
−−−−−→

ψ in L2 (0, l) for each t ∈ [0,T] as m→∞

∂ψm

∂t
weakly
−−−−−→

∂ψ

∂t
in L2 (0, l) for each t ∈ [0,T] as m→∞

∂ψm

∂x
weakly
−−−−−→

∂ψ

∂x
in L2 (0, l) for each t ∈ [0,T] as m→∞ (21)

∂2ψm

∂x2 weakly
−−−−−→

∂2ψ

∂x2 in L2 (0, l) for each t ∈ [0,T] as m→∞
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Now, let us show that the limit function ψ(x, t) satisfies the equation (2) for almost all x ∈ (0, l) and for any
t ∈ [0,T] . Since the function ψm(x, t) for each m = 1, 2, ... is the solution of the problem (2)-(4), we can write
the integral identity

l∫
0

[
i
∂ψm

∂t
+ a0

∂2ψm

∂x2 + ia1
∂ψm

∂x
− a(x)ψm + vm(t)ψm + ia2|ψm|

2ψm − f
]
1̄(x)dx = 0 (22)

for each t ∈ [0,T] and any 1 ∈ L2 (0, l) .
According to the embedding theorems in the studies [1, 20], the space B0 is compactly embedded into

the space C0([0,T],L∞(0, l)) which implies that

||ψm(., t) − ψ(., t)||L∞(0,l) uni f ormly accordin1 to t
−−−−−−−−−−−−−−−−−−−−−→

0 as m→∞. (23)

It is clear that
l∫

0

vm(t)ψm(x, t)1̄(x)dx =

l∫
0

vm(t)
(
ψm(x, t) − ψ(x, t)

)
1̄(x)dx +

l∫
0

(vm(t) − v(t))ψ(x, t)1̄(x)dx

+

l∫
0

v(t)ψ(x, t)1̄(x)dx. (24)

for any 1 ∈ L2 (0, l) . Also, it is written that∣∣∣∣∣∣∣∣
l∫

0

vm(t)
(
ψm(x, t) − ψ(x, t)

)
1̄(x)dx

∣∣∣∣∣∣∣∣ ≤ |vm(t)|

l∫
0

∣∣∣ψm(x, t) − ψ(x, t)
∣∣∣ ∣∣∣1(x)

∣∣∣ dx

≤ b0

√

l||ψm(., t) − ψ(., t)||L∞(0,l)||1||L2(0,l) (25)

and ∣∣∣∣∣∣∣∣
l∫

0

(vm(t) − v(t))ψ(x, t)1̄(x)dx

∣∣∣∣∣∣∣∣ ≤ |vm(t) − v(t)|

l∫
0

∣∣∣ψ(x, t)
∣∣∣ ∣∣∣1(x)

∣∣∣ dx

≤ ‖vm
− v‖C0[0,T] ||ψ(., t)||L2(0,l)||1||L2(0,l) (26)

Since {vm
} ∈W1

∞(0,T) and the space W1
∞(0,T) is compactly embedded into C0 [0,T] , the limit relation

‖vm
− v‖C0[0,T] → 0 for any t ∈ [0,T] as m→∞ (27)

is written. Thus, taking into account the limit relations (23) and (27), the inequalities (25) and (26) in (24) if
we get to the limit in (24) as m→∞ , we obtain the limit relation

l∫
0

vm(t)ψm(x, t)1̄(x)dx→

l∫
0

v(t)ψ(x, t)1̄(x)dx (28)

for each t ∈ [0,T] and any 1 ∈ L2 (0, l) . Now, let’s prove that the limit relation

lim
m→∞

l∫
0

a2|ψm(x, t)|2ψm(x, t)1(x)dx =

l∫
0

a2|ψ(x, t)|2ψ(x, t)1(x)dx
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for each t ∈ [0,T] and any 1 ∈ L2 (0, l) is valid. It is clear that

|||ψm(., t)|2ψm(., t)||L2(0,l) =


l∫

0

∣∣∣|ψm(x, t)|2ψm(x, t)
∣∣∣2 dx


1
2

= ||ψm(., t)||3L6(0,l). (29)

In (29), if we use the following known inequality in [15]

||ψm(., t)||3L6(0,l) ≤ β1||
∂ψm(., t)
∂x

||L2(0,l)||ψm(., t)||2L2(0,l) f or any t ∈ [0,T] , β1 = const. > 0

and the estimation (16), we obtain

|||ψm(., t)|2ψm(., t)||L2(0,l) ≤ c7, m = 1, 2, 3, · · · (30)

where the constant c7 > 0 is independent from m and t. Also, from the limit relation (23) we can easily
say that the sequence

{
ψm(., t)

}
converges to the function ψ(x, t) for each t ∈ [0,T] at almost everywhere on

(0, l) .Thus, taking into account the inequality (30) and using the known Lemma in [15], we can write the
limit relation

|ψm(x, t)|2ψm(x, t) weakly
−−−−−−−−→

|ψ(x, t)|2ψ(x, t) in L2 (0, l) f or each t ∈ [0,T] as m→∞. (31)

Thus, considering the limit relations (21), (28), (31) and taking the limit of (22) as m → ∞ then we get the
integral identity

l∫
0

[
i
∂ψ

∂t
+ a0

∂2ψ

∂x2 + ia1
∂ψ

∂x
− a(x)ψ + v(t)ψ + ia2|ψ|

2ψ − f (x, t)
]
1̄(x)dx = 0 (32)

for each t ∈ [0,T] and any 1 ∈ L2(0, l). From (32), we deduce that the function ψ(x, t) satisfies the equation (2)
for almost all x ∈ (0, l) and any t ∈ [0,T] .

Now let us prove that the limit function ψ(x, t) satisfies the initial condition (3). Since the space B0 is
compactly embedded into the space C0([0,T],L2(0, l)), it is written that

||ψm(., t) − ψ(., t)||L2(0,l) → 0 f or any t ∈ [0,T] as m→∞. (33)

It is clear that

0 ≤

l∫
0

|ψ(x, 0) − ϕ(x)|2dx ≤ 2

l∫
0

|ψ(x, 0) − ψm(x, 0)|2dx + 2

l∫
0

|ψm(x, 0) − ϕ(x)|2dx. (34)

If we take the limit of (34) as m→ ∞ and use the initial condition ψm(x, 0) = ϕ(x) for x ∈ (0, l) and the limit
relation (33) for t = 0, we obtain

l∫
0

|ψ(x, 0) − ϕ(x)|2dx = 0

which implies that

ψ(x, 0) = ϕ(x) f or almost all x ∈ (0, l)

it is follows that the limit function ψ(x, t) satisfies the initial condition (3).
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Now, let us prove that the limit function ψ(x, t) satisfies the the boundary condition (4). Since the
space C0([0,T],W2

2(0, l)) ∩C1([0,T],L2(0, l)) is compactly embedded into the space C0([0, l],L2(0,T)), the limit
relation

||ψm(x, .) − ψ(x, .)||2L2[0,T] → 0 f or any x ∈ [0, l] as m→∞. (35)

is written. If we get to the limit as m→∞ in the inequalities

0 ≤

T∫
0

|ψ(0, t)|2dt ≤ 2

T∫
0

|ψ(0, t) − ψm(0, t)|2dt + 2

T∫
0

|ψm(0, t)|2dt,

0 ≤

T∫
0

|ψ(l, t)|2dt ≤ 2

T∫
0

|ψ(l, t) − ψm(l, t)|2dt + 2

T∫
0

|ψm(l, t)|2dt

and use the boundary conditions ψm(0, t) = ψm(l, t) = 0 for any t ∈ (0,T), the limit relation (35) for x = 0 and
x = l, we obtain

T∫
0

|ψ(0, t)|2dt = 0 and

T∫
0

|ψ(l, t)|2dt = 0

which implies that

ψ(0, t) = ψ(l, t) = 0 f or almost all t ∈ (0,T) ,

it follows that the limit function ψ(x, t) satisfies the boundary condition (4).
Consequently, we have proved that the function ψ = ψ(x, t) = ψ(x, t; v) corresponding to limit function

v(t) of the sequence {vm
} ⊂ V is a solution of the boundary value problem (2)-(4), which is the limit function

of the sequence {ψm(x, t)}. Since the solution of the problem (2)-(4) is unique we write ψ ∈ B0.
As known, the norm functions of the spaces L2(0, l) and L2(0,T) are lower weakly semicontinuous func-

tionals [21]. If we consider that α ≥ 0,we can say that the functional Jα(v) is a lower weakly semicontinuous
functional at v ∈ V. Therefore, we can write the relation

Jα∗ ≤ Jα(v) ≤ lim
m−→∞

Jα(vm) = Jα∗

it follows that v ∈ V is a minimum of the functional Jα(v) on the set V. Namely, v ∈ V is a solution of the
optimal control problem (2)-(4), (6).

4. Differentiability of the Functional

In this section, we constitute a adjoint problem and obtain the first variation of the objective functional
Jα(v) by via of the adjoint problem. Later, a necessary optimality condition is given in variational form.

Firstly, we reformulate the optimization problem (2)-(4), (6) using a Lagrange multiplier function.
Consider the minimization problem

L
(
v, ψ, η

)
→ inf

where

L
(
v, ψ, η

)
= Jα(v) +

1
2

∫
Ω

(
i
∂ψ

∂t
+ a0

∂2ψ

∂x2 + ia1
∂ψ

∂x
− a(x)ψ + v(t)ψ + ia2|ψ|

2ψ − f
)
ηdxdt

+
1
2

∫
Ω

−i
∂ψ

∂t
+ a0

∂2ψ

∂x2 − ia1
∂ψ

∂x
− a(x)ψ + v(t)ψ − ia2|ψ|

2ψ − f

 ηdxdt,
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the function η = η (x, t) = η(x, t; v) is Lagrange multiplier and the function ψ = ψ(x, t) is a solution of the
boundary value problem (2)-(4).Thus, from the stationarity condition of the Lagrange functional L

(
v, ψ, η

)
,

we obtain the following adjoint problem:

i
∂η

∂t
+ a0

∂2η

∂x2 + ia1
∂η

∂x
− a(x)η + v(t)η − 2ia2|ψ|

2η + ia2ψ
2η̄ = 0, (36)

η(x,T) = −2i(ψ(x,T) − y(x)), x ∈ (0, l) (37)

η(0, t) = η(l, t) = 0, t ∈ (0,T) (38)

where the function ψ = ψ(x, t) ≡ ψ(x, t; v) is a solution of problem (2)-(4) for any v ∈ V. If we apply the
transform τ = T − t to adjoint problem (36)-(38) for y ∈ W̊2

2(0, l), it is seen that the adjoint problem (36)-(38)
is a initial boundary value problem in the form of problem (2)-(4). Therefore, we can write the following
theorem for the solution of adjoint problem (36)-(38):

Theorem 4.1. Assume that the hypotheses of Theorem 2.1 hold and let y ∈ W̊2
2(0, l) be given function. Then, the

adjoint problem (36)-(38) has a unique solution η ∈ B0 for any v ∈ V and the following estimation is valid for this
solution:

||η(., t)||2
W̊2

2 (0,l)
+

∥∥∥∥∥∂η∂t

∥∥∥∥∥2

L2(0,l)
≤ c8

(
||ϕ||2

W̊2
2 (0,l)

+ ||ϕ||6
W̊2

2 (0,l)
+ ||ϕ||6

W̊1
2 (0,l)

+||ϕ||18
W̊1

2 (0,l)
+ || f ||2

W0,1
2 (Ω)

+ || f ||6
W0,1

2 (Ω)
+ ||y||2

W̊2
2 (0,l)

)
(39)

for any t ∈ [0,T], where c8 > 0 is independent from t.

Using Galerkin’s method we can easily prove the theorem 4.1 as the proof of theorem 2.1.
Now, let us find the increment of the functional Jα(v) for ∀v ∈ V. Let the function ∆v ∈ W1

∞
(0,T) be an

increment given to any v ∈ V such that v + ∆v ∈ V. Then, using the formula (6) and (15) we can write the
increment of the functional Jα(v) for any v ∈ V as the following:

∆Jα(v) = Jα(v + ∆v) − Jα(v)

=

l∫
0

∣∣∣ψ(x,T; v + ∆v) − y(x)
∣∣∣2 dx + α

T∫
0

|v + ∆v − w|2 dt + α

T∫
0

∣∣∣∣∣d (v + ∆v)
dt

−
dw
dt

∣∣∣∣∣2 dt

−

l∫
0

∣∣∣ψ(x,T; v) − y(x)
∣∣∣2 dx − α

T∫
0

|v(t) − w(t)|2 dt − α

T∫
0

∣∣∣∣∣dv
dt
−

dw
dt

∣∣∣∣∣2 dt

= ∆J0(v) + 2α

T∫
0

(v(t) − w(t)) ∆v(t)dt + 2α

T∫
0

(
dv
dt
−

dw
dt

)
d∆v
dt

dt + α||∆v||2W1
2 (0,T)

= 2

l∫
0

Re[(ψ(x,T) − y(x))(∆ψ̄(x,T)]dx +
∥∥∥∆ψ(.,T)

∥∥∥2

L2(0,l)

+2α

T∫
0

(v(t) − w(t)) ∆v(t)dt + 2α

T∫
0

(
dv(t)

dt
−

dw(t)
dt

)
d∆v(t)

dt
dt + α||∆v||2W1

2 (0,T) (40)

where ∆ψ = ∆ψ(x, t) ≡ ψ(x, t; v + ∆v) − ψ(x, t; v) is the solution of the problem (8)-(10) for v ∈ V.
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Lemma 4.2.

2

l∫
0

Re
[
(ψ(x,T) − y(x))(∆ψ̄(x,T)

]
dx =

∫
Ω

Re(ψ(x, t)η(x, t))∆v(t)dxdt +

∫
Ω

Re(∆ψη̄)∆v(t)dxdt

−a2

∫
Ω

(|ψ∆|
2
− |ψ|2)Im(∆ψη̄)dxdt

−a2

∫
Ω

|∆ψ|2Im
(
ψη̄

)
dxdt.

Proof. It is clear that since ψ ∈ B0, the function ∆ψ = ∆ψ(x, t) ≡ ψ(x, t; v + ∆v) − ψ(x, t; v) satisfies integral
identity ∫

Ω

(
i
∂∆ψ

∂t
+ a0

∂2∆ψ

∂x2 + ia1
∂∆ψ

∂x
− a(x)∆ψ + (v + ∆v)∆ψ

)
φ1(x, t)dxdt

+

∫
Ω

ia2

[(
|ψ∆|

2 + |ψ|2
)
∆ψ + ψ∆ψ∆ψ̄

]
φ1(x, t)dxdt

= −

∫
Ω

∆v(t)ψφ1(x, t)dxdt (41)

for any function φ1 = φ1(x, t) ∈ L2(Ω) and the conditions (9), (10). Taking the function η = η(x, t) ∈ L2(Ω)
instead of the test function φ1(x, t) in identity (41) we obtain the identity∫

Ω

[
i
∂∆ψ

∂t
+ a0

∂2∆ψ

∂x2 + ia1
∂∆ψ

∂x
− a(x)∆ψ + (v + ∆v)∆ψ

+ia2

[(
|ψ∆|

2 + |ψ|2
)
∆ψ + ψ∆ψ∆ψ̄

]]
η(x, t)dxdt

= −

∫
Ω

∆v(t)ψη(x, t)dxdt. (42)

Also, since the function η ∈ B0 is a solution of the adjoint problem (36)-(38), it satisfies the following identity
for any φ2 = φ2(x, t) ∈ L2(Ω)∫

Ω

[
i
∂η

∂t
+ a0

∂2η

∂x2 + ia1
∂η

∂x
− a(x)η + v(t)η − 2ia2|ψ|

2η + ia2ψ
2η̄

]
φ2dxdt = 0. (43)

Let’s put the function ∆ψ(x, t) instead of the test function φ2 = φ2(x, t) in identity (43). Later, if we apply
the integration by parts formula to obtained identity, we get∫

Ω

−i
∂∆ψ

∂t
+ a0

∂2∆ψ

∂x2 − ia1
∂∆ψ

∂x
− a(x)∆ψ + v(t)∆ψ − 2ia2|ψ|

2∆ψ

 η + ia2ψ
2η̄∆ψ

 dxdt

= −2

l∫
0

(
ψ(x,T) − y(x)

)
∆ψ(x,T)dx
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and its complex conjugate

∫
Ω

(
i
∂∆ψ

∂t
+ a0

∂2∆ψ

∂x2 + ia1
∂∆ψ

∂x
− a(x)∆ψ + v(t)∆ψ + 2ia2|ψ|

2∆ψ

)
ηdxdt

−ia2

∫
Ω

ψ
2
η∆ψdxdt

= −2

l∫
0

(
ψ(x,T) − y(x)

)
∆ψ(x,T)dx. (44)

Also, if we put the function η(x, t) instead of the function φ1(x, t) ∈ L2(Ω) in (41), we have

∫
Ω

[
i
∂∆ψ

∂t
+ a0

∂2∆ψ

∂x2 + ia1
∂∆ψ

∂x
− a(x)∆ψ + (v + ∆v)∆ψ

+ia2

[(
|ψ∆|

2 + |ψ|2
)
∆ψ + ψ∆ψ∆ψ̄

]]
η(x, t)dxdt

= −

∫
Ω

∆v(t)ψη(x, t)dxdt (45)

Subtracting the (44) from (45), we get

∫
Ω

[
∆v∆ψη + ia2

((
|ψ∆|

2
− |ψ|2

)
∆ψ + ψ∆ψ∆ψ̄

)
η + ia2ψ

2
η∆ψ

]
dxdt

= −

∫
Ω

∆v(t)ψη(x, t)dxdt + 2

l∫
0

(
ψ(x,T) − y(x)

)
∆ψ(x,T)dx.

Summing the above equality with its complex conjugate, we obtain

4
l∫

0
Re

(
ψ(x,T) − y(x)

)
∆ψ(x,T)dx = 2

∫
Ω

Re(ψ(x, t)η(x, t))∆v(t)dxdt

+2
∫
Ω

Re(∆ψη̄)∆v(t)dxdt

−2a2

∫
Ω

(|ψ∆|
2
− |ψ|2)Im(∆ψη̄)dxdt

−2a2

∫
Ω

|∆ψ|2Im
(
ψη̄

)
dxdt
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which is equivalent to

2
l∫

0
Re

(
ψ(x,T) − y(x)

)
∆ψ(x,T)dx =

∫
Ω

Re(ψ(x, t)η(x, t))∆v(t)dxdt

+

∫
Ω

Re(∆ψη̄)∆v(t)dxdt

−a2

∫
Ω

(|ψ∆|
2
− |ψ|2)Im(∆ψη̄)dxdt

−a2

∫
Ω

|∆ψ|2Im
(
ψη̄

)
dxdt.

Thus, lemma (4.2) is proved.
Using lemma (4.2) in (40), we can write the increment of Jα(v) as

∆Jα(v) =

∫
Ω

Re(ψ(x, t)η(x, t))∆v(t)dxdt + 2α

T∫
0

(v(t) − w(t)) ∆v(t)dt

+2α

T∫
0

(
dv(t)

dt
−

dw(t)
dt

)
d∆v(t)

dt
dt + R

where

R =

∫
Ω

Re(∆ψη̄)∆v(t)dxdt − a2

∫
Ω

(|ψ∆|
2
− |ψ|2)Im(∆ψη̄)dxdt

−a2

∫
Ω

|∆ψ|2Im
(
ψη̄

)
dxdt +

∥∥∥∆ψ(.,T)
∥∥∥2

L2(0,l) + α||∆v||2W1
2 (0,T). (46)

Theorem 4.3. Assume that the conditions of Theorem 4.1 are fulfilled and let w ∈ W1
2(0,T), y ∈ W̊2

2(0, l) be given
functions. Then, the functional Jα(v) is differentiable on the set V and the following formula is valid for its first
variation:

δJα(v, h) =

∫
Ω

Re(ψ(x, t)η(x, t))h(t)dxdt + 2α

T∫
0

(v(t) − w(t)) h(t)dt + 2α

T∫
0

(
dv(t)

dt
−

dw(t)
dt

)
dh(t)

dt
dt

for any h ∈ W1
∞(0,T), where ψ = ψ(x, t) is a solution of the initial boundary value problem (2)-(4), η = η(x, t) is a

solution of the adjoint problem (36)-(38) for any v ∈ V.

Proof. Firstly, it is proved that R = o
(
||∆v||W1

∞(0,T)

)
, where o

(
||∆v||W1

∞(0,T)

)
represents ” higher-order terms”

which go to 0 faster than ||∆v||W1
∞(0,T) as ||∆v||W1

∞(0,T) approaches 0, i.e.

lim
||∆v||W1

∞ (0,T)→0

o
(
||∆v||W1

∞(0,T)

)
||∆v||W1

∞(0,T)
= 0.
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From (46), we get

|R| ≤
∫
Ω

∣∣∣∆ψ∣∣∣ ∣∣∣η∣∣∣ |∆v| dxdt + a2

∫
Ω

∣∣∣|ψ∆|
2
− |ψ|2

∣∣∣ ∣∣∣∆ψ∣∣∣ ∣∣∣η∣∣∣ dxdt

+a2

∫
Ω

|∆ψ|2
∣∣∣ψ∣∣∣ ∣∣∣η∣∣∣ dxdt +

∥∥∥∆ψ(.,T)
∥∥∥2

L2(0,l) + α||∆v||2W1
2 (0,T).

If we apply Young’s inequality to the above inequality, we obtain

|R| ≤
1
2

∫
Ω

∣∣∣∆ψ∣∣∣2 dxdt +
1
2

∫
Ω

∣∣∣η∣∣∣2 |∆v|2 dxdt + a2

∫
Ω

(
|ψ∆| + |ψ|

) ∣∣∣∆ψ∣∣∣2 ∣∣∣η∣∣∣ dxdt

+a2

∫
Ω

|∆ψ|2
∣∣∣ψ∣∣∣ ∣∣∣η∣∣∣ dxdt +

∥∥∥∆ψ(.,T)
∥∥∥2

L2(0,l) + α||∆v||2W1
2 (0,T)

≤
1
2

∫
Ω

∣∣∣∆ψ∣∣∣2 dxdt +
1
2

∫
Ω

∣∣∣η∣∣∣2 |∆v|2 dxdt +
1
2

a2

∫
Ω

(
|ψ∆| + |ψ|

)2
∣∣∣∆ψ∣∣∣2 dxdt

+
1
2

a2

∫
Ω

∣∣∣∆ψ∣∣∣2 ∣∣∣η∣∣∣2 dxdt +
1
2

a2

∫
Ω

|∆ψ|2
∣∣∣ψ∣∣∣2 dxdt +

1
2

a2

∫
Ω

|∆ψ|2
∣∣∣η∣∣∣2 dxdt

+
∥∥∥∆ψ(.,T)

∥∥∥2

L2(0,l) + α||∆v||2W1
2 (0,T)

≤
1
2

∫
Ω

∣∣∣∆ψ∣∣∣2 dxdt +
1
2

∫
Ω

∣∣∣η∣∣∣2 |∆v|2 dxdt + a2

∫
Ω

(
|ψ∆|

2 + |ψ|2
) ∣∣∣∆ψ∣∣∣2 dxdt

+a2

∫
Ω

∣∣∣∆ψ∣∣∣2 ∣∣∣η∣∣∣2 dxdt +
1
2

a2

∫
Ω

|∆ψ|2
∣∣∣ψ∣∣∣2 dxdt +

∥∥∥∆ψ(.,T)
∥∥∥2

L2(0,l) + α||∆v||2W1
2 (0,T)

which is equivalent to

|R| ≤
T
2

max
0≤t≤T

∥∥∥∆ψ(., t)
∥∥∥2

L2(0,l) +
1
2

(
max
0≤t≤T

∥∥∥η(., t)
∥∥∥2

L∞(0,l)

)
‖∆v‖2L2(0,T)

+a2

∫
Ω

(
|ψ∆|

2 + |ψ|2
) ∣∣∣∆ψ∣∣∣2 dxdt + a2

(
max
0≤t≤T

∥∥∥∆ψ(., t)
∥∥∥2

L2(0,l)

) T∫
0

∥∥∥η(., t)
∥∥∥2

L∞(0,l) dt (47)

+
1
2

a2

(
max
0≤t≤T

∥∥∥∆ψ(., t)
∥∥∥2

L2(0,l)

) T∫
0

∥∥∥ψ(., t)
∥∥∥2

L∞(0,l) dt +
∥∥∥∆ψ(.,T)

∥∥∥2

L2(0,l) + α||∆v||2W1
2 (0,T).

According to known inequality in [15], we have the inequality

∥∥∥ψ(., t)
∥∥∥2

L∞(0,l) ≤ β2

∥∥∥∥∥∂ψ(., t)
∂x

∥∥∥∥∥
L2(0,l)

∥∥∥ψ(., t)
∥∥∥

L2(0,l) , β2 = const. > 0

∥∥∥ψ(., t)
∥∥∥2

L∞(0,l) ≤
β2

2

∥∥∥∥∥∂ψ(., t)
∂x

∥∥∥∥∥2

L2(0,l)
+

∥∥∥ψ(., t)
∥∥∥2

L2(0,l)

 . (48)

f or any t ∈ [0,T] . Using the inequalities (13), (48) and (11), the estimations (7), (39) in the inequality (47),
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we obtain

|R| ≤ c9 ‖∆v‖2L2(0,T) + α||∆v||2W1
2 (0,T)

≤ c10||∆v||2W1
2 (0,T)

≤ c11||∆v||2W1
∞(0,T)

which shows that R = o
(
||∆v||W1

∞(0,T)

)
, where the constants c9, c10, c11 > 0 are independent from ∆v and t.

Thus, we can write the increment of the functional Jα(v) as

∆Jα(v) =

∫
Ω

Re(ψ(x, t)η(x, t))∆v(t)dxdt + 2α

T∫
0

(v(t) − w(t)) ∆v(t)dt

+2α

T∫
0

(
dv(t)

dt
−

dw(t)
dt

)
d∆v(t)

dt
dt + o

(
||∆v||2W1

∞(0,T)

)
. (49)

If we consider the function θh ∈ W1
∞

(0,T) for any 0 < θ < 1 and h ∈ W1
∞

(0,T) instead of the function
∆v ∈W1

∞
(0,T) in (49), we can easily write that

∆Jα(v) = Jα(v + θh) − Jα(v)

=

∫
Ω

Re(ψ(x, t)η(x, t))θh(t)dxdt + 2α

T∫
0

(v(t) − w(t))θh(t)dt

+2α

T∫
0

(
dv(t)

dt
−

dw(t)
dt

)
dθh(t)

dt
dt + o (θ)

which is equivalent to

Jα(v + θh) − Jα(v) = θ


∫
Ω

Re(ψ(x, t)η(x, t))h(t)dxdt + 2α

T∫
0

(v(t) − w(t)) h(t)dt

+ 2α

T∫
0

(
dv(t)

dt
−

dw(t)
dt

)
dh(t)

dt
dt

 + o (θ)

which shows that for the first variation δJα(v, h) of the functional Jα(v) is valid the formula

δJα(v, h) = lim
θ→0+

Jα(v + θh) − Jα(v)
θ

=

∫
Ω

Re(ψ(x, t)η(x, t))h(t)dxdt

+2α

T∫
0

(v(t) − w(t)) h(t)dt + 2α

T∫
0

(
dv(t)

dt
−

dw(t)
dt

)
dh(t)

dt
dt.
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Theorem 4.4. Suppose that the conditions of Theorem 4.3 are fulfilled and let

V∗ ≡
{
v∗ : v∗ ∈ V, Jα(v∗) = inf

v∈V
Jα(v) = Jα∗

}
be the set of solutions of the optimal control problem (2)-(4), (6). Then, for any v∗ ∈ V∗ the inequality∫

Ω

Re(ψ∗(x, t)η∗(x, t)) (v(t) − v∗(t)) dxdt + 2α

T∫
0

(v∗(t) − w(t)) (v(t) − v∗(t)) dt

+2α

T∫
0

(
dv∗(t)

dt
−

dw(t)
dt

) (
dv(t)

dt
−

dv∗(t)
dt

)
dt ≥ 0, ∀v ∈ V

is valid, where the functions ψ∗(x, t) ≡ ψ(x, t, ; v∗) and η∗(x, t) ≡ η(x, t; v∗) are solutions of the boundary value
problem (2)-(4) and adjoint problem (36)-(38) for the v∗ ∈ V, respectively .

Proof. Let v ∈ V be any control, v∗ ∈ V be any optimal control. Since the set V is a convex set it is written
that v∗ + θ(v − v∗) ∈ V for v∗ ∈ V and any v ∈ V, ∀θ ∈ (0, 1) . Therefore, according to known theorem from
[18] we can write the inequality

d
dθ

Jα (v∗ + θ(v − v∗))
∣∣∣∣∣
θ=0

= δJα(v∗, v − v∗) ≥ 0, ∀v ∈ V

which is equivalent to∫
Ω

Re(ψ∗(x, t)η∗(x, t)) (v(t) − v∗(t)) dxdt + 2α

T∫
0

(v∗(t) − w(t)) (v(t) − v∗(t)) dt

+2α

T∫
0

(
dv∗(t)

dt
−

dw(t)
dt

) (
dv(t)

dt
−

dv∗(t)
dt

)
dt ≥ 0, ∀v ∈ V
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