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Abstract. In this article the author considers the statistical hypotheses testing to make decision among
hypotheses concerning many families of probability distributions. The statistician would like to control
the overall error rate relative to draw statistically valid conclusions from each test, while being as efficient
as possible. The familywise error (FWE) rate metric and the hypothesis test procedure while controlling
both the type I and II FWEs are generalized. The proposed procedure shows simultaneous more relia-
bility and less conservative error control relative to fixed sample and other recently proposed sequential
procedures. Also, the characteristics of logarithmically asymptotically optimal (LAO) hypotheses testing
are studied. The purpose of research is to express the optimal functional relation among the reliabilities of
LAO hypotheses testing and to judge with FWE metric.

1. Introduction

In this paper the problems of hypotheses LAO testing for a model consisting of multiple families
of probability distributions is studied. Hoeffding [15] and later Csiszár and Longo [7], Tusnady [18]
and others studied asymptotically optimal tests. Haroutunian [11] solved the problem of LAO testing
of multiple statistical hypotheses. Ahlswede and Haroutunian [1, 12, 13] formulated some problems of
multiple hypotheses testing and identification for many objects. Multiple hypotheses LAO testing for many
independent objects is also investigated [14] and the multistage tests of multiple hypotheses are studied by
Bartroff and Lai [2].

If each experiment is considered as a hypothesis test about the corresponding data stream, then what is
needed is a combination of a multiple hypothesis test and a sequential hypothesis test. This situation was
addressed by Bartroff and Lai [4] who gave a procedure that sequentially tests S hypotheses while controlling
the type I familywise error rate, i.e. the probability of rejecting any true hypotheses, at a prescribed level.
Their procedure requires only the existence of basic sequential tests for each data stream and makes no
assumptions about the dependence between the different data streams. The preceding situation occurs in
a number of real applications including multi-channel change point detection (Tartakovsky et al. [17]) and
its applications to biosurveillance (Mei [16]), genetics and genomics (Dudoit and vander Laan [10]).

The procedures of De and Baron [8, 9] simultaneously controlled both the type I and II FWEs. Bartroff
and Lai [4] allowed arbitrary acceptances of null hypotheses while controlling the type I FWE, hence the
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relationship between these acceptances and the power of the procedure was necessarily only available by
analysis on a case-by-case basis.

In this article, the statistical hypotheses testing to make decision among hypotheses concerning many
families of probability distributions is considered. Description of the characteristics of LAO hypotheses
testing is studied. The purpose of research is to express the optimal functional relation among the reliabilities
of LAO hypotheses testing and to judge with FWE metric. The remainder of the paper is organized as
follows. Section 2 describes the model, preliminaries and formulations. Section 3 presents the optimal
testing for a pair of familywise error rates. Section 4 discusses the optimal testing for multiple familywise
error rates and Section 5 concludes.

2. Preliminaries and Formulations

Suppose random variable (RV) X characterizing an object takes values in the finite set X and P(X) is
the space of all distributions on X and S hypothetical probability distributions (PDs) of X are given, but
are divided in K disjoint families. The first family includes R1 hypotheses P1,P2, ...,PR1 , the second family
includes R2 hypotheses PR1+1,PR1+2, ...,PR1+R2 and etc. the K-th family includes RK hypotheses PS−K+1,PS−K+2,
...,PS all from P(X). The considered object is characterized by RV X following to one of this S hypotheses.
The statistician is trying to make reliable decision about correct distribution using sample x = (x1, . . . , xN)
of results of N independent observations of the RV X.

Let N(x|x) be the number of repetitions of the element x ∈ X in the vector x ∈ XN, then

Qx
4
=

{
Qx (x) 4=

N (x|x)
N

, x ∈ X
}
,

is the PD, called in statistics the empirical probability distribution of the sample x, and in information theory
the type of x [5, 6].

Let PN(X) be the set of all possible types of samples from XN and TN
Q be the set of all vectors x of the

type Q ∈ PN(X). The entropy of RV X with PD Q and the divergence (Kullback-Leibler distance) of PDs P
and Q, are defined as follows [5, 6, 11]:

HQ(X) 4= −
∑
x∈X

Q(x) log Q(x),

D (Q ‖ P) 4=
∑
x∈X

Q(x) log
Q(x)
P(x)

.

Let us remind the following useful properties of types [5, 6]:

|P
N(X)| ≤ (N + 1)|X|,

(N + 1)−|X|. exp{NHQ(X)} ≤ |TN
Q | ≤ exp{NHQ(X)},

PN(x) = exp{−N(HQ(X) + D(Q||P))}, for x ∈ TN
Q .

Let Θ be the parametric space and the individual parameter θ ∈ Θ be a r-dimension vector. Based on
data coming from a parametric family Ps(θ), θ ∈ Θ, of distributions, we will be concerned with testing a
set of hypotheses H1,H2, ...,HS. A hypothesis Hs is true if the true θ lies in Hs. If T(θ) ⊆ {1, 2, ...,S} is the set
of indices of the true hypotheses, then the familywise error rate (FWE) is defined as the probability

FWE(θ) = P(some Ht is rejected, t ∈ T)

Suppose there is an observable data x and S hypotheses divided into two disjoint families of PDs. It is
desired to test about the parameter θ lies in one of the hypotheses Hs, s = 1,S. The sample space XN has
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disjoint subsets of the space A1 and A2. The set A1(or A2) consists of all vectors x for which Ht, t ∈ T is
adopted(or rejected). The type I and II FWE, are defined as

FWEI(θ) = P(some Ht is rejected for x ∈ A1, t ∈ T),

FWEII(θ) = P(some Ht is accepted for x ∈ A2, t ∈ T).

This definition of FWEI is the same as the standard one for fixed-sample testing and FWEII is defined
analogously. The quantity 1- FWEII has been called familywise power by some authors (Ye et al. [19]).

3. The Optimal Testing for a Pair of Familywise Error Rates

The set of indices of all hypotheses are arranged into two sets: the true hypotheses T(θ) = {1,R} and it’s
compliment T′(θ) = {R + 1,S}. Therefore the pair of disjoint families of PDs P1(θ) and P2(θ) are:

P1(θ) = {Ps(θ), s ∈ T}, P2(θ) = {Ps(θ), s ∈ T′}.

The decision making consists in using sample x for selection of a family of PDs is denoted by a test ϕN
1 (x),

which can be defined by division of the sample space XN on the pair of disjoint subsets

A
N
i (x) 4= {x : ϕN

1 (x) = i}, i = 1, 2.

The setAN
i (x) consists of all vectors x for which i-th family Pi(θ) of PDs is adopted.

The test ϕN
1 (x) has two kinds of errors for the pair of hypothesesHi : Pi(θ), i = 1, 2. Let FWEI(ϕN

1 ) be the
probability of the erroneous acceptance of the second family P2(θ) provided the first family P1(θ) is true
and FWEII(ϕN

1 ) be the probability of the erroneous acceptance of P1(θ) provided the second family P2(θ) is
true. The errors are defined as

FWEI(ϕN
1 ) 4= max

s:s∈T
PN

s (AN
2 ), (1)

FWEII(ϕN
1 ) 4= max

s:s∈T′
PN

s (AN
1 ). (2)

The reliabilities of the sequence of tests ϕ1 are defined as:

Ei(ϕ1) 4= lim inf
N→∞

{
−

1
N

log FWEi(ϕN
1 )

}
, i = I, II. (3)

The test ϕ1 is considered to be LAO if for given value of EI it provides the largest value to EII. For given
E∗I the test ϕ∗N1 is defined by division of XN into two disjoint subsets

A
N∗
1 =

⋃
Qx:min

s:s∈T
D(Qx ||Ps)≤E∗I

T
N
Qx

, A
N∗
2 = XN

\ A
N∗
1 .

Theorem 3.1. If all distributions Ps(θ), s = 1,S, are different and E∗I is positive number such that the following
inequality holds

E∗I < min
s:s∈T′

min
l:l∈T

D(Ps||Pl),

then there exists a LAO sequence of tests ϕ∗1 such that reliability E∗II(E
∗

I) is positive and defined as

E∗II(E
∗

I) = min
s:s∈T′

inf
Q:min

l:l∈T
D(Q||Pl)≤E∗I

D(Q||Ps).
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Proof. The first type of error FWEI(ϕ∗N1 ) is estimated by applying the properties of types as follows:

FWEI(ϕ∗N1 ) = max
s:s∈T

PN
s

(
A

N∗
2

)
= max

s:s∈T
PN

s

( ⋃
Qx:min

l:l∈T
D(Qx ||Pl)>E∗I

T
N
Qx

)
< max

s:s∈T
(N + 1)|X| sup

Qx:min
l:l∈T

D(Qx ||Pl)>E∗I

PN
s

(
T

N
Qx

)
≤ max

s:s∈T
(N + 1)|X| sup

Qx:min
l:l∈T

D(Qx ||Pl)>E∗I

exp {−ND(Qx||Ps)}

= exp
{
−N

[
min
s:s∈T

inf
Qx:min

l:l∈T
D(Qx ||Pl)>E∗I

D(Qx||Ps) − oN(1)
]}

≤ exp
{
−N{E∗I − oN(1)}

}
.

Another error FWEII(ϕ∗N1 ) is similarly estimated as

FWEII(ϕ∗N1 ) = max
s:s∈T′

PN
s

(
A

N∗
1

)
= max

s:s∈T′
PN

s

( ⋃
Qx:min

l:l∈T
D(Qx ||Pl)≤E∗I

T
N
Qx

)
≤ max

s:s∈T′
(N + 1)|X| sup

Qx:min
l:l∈T

D(Qx ||Pl)≤E∗I

PN
s

(
T

N
Qx

)
≤ max

s:s∈T′
(N + 1)|X| sup

Qx:min
l:l∈T

D(Qx ||Pl)≤E∗I

exp {−ND(Qx||Ps)}

= exp
{
−N

[
min
s:s∈T′

inf
Qx:min

l:l∈T
D(Qx ||Pl)≤E∗I

D(Qx||Ps) − oN(1)
]}
. (4)

And the inverse inequality is obtained as:

FWEII(ϕ∗N1 ) = max
s:s∈T′

PN
s

(
A

N∗
1

)
= max

s:s∈T′
PN

s

( ⋃
Qx:min

l:l∈T
D(Qx ||Pl)≤E∗I

T
N
Qx

)
≥ max

s:s∈T′
sup

Qx:min
l:l∈T

D(Qx ||Pl)≤E∗I

PN
s

(
T

N
Qx

)
≥ max

s:s∈T′
(N + 1)−|X| sup

Qx:min
l:l∈T

D(Qx ||Pl)≤E∗I

exp {−ND(Qx||Ps)}

= exp
{
−N

[
min
s:s∈T′

inf
Qx:min

l:l∈T
D(Qx ||Pl)≤E∗I

D(Qx||Ps) + oN(1)
]}
. (5)

According to the definition of the reliability (3) and from (4) and (5), the proof of the Theorem will be
accomplished. If the condition of the Theorem is not held, then by applying the properties of types,
E∗II(E

∗

I) = 0.

Corollary 3.2. If R = 1, S = 2, then there exist only two hypotheses P1 and P2. Therefore this case is equivalent to
Hoeffding’s Theorem [15], where for E∗I < D(P2||P1),

E∗II(E
∗

I) = inf
Q:D(Q||P1)≤E∗I

D(Q||P2).
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4. The Optimal Testing for Multiple Familywise Error Rates

Suppose S possible PDs Ps, s = 1,S of X are given and grouped in K disjoint families of PDs. The first
family includes R1 hypotheses, the second family includes R2 hypotheses and etc., the last family includes
RK hypotheses such that

∑K
k=1 Rk = S. Consider the sets of indices

T1 = {1,R1}, T2 = {R1 + 1,R1 + R2}, ..., TK = {S − RK + 1,S}.

Therefore there are K disjoint families of PDs P1(θ), P2(θ), ... , PK(θ) such that

Pk(θ) = {Ps(θ), s ∈ Tk}, k = 1,K.

The decision making consists in using sample x for selection of one family of PDs is denoted by a test ϕN
2 (x),

which can be defined by division of the sample space XN on K disjoint subsets

A
N
k
4
= {x : ϕN

2 (x) = k}, k = 1,K.

The setAN
k consists of all vectors x for which k-th family of PDs is adopted.

Let FWEm|k(ϕN
2 ) be the familywise error of the acceptance of m-th family of PDs provided k-th family of

PDs contains the correct PD:

FWEm|k(ϕN
2 ) 4= max

s:s∈Tk

PN
s (AN

m), m , k, m, k = 1,K. (6)

The familywise error to reject k-th family of PDs, when it is true, is

FWEk|k(ϕN
2 ) 4= max

s:s∈Tk

PN
s (A

N
k ) =

∑
m,k

FWEm|k(ϕN
2 ), k = 1,K. (7)

The reliabilities of the sequence of tests ϕ2 are considered as

Em|k(ϕ2) 4= lim inf
N→∞

{
−

1
N

log FWEm|k(ϕN
2 )

}
, m, k = 1,K. (8)

It follows from (6), (7) and (8) that

Ek|k(ϕ2) = min
m,k

Em|k(ϕ2). (9)

The test ϕ∗2 is called LAO if for given by consumer positive values of corresponding K−1 diagonal elements
of the matrix of reliabilities, the procedure provides maximal values for other elements of it.

Theorem 4.1. Consider S different PDs take place in K disjoint families of PDs. For given positive numbers
E1|1,E2|2, ...,EK−1|K−1 let us introduce the regions:

Rk =
{
Q : min

s∈Tk
D (Q ‖ Ps) ≤ Ek|k

}
, k = 1,K − 1,

RK =
{
Q : min

s∈Tk
D (Q ‖ Ps) > Ek|k, k = 1,K − 1

}
,

and the following values for elements of the future matrix of reliabilities E(ϕ∗2) of the LAO test sequence ϕ∗2:

E∗k|k =Ek|k, k = 1,K − 1, (10)

E∗m|k = min
s∈Tk

inf
Q∈Rm

D (Q ‖ Ps) , m, k = 1,K, m , k, (11)

E∗K|K = min
m,K

E∗m|K. (12)
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If the following compatibility conditions take place

0 < E1|1 < min
s∈T1, l∈Tk , k=2,K

D(Pl ‖ Ps),

0 < Ek|k < min[ min
m=1,k−1

E∗m|k , min
m=k+1,K, l∈Tm, s∈Tk

D(Pl ‖ Ps)], 2 ≤ k ≤ K − 1,

then there exists a LAO sequence of tests ϕ∗2 with matrix of reliabilities E(ϕ∗2).
Even if one of the compatibility conditions is violated, then the matrix of reliabilities of such test contains at least

one element equal to zero.

Proof. The LAO test ϕ∗N2 can be determined by division of XN into K disjoint subsets

A
∗N
k =

⋃
Qx:Qx∈Rk

T
N
Qx
, k = 1,K.

By applying the properties of types for estimating of familywise errors and using the definition of the
reliability, FWEk|k(ϕ∗N2 ), k = 1,K − 1, are estimated as:

FWEk|k(ϕ∗N2 ) = max
s∈Tk

PN
s

(
A∗Nk

)
= max

s∈Tk

PN
s

( ⋃
Qx:min

l∈Tk
D(Qx ||Pl)>E∗k|k

T
N
Qx

)
≤ max

s∈Tk

(N + 1)|X| sup
Qx:min

l∈Tk
D(Qx ||Pl)>E∗k|k

PN
s

(
T

N
Qx

)
≤ max

s∈Tk

(N + 1)|X| sup
Qx:min

l∈Tk
D(Qx ||Pl)>E∗k|k

exp {−ND(Qx||Ps)}

= exp
{
−N

[
min
s∈Tk

inf
Qx:min

l∈Tk
D(Qx ||Pl)>E∗k|k

D(Qx||Ps) − oN(1)
]}

≤ exp
{
−N{E∗k|k − oN(1)}

}
,

where oN(1)→ 0 is received by N→∞ and from here (10) follows.

The familywise errors for m, k = 1,K, m , k, are estimated as follows:

FWEm|k(ϕ∗N2 ) = max
s∈Tk

PN
s

(
A
∗N
m

)
= max

s∈Tk

PN
s

( ⋃
Qx:min

l∈Tm
D(Qx ||Pl)≤E∗m|m

T
N
Qx

)
≤ max

s∈Tk

(N + 1)|X| sup
Qx:min

l∈Tm
D(Qx ||Pl)≤E∗m|m

PN
s

(
T

N
Qx

)
≤ max

s∈Tk

(N + 1)|X| sup
Qx:min

l∈Tm
D(Qx ||Pl)≤E∗m|m

exp {−ND(Qx||Ps)}

= exp
{
−N

[
min
s∈Tk

inf
Qx:min

l∈Tm
D(Qx ||Pl)≤E∗m|m

D(Qx||Ps) − oN(1)
]}
. (13)



F. Hormozinejad / Filomat 30:3 (2016), 681–688 687

Now let us confirm the inverse inequality

FWEm|k(ϕ∗N2 ) = max
s∈Tk

PN
s

(
A
∗N
m

)
= max

s∈Tk

PN
s

( ⋃
Qx:min

l∈Tm
D(Qx ||Pl)≤E∗m|m

T
N
Qx

)
≥ max

s∈Tk

sup
Qx:min

l∈Tm
D(Qx ||Pl)≤E∗m|m

PN
s

(
T

N
Qx

)
≥ max

s∈Tk

(N + 1)−|X| sup
Qx:min

l∈Tm
D(Qx ||Pl)≤E∗m|m

exp {−ND(Qx||Ps)}

= exp
{
−N

[
min
s∈Tk

inf
Qx:min

l∈Tm
D(Qx ||Pl)≤E∗m|m

D(Qx||Ps) + oN(1)
]}
. (14)

According to the definition of the reliability and the equations (13) and (14), we are gaining (11) as follows

E∗m|k = min
s∈Tk

inf
Q:min

l∈Tm
D(Q||Pl)≤E∗m|m

D(Q||Ps) = min
s∈Tk

inf
Q∈Rm

D (Q ‖ Ps) . (15)

Also the equation (12) can be received by (9).
The proof of the first part of the theorem will be accomplished if the sequence of tests ϕ∗2 is LAO and for

agreed E∗k|k, k = 1,K − 1 and every other sequence of tests ϕ∗∗2 for all m, k = 1,K, m , k, Em|k(ϕ∗∗2 ) ≤ E∗m|k.
Suppose on the contrary, there exists a sequence of tests ϕ∗∗2 is defined by division of XN into K disjoint

subsets BN
1 , ...,B

N
K and

Em|k(ϕ∗∗2 ) > Em|k(ϕ∗2), for some m, k = 1,K, m , k. (16)

For large enough N, this condition is equivalent to the inequality

FWEm|k(ϕ∗∗N2 ) ≤ FWEm|k(ϕ∗N2 ), for some m, k = 1,K, m , k. (17)

Examine the sets BN
k

⋂
A
∗N
k , k = 1,K. This intersection cannot be empty because

FWEk|k(ϕ∗∗N2 ) = max
s∈Tk

PN
s

(
B

N
k

)
≥ max

s∈Tk

PN
s

(
A
∗N
k

)
≥ max

s∈Tk

max
Qx:min

l∈Tk
D(Qx ||Pl)≤E∗k|k

PN
s

(
T

N
Qx

)
≥ exp{−N(E∗k|k + oN(1))}.

Let’s show A∗Nk

⋂
B

N
m = ∅, m, k = 1,K, m , k. Suppose the inverse if there exists Qx: min

s∈Tk
D(Qx||Ps) ≤ E∗k|k

and TN
Qx
⊂ B

N
m , then

FWEm|k(ϕ∗∗N2 ) = max
s∈Tk

PN
s

(
B

N
m

)
≥ max

s∈Tk

PN
s

(
T

N
Qx

)
≥ exp{−N(E∗k|k + oN(1))}.

It follows Em|k(ϕ∗∗2 ) ≤ E∗k|k and from equation (9) it also follows that E∗k|k ≤ Em|k(ϕ∗2) and at result Em|k(ϕ∗∗2 ) ≤
Em|k(ϕ∗2) which contradicts to (16). Hence it concludes BN

k

⋂
A
∗N
k = A∗Nk = B∗Nk which means ϕ∗∗2 ≡ ϕ

∗

2 and
ϕ∗2 is the LAO test. For the proof of the second part of Theorem 4.1 it is sufficient to remark if one of the
compatibility conditions is violated, then from equations (10)–(12), at least one of the elements E∗m|k is equal
to zero.
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5. Conclusion

The sequential Holm procedure is a general method for combining individual sequential tests into a
sequential multiple hypothesis testing procedure which controls both the type I and II FWEs at prescribed
levels (Bartroff and Lai [3]). The sequential Holm procedure exhibits much more efficiency in terms of
smaller average total sample size than existing sequential procedures, as well as Holm’s fixed-sample
test. This paper includes the optimality theory for multiple testing procedures and for calculating of their
operating characteristics such as achieved FWEs and reliabilities. Description of the characteristics of LAO
hypotheses testing is shown and the optimal functional relations among the reliabilities of LAO hypotheses
testing with FWE metric and terms of optimality are expressed.
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