Δ^{m}-Deferred Statistical Convergence of Order α

Fatih Temizsu ${ }^{\text {a }}$, Mikail Et ${ }^{\text {b,c }}$, Muhammed Çınar ${ }^{\text {d }}$
${ }^{a}$ Department of Mathematics, Bingöl University, Bingöl, Turkey
${ }^{b}$ Department of Mathematics, Firat University, 23119 Elazığ, Turkey
${ }^{c}$ Department of Mathematics, Siirt University, 56100 Siirt, Turkey
${ }^{d}$ Department of Mathematics, Muş Alparslan University, Muş, Turkey

Abstract

In this paper, we introduce the concepts of Δ^{m}-deferred statistical convergence of order α and strong Δ_{r}^{m}-deferred Cesàro summability of order α of real sequences. Additionally, some inclusion relations about Δ^{m}-deferred statistical convergence of order α and strong Δ_{r}^{m}-deferred Cesàro summability of order α are given.

1. Introduction, Definitions and Preliminaries

The idea of statistical convergence was introduced by Fast [10] and the notion was associated with summability theory by Connor [3], Connor and Savaş [4], Fridy [11], Gökhan et al. [12], Işık [13], Kuçukaslan et al. $[15,17]$, Šalat [16] and many others.

The deferred Cesàro mean of sequences was introduced by Agnew [1] such as:

$$
\left(D_{p, q} x\right)_{n}=\frac{1}{q(n)-p(n)} \sum_{p(n)+1}^{q(n)} x_{k}
$$

where $\{p(n)\}$ and $\{q(n)\}$ are sequences of non-negative integers satisfying

$$
p(n)<q(n) \text { and } \lim _{n \rightarrow \infty} q(n)=+\infty .
$$

Throughout this work $\{p(n)\}$ and $\{q(n)\}$ will denote sequences of non-negative integers that satisfy the above conditions.

Let A be a subset of \mathbb{N} and denote the set $\{k: p(n)<k \leq q(n), k \in A\}$ by $A_{p, q}(n)$. The α-deferred density of A is defined by

$$
\begin{equation*}
\delta_{p, q}^{\alpha}(A)=\lim _{n \rightarrow \infty} \frac{1}{(q(n)-p(n))^{\alpha}}\left|A_{p, q}(n)\right|, \text { provided the limit exists, } \alpha \in(0,1] \tag{1}
\end{equation*}
$$

[^0]The vertical bars in (1) indicate the cardinality of the set $A_{p, q}(n)$.
It can be clearly seen that every finite subset of \mathbb{N} has zero α-deferred density. Beside, it does not need to hold $\delta_{p, q}^{\alpha}\left(A^{c}\right)=1-\delta_{p, q}^{\alpha}(A)$ for $0<\alpha<1$ in general. Note that the α-deferred density reduces to the α-density given in [5] for $q(n)=n, p(n)=0$. Additionally, if $\alpha=1$ then the notion coincides with the natural density. It can be shown that the inequality $\delta_{p, q}^{\beta}(A) \leq \delta_{p, q}^{\alpha}(A)$ is satisfied for $0<\alpha \leq \beta \leq 1$.

If $x=\left(x_{k}\right)$ is a sequence such that x_{k} satisfies property $P(k)$ for all k except a set of α-deferred density zero, then we say that x_{k} satisfies $P(k)$ for almost all k according D_{α} and we denote this by a.a.k $\left(D_{\alpha}\right)$.

The notion of difference sequence spaces was introduced by Kızmaz [14] and generalized by Et and Çolak [7]. Later on Et and Nuray [8] improved it as follows

$$
\Delta^{m}(X)=\left\{x=\left(x_{k}\right):\left(\Delta^{m} x_{k}\right) \in X\right\}
$$

where X is any sequence space, $m \in \mathbb{N}, \Delta^{0} x=\left(x_{k}\right), \Delta x=\left(x_{k}-x_{k+1}\right), \Delta^{m} x=\left(\Delta^{m} x_{k}\right)=\left(\Delta^{m-1} x_{k}-\Delta^{m-1} x_{k+1}\right)$ and so $\Delta^{m} x_{k}=\sum_{v=0}^{m}(-1)^{v}\binom{m}{v} x_{k+v}$.

If $x \in \Delta^{m}(X)$, then there exists one and only one $y=\left(y_{k}\right) \in X$ such that $y_{k}=\Delta^{m} x_{k}$ and

$$
\begin{align*}
x_{k} & =\sum_{v=1}^{k-m}(-1)^{m}\binom{k-v-1}{m-1} y_{v}=\sum_{v=1}^{k}(-1)^{m}\binom{k+m-v-1}{m-1} y_{v-m} \tag{2}\\
y_{1-m} & =y_{2-m}=\cdots=y_{0}=0
\end{align*}
$$

for sufficiently large k, for instance $k>2 m$. We shall use the sequence which is defined in (2) to define the sequence in (4), (5), (6) and (7) (see $[2,9]$).

The main goal of this work is to examine the relation between Δ^{m}-deferred statistical convergence of order α and strong Δ_{r}^{m}-deferred Cesàro summability of order α, where $\alpha \in(0,1]$ and $r \in \mathbb{R}^{+}$. Also we investigate some properties related these concepts.

Now we begin with three new definitions.
Definition 1.1. Let $\{p(n)\},\{q(n)\}$ be two sequences of non-negative integers satisfying conditions given above, $m \in \mathbb{N}$ and $\alpha \in(0,1]$ be given. A sequence $x=\left(x_{k}\right)$ is said to be Δ^{m}-deferred statistically convergent of order α to L if there is a real number L such that for each $\varepsilon>0$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{(q(n)-p(n))^{\alpha}}\left|\left\{p(n)<k \leq q(n):\left|\Delta^{m} x_{k}-L\right| \geq \varepsilon\right\}\right|=0 \tag{3}
\end{equation*}
$$

i.e.

$$
\left|\Delta^{m} x_{k}-L\right|<\varepsilon \text { a.a.k }\left(D_{\alpha}\right) .
$$

In this case, we write $\Delta^{m}\left(D S_{p, q}^{\alpha}\right)-\lim x_{k}=L$.
The set of all Δ^{m}-deferred statistically convergent sequences of order α will be denoted by $\Delta^{m}\left(D S_{p, q}^{\alpha}\right)$. If $m=0$, then Δ^{m}-deferred statistical convergence of order α reduces to deferred statistical convergence of order α which was defined and studied by Çınar et al. [6]. If $m=0, q(n)=n$ and $p(n)=0$, then the concept coincides statistical convergence of order α and in the special case $m=0, \alpha=1, q(n)=n$ and $p(n)=0$, Δ^{m}-deferred statistical convergence of order α coincides with the usual statistical convergence. Also in the special case $\alpha=1, q(n)=n$ and $p(n)=0, \Delta^{m}$-deferred statistical convergence of order α coincides with Δ^{m}-statistical convergence which was defined and studied by Et and Nuray [8]. Therefore, Δ^{m}-deferred statistical convergence of order α is more general than all these notions.

The Δ^{m}-deferred statistical convergence of order α is well defined for $\alpha \in(0,1]$, but it is not well defined for $\alpha>1$. For this let $m=2$ and take a sequence $y=\left(y_{k}\right)$ such that $\Delta^{2} x_{k}=y_{k}$ for the sequence $x=\left(x_{k}\right)$ as follows

$$
x_{k}=\left\{\begin{array}{cc}
0 & 1 \leq k \leq 3 \\
x_{k-1}+\frac{k-2}{2} & k=2 n, n \geq 2 \\
x_{k-1}+\frac{k-3}{2} & k=2 n+1, n \geq 2
\end{array}\right.
$$

$$
y_{k}=\left\{\begin{array}{ll}
1 & k=2 n \tag{4}\\
0 & k \neq 2 n
\end{array} \quad n \in \mathbb{N}\right.
$$

Then $\Delta^{2}\left(D S_{p, q}^{\alpha}\right)-\lim x_{k}=0$ and $\Delta^{2}\left(D S_{p, q}^{\alpha}\right)-\lim x_{k}=1$ which is impossible, where $q(n)=4 n^{2}, p(n)=2 n$ and $\alpha>1$.

It is clear that $\Delta^{m}(c) \subset \Delta^{m}\left(D S_{p, q}^{\alpha}\right)$ for each $0<\alpha \leq 1$, but the converse of this is not true in general. For instance, let us take $y=\left(y_{k}\right)$ such that $\Delta^{m} x_{k}=y_{k}$ for some $x=\left(x_{k}\right)$ as follows:

$$
y_{k}=\left\{\begin{array}{ll}
2 & k=n^{2} \tag{5}\\
0 & k \neq n^{2}
\end{array} .\right.
$$

Then we have

$$
\frac{1}{(q(n)-p(n))^{\alpha}}\left|\left\{p(n)<k \leq q(n):\left|y_{k}-0\right| \geq \varepsilon\right\}\right| \leq \frac{\sqrt{q(n)}-\sqrt{p(n)}+1}{(q(n)-p(n))^{\alpha}}
$$

Therefore, $x=\left(x_{k}\right)$ is Δ^{m}-deferred statistically convergent of order α to 0 for $\alpha>\frac{1}{2}$, but $x \notin \Delta^{m}(c)$, where $\Delta^{m}(c)=\left\{x=\left(x_{k}\right):\left(\Delta^{m} x_{k}\right) \in c\right\}$.

Definition 1.2. Let $\{p(n)\}$ and $\{q(n)\}$ be two sequences of non-negative integers satisfying conditions given above, $m \in \mathbb{N}$ and $\alpha \in(0,1]$ be given. A sequence $x=\left(x_{k}\right)$ is said to be Δ^{m}-deferred statistically Cauchy of order α if there is a natural number $N=N(\varepsilon)$ such that

$$
\lim _{n \rightarrow \infty} \frac{1}{(q(n)-p(n))^{\alpha}}\left|\left\{p(n)<k \leq q(n):\left|\Delta^{m} x_{k}-\Delta^{m} x_{N}\right| \geq \varepsilon\right\}\right|=0
$$

for every $\varepsilon>0$.
This notion reduces to the concept of Δ^{m}-statistically Cauchy given in [8] for $q(n)=n, p(n)=0$ and $\alpha=1$.

Definition 1.3. Let $\{p(n)\}$ and $\{q(n)\}$ be two sequences of non-negative integers satisfying conditions given above, $m \in \mathbb{N}, r \in \mathbb{R}^{+}$and $\alpha \in(0,1]$ be given. A sequence $x=\left(x_{k}\right)$ is called strongly Δ_{r}^{m}-deferred Cesàro summable of order α to L if

$$
\lim _{n \rightarrow \infty} \frac{1}{(q(n)-p(n))^{\alpha}} \sum_{p(n)+1}^{q(n)}\left|\Delta^{m} x_{k}-L\right|^{r}=0
$$

and this is denoted by $\Delta^{m}-D w_{r}^{\alpha}[p, q]-\lim x_{k}=L$.
The set of all strongly Δ_{r}^{m}-deferred Cesàro summable sequences of oder α will be denoted by $\Delta^{m}\left(D w_{r}^{\alpha}[p, q]\right)$.

2. Main Results

In the present part we give the main results of this paper. For instance, in Theorem 2.6 we give the relation between the Δ^{m}-deferred statistical convergence of order α and the Δ^{m}-deferred statistical convergence of order β, and in Theorem 2.8, we give the relation between the strong Δ_{r}^{m}-deferred Cesàro summability of order α and the strong Δ_{r}^{m}-deferred Cesàro summability of order β. Also the fact that the strong Δ_{r}^{m}-deferred Cesàro summability of order α implies the Δ^{m}-deferred statistical convergence of order β for $\alpha \leq \beta$ is given in Theorem 2.10.

The proof of each of the following results is straightforward, so we choose to state these results without proof.

Theorem 2.1. Let $0<\alpha \leq 1$ and $x=\left(x_{k}\right), y=\left(y_{k}\right)$ be two sequences of complex numbers. Then each of the following assertions is true:
(i) If $\Delta^{m}\left(D S_{p, q}^{\alpha}\right)-\lim x_{k}=L$ and $c \in \mathbb{R}$, then $\Delta^{m}\left(D S_{p, q}^{\alpha}\right)-\lim c x_{k}=c L$,
(ii) If $\Delta^{m}\left(D S_{p, q}^{\alpha}\right)-\lim x_{k}=L_{1}$ and $\Delta^{m}\left(D S_{p, q}^{\alpha}\right)-\lim y_{k}=L_{2}$, then $\Delta^{m}\left(D S_{p, q}^{\alpha}\right)-\lim \left(x_{k}+y_{k}\right)=L_{1}+L_{2}$,
(iii) If $\Delta^{m}-D w_{r}^{\alpha}[p, q]-\lim x_{k}=L$ and $c \in \mathbb{R}$, then $\Delta^{m}-D w_{r}^{\alpha}[p, q]-\lim c x_{k}=c L$,
(iv) If $\Delta^{m}-D w_{r}^{\alpha}[p, q]-\lim x_{k}=L_{1}$ and $\Delta^{m}-D w_{r}^{\alpha}[p, q]-\lim y_{k}=L_{2}$, then $\Delta^{m}-D w_{r}^{\alpha}[p, q]-\lim \left(x_{k}+y_{k}\right)=L_{1}+L_{2}$.

Theorem 2.2. For each $m \in \mathbb{N}, \Delta^{m}\left(D S_{p, q}^{\alpha}\right) \subset \Delta^{m+1}\left(D S_{p, q}^{\alpha}\right)$ and the inclusion is strict.
Proof. Let $x=\left(x_{k}\right) \in \Delta^{m}\left(D S_{p, q}^{\alpha}\right)$. Then there exists a real number L such that

$$
\lim _{n \rightarrow \infty} \frac{1}{(q(n)-p(n))^{\alpha}}\left|\left\{p(n)<k \leq q(n):\left|\Delta^{m} x_{k}-L\right| \geq \varepsilon\right\}\right|=0
$$

i.e.

$$
\left|\Delta^{m} x_{k}-L\right|<\varepsilon \quad \text { a.a.k }\left(D_{\alpha}\right)
$$

for every $\varepsilon>0$. Since $\Delta^{m+1} x_{k}=\Delta^{m} x_{k}-\Delta^{m} x_{k+1}$ we can write that

$$
\left|\Delta^{m+1} x_{k}\right| \leq\left|\Delta^{m} x_{k}-L\right|+\left|\Delta^{m} x_{k+1}-L\right|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon \quad \text { a.a.k }\left(D_{\alpha}\right),
$$

which means $\Delta^{m+1}\left(D S_{p, q}^{\alpha}\right)-\lim x_{k}=0$. So $x \in \Delta^{m+1}\left(D S_{p, q}^{\alpha}\right)$. To see the strictness, let x be defined by $x=\left(k^{m+2}\right)$. Then it can be easily seen that $x \in \Delta^{m+1}\left(D S_{p, q}^{\alpha}\right)$, but $x \notin \Delta^{m}\left(D S_{p, q}^{\alpha}\right)$ for $q(n)=n, p(n)=0$ and $\alpha=1$.

The following result is easily derivable from Theorem 2.2.
Corollary 2.3. Let $m_{1}, m_{2} \in \mathbb{N}$ with $m_{1}<m_{2}$. Then $\Delta^{m_{1}}\left(D S_{p, q}^{\alpha}\right) \subset \Delta^{m_{2}}\left(D S_{p, q}^{\alpha}\right)$ and the inclusion is strict.
Theorem 2.4. If $x=\left(x_{k}\right)$ is Δ^{m}-deferred statistically convergent of order α, then it is Δ^{m}-deferred statistically Cauchy of order α.
Proof. Let $\Delta^{m}\left(D S_{p, q}^{\alpha}\right)-\lim x_{k}=L$ and $\varepsilon>0$, then the inequality $\left|\Delta^{m} x_{k}-L\right|<\frac{\varepsilon}{2}$ is satisfied for a.a.k $\left(D_{\alpha}\right)$. If N is chosen so that $\left|\Delta^{m} x_{N}-L\right|<\frac{\varepsilon}{2}$ for a.a.k $\left(D_{\alpha}\right)$, then we obtain

$$
\left|\Delta^{m} x_{k}-\Delta^{m} x_{N}\right| \leq\left|\Delta^{m} x_{k}-L\right|+\left|\Delta^{m} x_{N}-L\right|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon \text { for a.a.k }\left(D_{\alpha}\right) .
$$

Hence x is Δ^{m}-deferred statistically Cauchy of order α.
Theorem 2.5. If x is a sequence for which there is a Δ^{m}-deferred statistically convergent of order α sequence y such that $\Delta^{m} x_{k}=\Delta^{m} y_{k}$ for a.a.k $\left(D_{\alpha}\right)$, then x is Δ^{m}-deferred statistically convergent of order α.
Proof. Assume that $\Delta^{m} x_{k}=\Delta^{m} y_{k}$ for a.a.k $\left(D_{\alpha}\right)$ and $\Delta^{m}\left(D S_{p, q}^{\alpha}\right)-\lim y_{k}=L$. Then for each n the following inclusion is satisfied:

$$
\begin{aligned}
\left\{p(n)<k \leq q(n):\left|\Delta^{m} x_{k}-L\right| \geq \varepsilon\right\} & \subseteq\left\{p(n)<k \leq q(n): \Delta^{m} x_{k} \neq \Delta^{m} y_{k}\right\} \\
& \cup\left\{p(n)<k \leq q(n):\left|\Delta^{m} y_{k}-L\right| \geq \varepsilon\right\} .
\end{aligned}
$$

Hence we can write

$$
\begin{aligned}
& \frac{1}{(q(n)-p(n))^{\alpha}}\left|\left\{p(n)<k \leq q(n):\left|\Delta^{m} x_{k}-L\right| \geq \varepsilon\right\}\right| \leq \\
& \frac{1}{(q(n)-p(n))^{\alpha}}\left|\left\{p(n)<k \leq q(n): \Delta^{m} x_{k} \neq \Delta^{m} y_{k}\right\}\right|+ \\
& \frac{1}{(q(n)-p(n))^{\alpha}}\left|\left\{p(n)<k \leq q(n):\left|\Delta^{m} y_{k}-L\right| \geq \varepsilon\right\}\right| .
\end{aligned}
$$

Taking the limit as $n \rightarrow \infty$, we obtain that $x=\left(x_{k}\right)$ is Δ^{m}-deferred statistically convergent of order α to L.

Theorem 2.6. Let $0<\alpha \leq \beta \leq 1$. Then $\Delta^{m}\left(D S_{p, q}^{\alpha}\right) \subseteq \Delta^{m}\left(D S_{p, q}^{\beta}\right)$ and the inclusion is strict.
Proof. The inclusion part of the proof is easy. To show that the inclusion is strict, let us define a sequence $y=\left(y_{k}\right)$ by

$$
y_{k}= \begin{cases}1 & k=n^{2} \tag{6}\\ 0 & k \neq n^{2}\end{cases}
$$

such that $\Delta^{m} x_{k}=y_{k}$ for some $x=\left(x_{k}\right)$. Then $x \in \Delta^{m}\left(D S_{p, q}^{\beta}\right)$ for $\frac{1}{2}<\beta \leq 1$, but $x \notin \Delta^{m}\left(D S_{p, q}^{\alpha}\right)$ for $0<\alpha \leq \frac{1}{2}$, where $q(n)=4 n^{2}$ and $p(n)=n^{2}$.

Theorem 2.7. If $\lim _{n} \frac{(q(n)-p(n))^{\alpha}}{n}>0$, then $\Delta^{m}(S) \subset \Delta^{m}\left(D S_{p, q}^{\alpha}\right)$, where $\Delta^{m}(S)$ is the set of all Δ^{m}-statistically convergent sequences.

Proof. Let $\Delta^{m}(S)-\lim x_{k}=L$ and $\lim _{n} \frac{(q(n)-p(n))^{\alpha}}{n}>0$. For $\varepsilon>0$, we have

$$
\left\{k \leq n:\left|\Delta^{m} x_{k}-L\right| \geq \varepsilon\right\} \supseteq\left\{p(n)<k \leq q(n):\left|\Delta^{m} x_{k}-L\right| \geq \varepsilon\right\},
$$

therefore

$$
\begin{aligned}
& \frac{1}{n}\left|\left\{k \leq n:\left|\Delta^{m} x_{k}-L\right| \geq \varepsilon\right\}\right| \geq \frac{1}{n}\left|\left\{p(n)<k \leq q(n):\left|\Delta^{m} x_{k}-L\right| \geq \varepsilon\right\}\right| \\
&=\frac{(q(n)-p(n))^{\alpha}}{n} \frac{1}{(q(n)-p(n))^{\alpha}}\left|\left\{p(n)<k \leq q(n):\left|\Delta^{m} x_{k}-L\right| \geq \varepsilon\right\}\right|
\end{aligned}
$$

Taking limit as $n \rightarrow \infty$ and using the fact that $\lim _{n} \frac{(q(n)-p(n))^{\alpha}}{n}>0$, we get $\Delta^{m}\left(D S_{p, q}^{\alpha}\right)-\lim x_{k}=L$.
The proof of the following two theorems are straightforward, so we state these results without proof.
Theorem 2.8. Let $\alpha, \beta \in(0,1]$ with $\alpha \leq \beta, r \in \mathbb{R}^{+}$and $m \in \mathbb{N}$. Then $\Delta^{m}\left(D w_{r}^{\alpha}[p, q]\right) \subseteq \Delta^{m}\left(D w_{r}^{\beta}[p, q]\right)$ and the inclusion is strict.

Theorem 2.9. Let $\alpha \in(0,1]$ and $0<r<s<\infty$. Then $\Delta^{m}\left(D w_{s}^{\alpha}[p, q]\right) \subseteq \Delta^{m}\left(D w_{r}^{\alpha}[p, q]\right)$.
Theorem 2.10. Let $\alpha, \beta \in(0,1]$ with $\alpha \leq \beta, r \in \mathbb{R}^{+}$and $m \in \mathbb{N}$. If a sequence $x=\left(x_{k}\right)$ is strongly Δ_{r}^{m}-deferred Cesàro summable of order α to L, then it is Δ^{m}-deferred statistically convergent of order β to L.

Proof. Let $x=\left(x_{k}\right)$ be strongly Δ_{r}^{m}-deferred Cesàro summable of order α to L. For the sequence $y=\left(y_{k}\right)$ such that $\Delta^{m} x_{k}=y_{k}$ and $\varepsilon>0$, we can write

$$
\begin{aligned}
\sum_{p(n)+1}^{q(n)}\left|y_{k}-L\right|^{r} & =\sum_{\substack{p(n)+1 \\
\mid y_{k}-L \geq \varepsilon}}^{q(n)}\left|y_{k}-L\right|^{r}+\sum_{\substack{p(n)+1 \\
\left|y_{k}-L\right|<\varepsilon}}^{q(n)}\left|y_{k}-L\right|^{r} \\
& \geq \sum_{\substack{p(n)+1 \\
\left|y_{k}-L\right| \geq \varepsilon}}^{q(n)}\left|y_{k}-L\right|^{r} \\
& \geq\left|\left\{p(n)<k \leq q(n):\left|y_{k}-L\right|^{r} \geq \varepsilon\right\}\right| \cdot \varepsilon^{r}
\end{aligned}
$$

which gives the following inequality

$$
\begin{aligned}
\frac{1}{(q(n)-p(n))^{\alpha}} \sum_{p(n)+1}^{q(n)}\left|y_{k}-L\right|^{r} & \geq \frac{1}{(q(n)-p(n))^{\alpha}}\left|\left\{p(n)<k \leq q(n):\left|y_{k}-L\right|^{r} \geq \varepsilon\right\}\right| \varepsilon^{r} \\
& \geq \frac{1}{(q(n)-p(n))^{\beta}}\left|\left\{p(n)<k \leq q(n):\left|y_{k}-L\right|^{r} \geq \varepsilon\right\}\right| \varepsilon^{r} .
\end{aligned}
$$

Then taking limit as $n \rightarrow \infty$ we see that $\left(x_{k}\right)$ is Δ^{m}-deferred statistically convergent of order β to L.
Even if $y=\left(y_{k}\right)$ is a bounded and deferred statistically convergent sequence of order β such that $\Delta^{m} x_{k}=y_{k}$ for some $x=\left(x_{k}\right)$, the converse of Theorem 2.10 does not hold in general. To show this we must find a sequence that Δ^{m}-bounded (that is $\left.x \in \Delta^{m}\left(\ell_{\infty}\right)\right)$ and Δ^{m}-deferred statistically convergent of order β, but need not to be strongly Δ_{r}^{m}-deferred Cesàro summable of order α, for some α and β real numbers such that $0<\alpha \leq \beta \leq 1$. For this, let $p(n)=0$ and $q(n)=n$ for all $n \in \mathbb{N}$, take $r=1$ and consider a sequence $y=\left(y_{k}\right)$ defined by

$$
y_{k}=\left\{\begin{array}{cc}
\frac{1}{\sqrt{k}}, & k \neq i^{3} \tag{7}\\
1, & k=i^{3}
\end{array}\right.
$$

It can be shown that $x \in \Delta^{m}\left(\ell_{\infty}\right) \cap \Delta^{m}\left(D S_{p, q}^{\alpha}\right)$ for $\alpha \in\left(\frac{1}{3}, 1\right]$, but $x \notin \Delta^{m}\left(D w_{r}^{\alpha}[p, q]\right)$ for $\alpha \in\left(0, \frac{1}{2}\right)$ if $r=1$. So $x \in \Delta^{m}\left(D S_{p, q}^{\alpha}\right)-\Delta^{m}\left(D w_{r}^{\alpha}[p, q]\right)$ for $\alpha \in\left(\frac{1}{3}, \frac{1}{2}\right)$ if $r=1$.

The proof of the following result is straightforward, so we omit the proof.
Theorem 2.11. Let $\alpha \in(0,1]$ and $r \in \mathbb{R}^{+}$. Then $\Delta^{m}\left(D w_{r}^{\alpha}[p, q]\right) \subseteq \Delta^{m+1}\left(D w_{r}^{\alpha}[p, q]\right)$ for all $m \in \mathbb{N}$.
In the following theorem we investigate inclusion properties related Δ^{m}-deferred statistical convergence of order α under some particular conditions. We would like to state that $\{p(n)\},\{q(n)\},\left\{p^{\prime}(n)\right\}$ and $\left\{q^{\prime}(n)\right\}$ are sequences of non-negative integers satisfying

$$
p(n) \leq p^{\prime}(n)<q^{\prime}(n) \leq q(n) \text { for all } n \in \mathbb{N}
$$

Theorem 2.12. Let $\{p(n)\},\{q(n)\},\left\{p^{\prime}(n)\right\}$ and $\left\{q^{\prime}(n)\right\}$ be given, $\alpha \in(0,1]$ and $m \in \mathbb{N}$. If $\lim _{n \rightarrow \infty}\left(\frac{q^{\prime}(n)-p^{\prime}(n)}{q(n)-p(n)}\right)^{\alpha}>0$ then $\Delta^{m}\left(D S_{p, q}^{\alpha}\right)$ convergence of a sequence $x=\left(x_{k}\right)$ implies $\Delta^{m}\left(D S_{p^{\prime}, q^{\prime}}^{\alpha}\right)$ convergence.

Proof. We have

$$
\left\{p(n)<k \leq q(n):\left|\Delta^{m} x_{k}-L\right| \geq \varepsilon\right\} \supseteq\left\{p^{\prime}(n)<k \leq q^{\prime}(n):\left|\Delta^{m} x_{k}-L\right| \geq \varepsilon\right\}
$$

so

$$
\begin{aligned}
& \frac{1}{(q(n)-p(n))^{\alpha}}\left|\left\{p(n)<k \leq q(n):\left|\Delta^{m} x_{k}-L\right| \geq \varepsilon\right\}\right| \geq \\
& \frac{1}{(q(n)-p(n))^{\alpha}}\left|\left\{p^{\prime}(n)<k \leq q^{\prime}(n):\left|\Delta^{m} x_{k}-L\right| \geq \varepsilon\right\}\right|= \\
& \left(\frac{q^{\prime}(n)-p^{\prime}(n)}{q(n)-p(n)}\right)^{\alpha} \frac{1}{\left(q^{\prime}(n)-p^{\prime}(n)\right)^{\alpha}}\left|\left\{p^{\prime}(n)<k \leq q^{\prime}(n):\left|\Delta^{m} x_{k}-L\right| \geq \varepsilon\right\}\right|
\end{aligned}
$$

Taking limit as $n \rightarrow \infty, \lim _{n \rightarrow \infty} \frac{1}{\left(q^{\prime}(n)-p^{\prime}(n)\right)^{\alpha}}\left|\left\{p^{\prime}(n)<k \leq q^{\prime}(n):\left|\Delta^{m} x_{k}-L\right| \geq \varepsilon\right\}\right|=0$ which means $x \in \Delta^{m}\left(D S_{p^{\prime}, q^{\prime}}^{\alpha}\right)$.

References

[1] R.P. Agnew, On deferred Cesàro means, Ann. Math. 33 (1932) 413-421.
[2] Ç. A. Bektaş, M. Et, R. Çolak, Generalized difference sequence spaces and their dual spaces, J. Math. Anal. Appl. 292 (2004) 423-432.
[3] J.S. Connor, The statistical and strong p-Cesàro convergence of sequences, Analysis 8 (1988) 47-63.
[4] J.S. Connor, E. Savaş, Lacunary statistical and sliding window convergence for measurable functions, Acta Math. Hungar. 145 (2015) 416-432.
[5] R. Çolak, Statistical convergence of order α, Modern Methods in Analysis and its Applications, New Delhi, India, Anamaya Pub. (2010) 121-129.
[6] M. Çınar, M. Et, F. Temizsu , M. Karakaş, Deferred statistical convergence of order α, submitted.
[7] M. Et, R. Çolak, On some generalized difference sequence spaces, Soochow J. Math. 21 (1995) 377-386.
[8] M. Et, F. Nuray, Δ^{m}-statistical convergence, Indian J. Pure Appl. Math. 32 (2001) 961-969.
[9] M. Et, Generalized Cesàro difference sequence spaces of non-absolute type involving lacunary sequences, Appl. Math. Comput. 219 (2013) 9372-9376.
[10] H. Fast, Sur la convergence statistique, Coll. Math. 2 (1951) 241-244.
[11] J.A. Fridy, On statistical convergence, Analysis 5 (1985) 301-313.
[12] A. Gökhan, M. Et, M. Mursaleen, Almost lacunary statistical and strongly almost lacunary convergence of sequences of fuzzy numbers, Math. Comp. Modell. 49 (2009) 548-555.
[13] M. Işık, Strongly almost (w, λ, q)-summable sequences, Math. Slovaca 61 (2011) 779-788.
[14] H. Kızmaz, On certain sequence spaces, Canadian Math. Bull. 24 (1981) 169-176.
[15] M. Küçükaslan, M. Yılmaztürk, On deferred statistical convergence of sequences, submitted.
[16] T. Šalát, On statistically convergent sequences of real numbers, Math. Slovaca 30 (1980) 139-150.
[17] M. Yılmaztürk, M. Küçükaslan, On strongly deferred Cesàro summability and deferred statistical convergence of the sequences, Bitlis Eren Univ. J. Sci. Technology 3 (2011) 22-25.

[^0]: 2010 Mathematics Subject Classification. Primary 40A05; Secondary 40C05; 46A45
 Keywords. (Δ^{m}-deferred statistical convergence, strong Δ^{m}-deferred Cesàro summability
 Received: 13 July 2015; Revised: 16 December 2015; Accepted: 19 December 2015
 Communicated by Ljubiša D.R. Kočinac and Ekrem Savaş
 Email addresses: ftemizsu@bingol.edu.tr (Fatih Temizsu), mikailet68@gmail.com (Mikail Et), muhammedcinar23@gmail.com (Muhammed Çınar)

