Characterizations of H-J Matrices

Fatma Aydin Akgun ${ }^{\text {a }}$, Billy E. Rhoades ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematical Engineering, Yildiz Technical University, 34210 Esenler, Istanbul, Turkey ${ }^{b}$ Department of Mathematics, Indiana University, Bloomington, IN 47405-7106, USA

Abstract

In this paper we provide two characterizations of H-J generalized Hausdorff matrices. The first is a recursion relationship among each nonzero triangular array consisting of three terms, and the second is a generalization of the classical Hurwitz-Silverman theorem to H-J Hausdorff matrices.

1. Introduction

A Hausdorff matrix is a lower triangular matrix with nonzero entries of the form

$$
h_{n k}=\binom{n}{k} \Delta^{n-k} \mu_{k}
$$

where $\left\{\mu_{n}\right\}$ is a real or complex sequence and Δ is the forward difference operator defined by $\Delta \mu_{k}=\mu_{k}-\mu_{k+1}$ and $\Delta_{n+1} \mu_{k}=\Delta\left(\Delta^{n}\right) \mu_{k}$ for $n>1$.

The Cesáro matrix of order one, $(C, 1)$, is the Hausdorff matrix generated by the sequence

$$
\mu_{n}=\frac{1}{n+1}
$$

Hurwitz and Silverman [3] showed that a lower triangular matrix commutes with $(C, 1)$ if and only if it is a Hausdorff matrix although they did not use that term. They also showed that each such matrix has the decomposition

$$
H=\delta \mu \delta
$$

where

$$
\delta_{n k}=(-1)^{k}\binom{n}{k}
$$

Δ is its own inverse, and μ is the diagonal matrix with diagonal entries μ_{k}.

[^0]In 1921 Hausdorff [4] established a number of properties of these matrices, which now bear his name, including necessary and sufficient conditions for regularity. A matrix is called regular if and only if it maps every convergent sequence into a convergent sequence with the same limit.

There are at least two well-known generalizations of Hausdorff matrices. The first of these was defined by Hausdorff [5]. An H-J matrix is defined as follows. Let $\left\{\lambda_{n}\right\}$ be a positive sequence satisfying

$$
\begin{equation*}
0 \leq \lambda_{0}<\lambda_{1}<\cdots<\lambda_{n}<\cdots \tag{1}
\end{equation*}
$$

with $\lim _{n} \lambda_{n}=\infty$ and

$$
\sum_{k=1}^{\infty} \frac{1}{\lambda_{k}}=\infty
$$

The nonzero entries of an H-J matrix are defined by

$$
\begin{equation*}
h_{n, k}(\lambda ; \mu)=\lambda_{k+1} \ldots \lambda_{n}\left[\mu_{k}, \mu_{k+1}, \ldots, \mu_{n}\right] \tag{2}
\end{equation*}
$$

where [•] is the symmetric difference operator defined by

$$
\left[\mu_{k}, \mu_{k+1}\right]=\frac{\mu_{k}-\mu_{k+1}}{\lambda_{k+1}-\lambda_{k}},
$$

and, for $n>1$,

$$
\left[\mu_{k}, \ldots, \mu_{n+1}\right]=\frac{\left[\mu_{k}, \ldots, \mu_{n}\right]-\left[\mu_{k+1}, \ldots, \mu_{n+1}\right]}{\lambda_{n+1}-\lambda_{k}}
$$

Hausdorff considered those methods for which $\lambda_{0}=0$, and Jakimovski [6] investigated such matrices for $\lambda_{0}>0$.

The other generalization we shall consider is the class of E-J matrices, which were defined independently by Jakimovski [6] and Endl [2].

The nonzero entries of an E-J matrix are

$$
h_{n, k}^{(\alpha)}=\binom{n+\alpha}{n-k} \Delta^{n-k} \mu_{k}
$$

Thus, the H-J matrices reduce to the E-J matrices by setting $\lambda_{n}=n+\alpha$, and the choice $\lambda_{n}=n$ yields the ordinary Hausdorff matrices.

The purpose of this paper is to provide two characterizations of H-J matrices. The first is a new characterization that has not been considered before, even for ordinary Hausdorff matrices, and the second is a slight generalization of the characterization established by Hurwitz and Silverman for ordinary Hausdorff matrices.

For simplicity of notation we shall also denote the entries of an H-J matrix by $h_{n k}$.

2. Results

Theorem 2.1. A lower triangular matrix A is an H-J matrix if and only if there exists a sequence λ_{n} satisfying (1) such that

$$
\begin{equation*}
a_{n+1, k}=\frac{\lambda_{n+1}}{\lambda_{n+1}-\lambda_{k}} a_{n k}-\frac{\lambda_{k+1}}{\lambda_{n+1}-\lambda_{k}} a_{n+1, k+1} \tag{3}
\end{equation*}
$$

for each $0 \leq k \leq n$.

Proof. Suppose that A is an H-J matrix. Then, from the definition of an H-J matrix,

$$
\begin{aligned}
h_{n+1, k} & =\lambda_{k+1} \cdots \lambda_{n+1}\left[\mu_{k}, \ldots, \mu_{n+1}\right] \\
& =\frac{\lambda_{k+1} \cdots \lambda_{n+1}}{\lambda_{n+1}-\lambda_{k}}\left(\left[\mu_{k}, \ldots, \mu_{n}\right]-\left[\mu_{k+1}, \ldots, \mu_{n+1}\right]\right) \\
& =\frac{\lambda_{n+1}}{\lambda_{n+1}-\lambda_{k}} h_{n k}-\frac{\lambda_{k+1}}{\lambda_{n+1}-\lambda_{k}} h_{n+1, k+1},
\end{aligned}
$$

and (3) is satisfied.
With $n=k$, from (3), one has

$$
\begin{equation*}
a_{k+1, k}=\frac{\lambda_{k+1}}{\lambda_{k+1}-\lambda_{k}} a_{k k}-\frac{\lambda_{k+1}}{\lambda_{k+1}-\lambda_{k}} a_{k+1, k+1} . \tag{4}
\end{equation*}
$$

Since the diagonal entries of A only depend on k we can write $a_{k k}=\mu_{k}$, for some sequence μ_{k}. Therefore (4) becomes

$$
a_{k+1 . k}=\frac{\lambda_{k+1}}{\lambda_{k+1}-\lambda_{k}}\left(\mu_{k}-\mu_{k+1}\right)=\lambda_{k+1}\left[\mu_{k}, \mu_{k+1}\right]
$$

and the first diagonal below the main diagonal has the entries of an H-J matrix.
Assume the induction hypotheses; i.e., assume that, for any j satisfying $0 \leq j \leq k$ that (3) is satisfied with $n=k+j$. Then, with $n=k+j+1$, (3) becomes

$$
\begin{aligned}
a_{k+j+2, k} & =\frac{\lambda_{k+j+2}}{\lambda_{k+j+2}-\lambda_{k}} a_{k+j+1, k}-\frac{\lambda_{k+1}}{\lambda_{k+j+2}-\lambda_{k}} a_{k+j+2, k+1} \\
& =\frac{1}{\lambda_{k+j+2}-\lambda_{k}}\left(\lambda_{k+j+2} \lambda_{k+1} \cdots \lambda_{k+j+1}\left[\mu_{k}, \ldots, \mu_{k+j+1}\right]\right. \\
& \left.-\lambda_{k+1} \lambda_{k+2} \cdots \lambda_{k+j+2}\left[\mu_{k+1}, \ldots, \mu_{k+j+2}\right]\right) \\
& =\lambda_{k+1}, \ldots, \lambda_{k+j+2}\left[\mu_{k}, \ldots, \mu_{k+j+2}\right]
\end{aligned}
$$

and the $(n+k+1)$ st diagonal elements are the corresponding terms of an H-J matrix.
To prove the analogue of the Hurwitz-Silverman theorem, which states that a lower triangular matrix A commutes with $(C, 1)$ if and only if A is a Hausdorff matrix, it will first be necessary to compute the entries of the H-J analogue of $(C, 1)$. For a regular H-J matrix it is known that

$$
\mu_{n}=\int_{0}^{1} x^{\lambda_{n}} d \chi(x)
$$

where χ is a function of bounded variation over $[0,1]$. The function χ is normally called the mass function for the moment generating sequence $\left\{\mu_{n}\right\}$. Since the mass function for $(C, 1)$ is $\chi(t)=t$, we shall use the same mass function to compute the entries of the H-J analogue.

$$
\mu_{n}=\int_{0}^{1} x^{\lambda_{n}} d x=\frac{1}{\lambda_{n}+1}
$$

A routine computation verifies that

$$
\begin{equation*}
c_{n k}=\frac{\lambda_{k+1} \cdots \lambda_{n}}{\prod_{i=k}^{n}\left(\lambda_{i}+1\right)}=\frac{\lambda_{1} \cdots \lambda_{n}}{\prod_{i=0}^{n}\left(\lambda_{i}+1\right)} \cdot \frac{\prod_{i=0}^{k-1}\left(\lambda_{i}+1\right)}{\lambda_{1} \cdots \lambda_{k}} \tag{5}
\end{equation*}
$$

We shall also use the notation C to denote the H-J analogue of $(C, 1)$.

A lower triangular matrix A is called a triangle if $a_{n n} \neq 0$ for all $n \geq 0$. A matrix A is called factorable if it is lower triangular with entries $a_{n k}=c_{n} b_{k}, 0 \leq k \leq n$, where b_{k} depends only on k and c_{n} depends only on n. A simple example of a factorable matrix is C, the Hausdorff Cesáro matrix of order one. Then C is a factorable matrix with each $b_{k}=1$ and each $c_{n}=1 /(n+1)$

The following lemma allows us to omit the assumption that a matrix A which commutes with C must be lower triangular.

Lemma 2.2. Let B be a factorable triangle with distinct diagonal entries. Then, if A is any row finite infinite matrix that commutes with B, A must be lower triangular.

Proof. A matrix A commute with B if and only if A commutes with B^{-1}. From Lemma 2.1 of [1], a triangle is factorable if and only if its inverse is bidiagonal. Therefore B^{-1} is bidiagonal. Moreover, if $b_{n k}=c_{n} d_{k}$, then $b_{n n}^{-1}=1 /\left(c_{n} d_{n}\right)$ and $b_{n, n-1}^{-1}=1 /\left(c_{n-1} b_{n}\right)$, which are defined and nonzero for each n, since B is a triangle.

The proof is by repeated induction.

$$
\left(A B^{-1}\right)_{00}=\sum_{j} a_{o j} b_{j 0}^{-1}=a_{00} b_{00}^{-1}+a_{01} b_{10}^{-1}
$$

and

$$
\left(B^{-1} A\right)_{00}=\sum_{j} b_{0 j}^{-1} a_{j 0}=b_{00}^{-1} a_{00}
$$

which implies that $a_{01}=0$. Assume that $a_{0 k}=0$ for $0<k \leq n$. Then

$$
\left(A B^{-1}\right)_{0 n}=\sum_{j} a_{0 j} b_{j n}^{-1}=a_{0 n} b_{n n}^{-1}+a_{0, n+1} b_{n+1, n^{\prime}}^{-1}
$$

and

$$
\left(B^{-1} A\right)_{0 n}=\sum_{j} b_{0 j}^{-1} a_{j n}=b_{00}^{-1} a_{0 n}
$$

which implies that $a_{0, n+1}=0$.
Now assume that $a_{k m}=0$ for $0<k<n$ and $m>k$. Then

$$
\left(A B^{-1}\right)_{n n}=\sum_{j} a_{n j} b_{j n}^{-1}=a_{n n} b_{n n}^{-1}+a_{n, n+1} b_{n+1, n^{\prime}}^{-1}
$$

and

$$
\left(B^{-1} A\right)_{n n}=\sum_{j} b_{n j}^{-1} a_{j n}=\sum_{j} b_{n, n-1}^{-1} a_{n-1, n}+b_{n n}^{-1} a_{n n \prime}
$$

and it follows that $a_{n, n+1}=0$.
Assume now that $a_{n m}=0$ for $n<m \leq n+k$. Then

$$
\left(A B^{-1}\right)_{n, n+k}=\sum_{j} a_{n j} b_{j, n+k}^{-1}=a_{n, n+k} b_{n+k, n+k}^{-1}+a_{n, n+k+1} b_{n+k+1, n+k^{\prime}}^{-1}
$$

and

$$
\left(B^{-1} A\right)_{n, n+k}=\sum_{j} b_{n j}^{-1} a_{j, n+k}=b_{n, n-1}^{-1} a_{n-1, n+k}+b_{n n}^{-1} a_{n, n+k}
$$

which implies that $a_{n, n+k+1}=0$.

Theorem 2.3. A row finite infinite matrix A commutes with C if and only if A is an H-J matrix.
Proof. From (5) it is clear that C is a factorable triangle. Therefore by Lemma 1, A must be a lower triangular matrix. Since the principal diagonal entries of A depend only on k, one can regard $a_{k k}=\mu_{k}$, for some sequence $\left\{\mu_{k}\right\}$. Using (5),

$$
\begin{aligned}
(A C)_{k+1, k} & =\sum_{j} a_{k+1, j} c_{j k}=a_{k+1, k} c_{k k}+a_{k+1, k+1} c_{k+1, k} \\
& =\frac{a_{k+1, k}}{\lambda_{k}+1}+\frac{\lambda_{k+1} \mu_{k+1}}{\left(\lambda_{k}+1\right)\left(\lambda_{k+1}+1\right)}
\end{aligned}
$$

and

$$
\begin{aligned}
(C A)_{k+1, k} & =\sum_{j} c_{k+1, j} a_{j, k}=c_{k+1, k} a_{k, k}+c_{k+1, k+1} a_{k+1, k} \\
& =\frac{\mu_{k}}{\left(\lambda_{k}+1\right)\left(\lambda_{k+1}+1\right)}+\frac{a_{k+1, k}}{\left(\lambda_{k+1}+1\right)}
\end{aligned}
$$

Equating $(A C)_{k+1, k}$ and $(C A)_{k+1, k}$ gives

$$
\frac{a_{k+1, k}}{\lambda_{k}+1}+\frac{\lambda_{k+1} \mu_{k+1}}{\left(\lambda_{k}+1\right)\left(\lambda_{k+1}+1\right)}=\frac{\lambda_{k+1} \mu_{k}}{\left(\lambda_{k}+1\right)\left(\lambda_{k+1}+1\right)}+\frac{a_{k+1, k}}{\left(\lambda_{k+1}+1\right)}
$$

or

$$
\left(\frac{1}{\lambda_{k}+1}-\frac{1}{\lambda_{k+1}+1}\right) a_{k+1, k}=\frac{\lambda_{k+1} \mu_{k}}{\left(\lambda_{k}+1\right)\left(\lambda_{k+1}+1\right)}-\frac{\lambda_{k+1} \mu_{k+1}}{\left(\lambda_{k}+1\right)\left(\lambda_{k+1}+1\right)}
$$

Hence

$$
\left(\lambda_{k+1}-\lambda_{k}\right) a_{k+1, k}=\lambda_{k+1}\left(\mu_{k}-\mu_{k+1}\right)
$$

or $a_{k+1, k}=\lambda_{k+1}\left[\mu_{k}, \mu_{k+1}\right]$.
Now assume the induction hypothesis. Then Theorem 1 applies and A is an H-J matrix.
Remark 2.4. Setting $\lambda_{n}=n$ in Theorem 2 gives a generalization of the Hurwitz-Silverman theorem, and setting $\lambda_{n}=n+\alpha$ yields the corresponding result for the E-J matrices.

References

[1] F. Aydin Akgun, B.E. Rhoades, Factorable generalized Hausdorff matrices, J. Advanced Math. Studies 3 (2010) 1-8.
[2] K. Endl, Abstracts of short communications and scientific program, Intern. Congress of Math. 73 (1960) 46.
[3] W.A. Hurwitz, L.L. Silverman, On the consistency and equivalence of certain definitions of summability, Trans. Amer. Math. Soc. 18 (1917) 1-20.
[4] F. Hausdorff, Summationmethoden und Momentfolgen, I, Math. Z. 9 (1921) 74-109.
[5] F. Hausdorff, Summationmethoden und Momentfolgen, II, Math. Z. 9 (1921) 280-299.
[6] A. Jakimovski, The product of summability methods; new classes of transformations and their properties, I, II, Technical (Scientific) Note No. 2, Contract No. AF61(052)-187 (1959).

[^0]: 2010 Mathematics Subject Classification. Primary 40G05
 Keywords. Hausdorff matrices, generalized Hausdorff matrices
 Received: 21 July 2015; Revised: 05 November 2015; Accepted: 14 November 2015
 Communicated by Ljubiša D.R. Kočinac and Ekrem Savaş
 Email addresses: fakgun@yildiz.edu.tr (Fatma Aydin Akgun), rhoades@indiana.edu (Billy E. Rhoades)

