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Abstract. In this paper we introduce the concept generalized weighted statistical convergence of double se-
quences. Some relations between weighted (λ, µ)−statistical convergence and strong (Nλµ, p, q, α, β)−summablity
of double sequences are examined. Furthemore, we apply our new summability method to prove a Ko-
rovkin type theorem.

1. Introduction

The idea of statistical convergence was formerly defined under the name ”almost convergence” by
Zygmund [37] in the first edition of his celebrated monograph published in Warsaw in 1935. The concept
was formally introduced by Fast [14] and was reintroduced by Schonberg [35] and also, independently,
by Buck [3]. Later the idea was associated with summability theory by Connor [6], Cakallı [7], Et et al.
([10–12, 18]), Duman and Orhan [8], Fridy [15], Işık [19], Mohiuddine et al. ([1, 22–24]), Mursaleen et al.
([26–28]), Šalat [32], Savaş ([33, 34]) and many others.

Let N be the set of all natural numbers, K ⊆ N and K (n) = {k ≤ n : k ∈ K} . The natural density of K is
defined by δ (K) = lim

n
1
n |K (n)| , if the limit exists. The vertical bars indicate the number of the elements in

enclosed set. A sequence x = (xk) is said to be statistically convergent to L if the set K (ε) = {k ≤ n : |xk − L| ≥ ε}
has natural density zero. A sequence x = (xk) is said to be statistically Cauchy sequence if for every ε > 0
there exist a number N = N (ε) such that

lim
n

1
n
|k ≤ n : |xk − xN | ≥ ε| = 0.

The notion of weighted statistical convergence was introduced by Karakaya and Chishti [20] as follows:
Let

(
pn

)
be a sequence of positive real numbers such that Pn = p0 + p1 + ...+ pn →∞ as n→∞ and pn , 0,

p0 > 0. A sequence x = (xk) is said to be weighted statistical convergent if for every ε > 0

lim
n→∞

1
Pn

∣∣∣{k ≤ n : pk |xk − L| ≥ ε
}∣∣∣ = 0.
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In this case we write SN − lim x = L.We shall denote the set of all weighted statistical convergent sequences
by SN. Mursaleen et al. [27] was modified the definition of weighted statistical convergence such as:

A sequence x = (xk) is said to be weighted statistical convergent if for every ε > 0

lim
n→∞

1
Pn

∣∣∣{k ≤ Pn : pk |xk − L| ≥ ε
}∣∣∣ = 0.

Recently Ghosal [17] was added to the definition of weighted statistical convergence the condition
lim inf pn > 0.

Let tn = 1
Pn

n∑
k=0

pkxk, n = 0, 1, 2, 3... . The sequence x = (xk) is said to be
(
N, pn

)
−summable to L if lim

n→∞
tn = L.

A sequence x = (xk) is said to be
(
N, pn

)
−statistically summable to L if st− lim

n→∞
tn = L [25]. In this case we

write N (st) − lim x = L.
A double sequence x =

(
x jk

)∞
j,k=0

is said to be convergent in the Pringsheim sense if for every ε > 0 there

exists N ∈N such that
∣∣∣x jk − L

∣∣∣ < ε, whenever j, k > N. In this case we write P − lim x = L [31].

A double sequence x =
(
x jk

)∞
j,k=0

is bounded if there exists a positive number M such that
∣∣∣x jk

∣∣∣ < M for

all i, j ∈N. We denote the set of all bounded double sequence by `2
∞.

Let K ⊆N ×N and K (m,n) =
{(

j, k
)

: j ≤ m, k ≤ n
}
. The double natural density of K is defined by

δ2 (K) = P − lim
m,n

1
mn
|K (m,n)| , if the limit exists.

A double sequence x =
(
x jk

)
is said to be statistically convergent to L if for every ε > 0 the set{(

j, k
)
, j ≤ m and k ≤ n :

∣∣∣x jk − L
∣∣∣ ≥ ε} has double natural density zero [28]. In this case we write st2−lim x = L

and we denote the set of all statistically convergent double sequence by st2. A convergent double sequence
is also st−convergent, but the converse is not true general. Also a st−convergent double sequence need not
be bounded. For this consider a sequence x =

(
x jk

)
defined by

x jk =

{
jk if j and k are square
1 otherwise ,

then st2 − lim x = 1, but x =
(
x jk

)
neither convergent nor bounded.

Let p =
{
p j

}∞
j=0

and q =
{
qk

}∞
k=0 be sequences of non-negative numbers that are not all zero and let

Qn = q1 + q2 + q3 + ... + qn, q1 > 0 and Pm = p1 + p2 + ... + pm, p1 > 0. The weighted mean tαβmn was defined by

t11
mn =

1
PmQn

m∑
j=0

n∑
k=0

p jqkx jk

t10
mn =

1
Pm

m∑
j=0

p jx jn, t01
mn =

1
Qn

n∑
k=0

qkxmk

where m,n ≥ 0 and
(
α, β

)
= (1, 1) , (1, 0) or (0, 1). If tαβmn convergent to L as min (m,n)→ ∞ then; we say that

a double sequence x =
(
x jk

)
is

(
N, p, q, α, β

)
−summable to L and we show that lim

m,n→∞
tαβmn = L. In this case we

write xi j → L
(
N, p, q, α, β

)
([4],[5]).

2. Main Results

In this section we generalize the concept of weighted statistical convergence for double sequences.
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Definition 2.1. Let K be a subset ofN ×N. We define the double weighted density of K by

δN2
(K) = lim

m,n

1
PmQn

∣∣∣KPmQn (m,n)
∣∣∣ , provided the limit exists,

where KPmQn (m,n) =
{(

j, k
)
, j ≤ Pm and k ≤ Qn : p jqk

∣∣∣x jk − L
∣∣∣ ≥ ε} , lim inf pn > 0, lim inf qm > 0. We say that

a double sequence x =
(
x jk

)
is said to be weighted statistically convergent

(
or SN2

− convergent
)

to L if for
every ε > 0

lim
m,n→∞

1
PmQn

∣∣∣∣{( j, k
)
, j ≤ Pm and k ≤ Qn : p jqk

∣∣∣x jk − L
∣∣∣ ≥ ε}∣∣∣∣ = 0.

In this case we write SN2
− lim x = L.

Definition 2.2. Let λ = (λm) and µ =
(
µn

)
be two non-decreasing sequences of positive real numbers such

that each tending to∞ and

λm+1 ≤ λm + 1, λ1 = 0
µn+1 ≤ µn + 1, µ1 = 0.

Let p =
(
p j

)
and q =

(
qk

)
be two sequence of non-negative numbers such that p0 > 0, q0 > 0 and

Pλm =
∑
j∈Jm

p j →∞ m→∞

Qµn =
∑
k∈In

qk →∞ n→∞

where, Jm = [m − λm + 1,m] , In =
[
n − µn + 1,n

]
and we define generalized weighted mean

σ11
mn =

1
Pλm Qµn

∑
j∈Jm

∑
k∈In

p jqkx jk

σ10
mn =

1
Pλm

∑
j∈Jm

p jx jn, σ
01
mn =

1
Qµn

∑
k∈In

qkxmk

A double sequence x =
(
x jk

)
is said to be

(
Nλµ, p, q, α, β

)
−summable to L, if lim

m,n→∞
σ
αβ
mn = L, where(

α, β
)

= (1, 1) , (1, 0) or (0, 1) .

Definition 2.3. A double sequence x =
(
x jk

)
is said to be strongly

(
Nλµ, p, q, α, β

)
−summable (or

[
Nλµ, p, q, α, β

]
-summable) to L, if

lim
m,n→∞

1
Pλm Qµn

∑
j∈Jm

∑
k∈In

p jqk

∣∣∣x jk − L
∣∣∣ .

In this case we write x jk → L
[
Nλµ, p, q, α, β

]
.

If we take p j = 1 and qk = 1 for all j, k ∈N in the above definition
(
Nλµ, p, q, α, β

)
−summability reduces to(

V, λ, µ
)
−summability which were studied Mursaleen et al. [29]. Also if we take p j = 1, qk = 1 for all j, k ∈N

and λm = m, µn = n for all n,m ∈N , then;
(
Nλµ, p, q, α, β

)
−summability reduces to (C, 1, 1)−summability.
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Definition 2.4. A double sequence x =
(
x jk

)
is said to be weighted

(
λ, µ

)
−statistically convergent (or SN(λ,µ)

−

convergent) to L if for every ε > 0

lim
m,n→∞

1
Pλm Qµn

∣∣∣∣{( j, k
)

; j ≤ Pλm and k ≤ Qµn : p jqk

∣∣∣x jk − L
∣∣∣ ≥ ε}∣∣∣∣ = 0.

In this case we write SN(λ,µ)
− lim x = L. We denote the set of all weighted

(
λ, µ

)
−statistically convergent

double sequences by SN(λ,µ)
.

Definition 2.5. A double sequence x =
(
x jk

)
is said to be

(
N

2
λµ, p, q, α, β

)
−statistically summable to L if

st2 − lim
m,n→∞

σ
αβ
mn = L. In this case we write N

2
λµ (st) − lim x = L.

Theorem 2.6. Let p jqk

∣∣∣x jk − L
∣∣∣ ≤ M for all j, k ∈ N. If a double sequence x =

(
x jk

)
is SN(λ,µ)

−convergent to L then;

it is
(
N

2
λµ, p, q, α, β

)
−statistically summable, but the converse is not true.

Proof. Let p jqk

∣∣∣x jk − L
∣∣∣ ≤M for all j, k ∈N and x =

(
x jk

)
is SN(λ,µ)

−convergent to L and set

KPλm Qµn
(ε) =

{(
j, k

)
; j ≤ Pλm and k ≤ Qµn : p jqk

∣∣∣x jk − L
∣∣∣ ≥ ε} .

Then, we can write

∣∣∣∣σαβmn − L
∣∣∣∣ =

∣∣∣∣∣∣∣∣ 1
Pλm Qµn

∑
j∈Jm

∑
k∈In

p jqkx jk − L

∣∣∣∣∣∣∣∣
≤

1
Pλm Qµn

∑
j∈Jm

∑
k∈In

( j,k)∈KPλm Qµn (ε)

p jqk

∣∣∣x jk − L
∣∣∣ +

1
Pλm Qµn

∑
j∈Jm

∑
k∈In

( j,k)<KPλm Qµn (ε)

p jqk

∣∣∣x jk − L
∣∣∣

≤
M

Pλm Qµn

∣∣∣KPλm Qµn
(ε)

∣∣∣ + ε→ ε + 0

as m,n→∞which implies that σαβmn → L.
For the converse, consider a sequence defined by x =

(
x jk

)
=

(
(−1) j

)
for all k ∈N. Let p j = 1, qk = 1, λm =

m, µn = n for all j, k,n,m ∈N. Then, the sequence x =
(
x jk

)
is

(
N

2
λµ, p, q, α, β

)
−statistically summable to zero,

but x =
(
x jk

)
is not SN(λ,µ)

−convergent.

Definition 2.7. A double sequence x =
(
x jk

)
is said to be

[
N, p, q, α, β

]
r
−summable to L if

lim
m,n→∞

1
PmQn

m∑
j=1

n∑
k=1

p jqk

∣∣∣x jk − L
∣∣∣r = 0, (0 < r < ∞)

and we write xi j → L
[
N, p, q, α, β

]
r
.

Theorem 2.8. If lim inf
m,n

(Pλm Qµn
PmQn

)
> 0, then; SN2

⊂ SN(λ,µ)
.
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Proof. Let x =
(
x jk

)
be SN2

−convergent to L. We may write

1
PmQn

∣∣∣∣{( j, k
)
, j ≤ Pm and k ≤ Qn : p jqk

∣∣∣x jk − L
∣∣∣ ≥ ε}∣∣∣∣

≥
1

PmQn

∣∣∣∣{( j, k
)

; j ≤ Pλm and k ≤ Qµn : p jqk

∣∣∣x jk − L
∣∣∣ ≥ ε}∣∣∣∣

=
Pλm Qµn

PmQn

1
Pλm Qµn

∣∣∣∣{( j, k
)

; j ≤ Pλm and k ≤ Qµn : p jqk

∣∣∣x jk − L
∣∣∣ ≥ ε}∣∣∣∣ .

Since lim inf
m,n

(Pλm Qµn
PmQn

)
> 0, taking limit as m,n→∞, we get SN(λ,µ)

− lim x = L.

Theorem 2.9. If a double sequence x =
(
x jk

)
is

[
Nλµ, p, q, α, β

]
−summable to L, then; it is SN(λ,µ)

−statistically

convergent to L and the inclusion is strict.

Proof. Let x =
(
x jk

)
be

[
Nλµ, p, q, α, β

]
−summable to L. Then, for ε > 0 we have∣∣∣∣∣∣∣∣ 1

Pλm Qµn

∑
j∈Jm

∑
k∈In

p jqk

∣∣∣x jk − L
∣∣∣
∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣
1

Pλm Qµn

∑
j∈Jm

∑
k∈In

( j,k)∈KPλm Qµn (ε)

p jqk

∣∣∣x jk − L
∣∣∣ +

1
Pλm Qµn

∑
j∈Jm

∑
k∈In

( j,k)<KPλm Qµn (ε)

p jqk

∣∣∣x jk − L
∣∣∣
∣∣∣∣∣∣∣∣∣∣∣∣∣

≥
1

Pλm Qµn

∣∣∣∣{( j, k
)
, j ≤ Pλm and k ≤ Qµn : p jqk

∣∣∣x jk − L
∣∣∣ ≥ ε}∣∣∣∣

and this implies that SN(λ,µ)
− lim x = L.

To show the inclusion is strict consider the following example:
Let λm = m, µn = n, p j = j, qk = k for all j, k,n,m ∈N and define a sequence by

x jk =

{ √
jk j and k square

0 otherwise
.

Then,

Pm =

m∑
j=1

p j =
m (m + 1)

2
,Qn =

n∑
k=1

qk =
n (n + 1)

2

and so we have

1
PmQn

∣∣∣∣{( j, k
)
, j ≤ Pm and k ≤ Qn : p jqk

∣∣∣x jk − 0
∣∣∣ ≥ ε}∣∣∣∣

≤
1√

m(m+1)
2

√
n(n+1)

2

→ 0 as m,n→∞,

but

1
PmQn

m∑
j=1

n∑
k=1

p jqk

∣∣∣x jk

∣∣∣→∞.
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Theorem 2.10. Let p jqk

∣∣∣x jk − L
∣∣∣ ≤M for all j, k ∈N. If a double sequence x =

(
x jk

)
is weighted

(
λ, µ

)
−statistically

convergent to L ,then; it is
[
Nλµ, p, q, α, β

]
summable to L, hence x =

(
x jk

)
is

(
N, p, q, α, β

)
−summable to L.

Proof. The first implication is obvious. On the other hand, we have

1
PmQn

m∑
j=1

n∑
k=1

p jqk

∣∣∣x jk − L
∣∣∣

=
1

PmQn

m−λm∑
j=1

n−µn∑
k=1

p jqk

∣∣∣x jk − L
∣∣∣ +

1
PmQn

∑
j∈Jm

∑
k∈In

p jqk

∣∣∣x jk − L
∣∣∣

≤
1

Pλm Qµn

m−λm∑
j=1

n−µn∑
k=1

p jqk

∣∣∣x jk − L
∣∣∣ +

1
Pλm Qµn

∑
j∈Jm

∑
k∈In

p jqk

∣∣∣x jk − L
∣∣∣

≤
2

Pλm Qµn

∑
j∈Jm

∑
k∈In

p jqk

∣∣∣x jk − L
∣∣∣

Hence x is
(
N, p, q, α, β

)
-summable to L.

Definition 2.11. A double sequence x =
(
x jk

)
is said to be strongly weighted

(
λ, µ

)
r −convergent if

lim
m,n

1
Pλm Qµn

∑
j∈Jm

∑
k∈In

p jqk

∣∣∣x jk − L
∣∣∣r = 0, (0 < r < ∞) .

In this case we write x jk → L
[
Nλ,µ, p, q, α, β

]
r
.

Theorem 2.12. Let a double sequence x =
(
x jk

)
is strongly weighted

(
λ, µ

)
r −convergent to L. If the following

conditions are provided, then; x =
(
x jk

)
is weighted

(
λ, µ

)
−statistically convergent to L.

Case1 : 0 < r < 1 and
∣∣∣x jk − L

∣∣∣ < 1

Case2 : 1 ≤ r < ∞ and 1 ≤
∣∣∣x jk − L

∣∣∣ < ∞
Proof. Since p jqk

∣∣∣x jk − L
∣∣∣r ≥ p jqk

∣∣∣x jk − L
∣∣∣ for Case1 and Case2 then we can write

1
Pλm Qµn

∑
j∈Jm

∑
k∈In

p jqk

∣∣∣x jk − L
∣∣∣r ≥ 1

Pλm Qµn

∑
j∈Jm

∑
k∈In

p jqk

∣∣∣x jk − L
∣∣∣

≥
1

Pλm Qµn

∑
j∈Jm

∑
k∈In

( j,k)∈KPλm Qµn (ε)

p jqk

∣∣∣x jk − L
∣∣∣

≥
ε

Pλm Qµn

∣∣∣KPλm Qµn
(ε)

∣∣∣ .
Taking limit as m,n→∞,we get x =

(
x jk

)
is weighted

(
λ, µ

)
−statistically convergent to L,where KPλm Qµn

(ε) ={(
j, k

)
, j ∈ Jm and k ∈ In : p jqk

∣∣∣x jk − L
∣∣∣ ≥ ε} .

Theorem 2.13. Let a double sequence x =
(
x jk

)
is weighted

(
λ, µ

)
−statistically convergent to L and p jqk

∣∣∣x jk − L
∣∣∣ ≤

M. If the following cases are provided then; x =
(
x jk

)
is

[
Nλ,µ, p, q, α, β

]
r
−summable to L.
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Case1 : 0 < r < 1 and 1 < M < ∞

Case2 : 1 ≤ r < ∞ and 0 ≤M < 1

Proof. Suppose that x =
(
x jk

)
is weighted

(
λ, µ

)
−statistically convergent to L . Since p jqk

∣∣∣x jk − L
∣∣∣ ≤ M we

can write

1
Pλm Qµn

∑
j∈Jm

∑
k∈In

p jqk

∣∣∣x jk − L
∣∣∣r

=
1

Pλm Qµn

∑
j∈Jm

∑
k∈In

( j,k)∈KPλm Qµn (ε)

p jqk

∣∣∣x jk − L
∣∣∣r +

1
Pλm Qµn

∑
j∈Jm

∑
k∈In

( j,k)∈Kc
Pλm Qµn

(ε)

p jqk

∣∣∣x jk − L
∣∣∣r

≤
1

Pλm Qµn

∑
j∈Jm

∑
k∈In

( j,k)∈KPλm Qµn (ε)

p jqk

∣∣∣x jk − L
∣∣∣ +

1
Pλm Qµn

∑
j∈Jm

∑
k∈In

( j,k)∈Kc
Pλm Qµn

(ε)

p jqk

∣∣∣x jk − L
∣∣∣

≤
M

∣∣∣KPλm Qµn
(ε)

∣∣∣
Pλm Qµn

+
ε

Pλm Qµn

∣∣∣∣Kc
Pλm Qµn

(ε)
∣∣∣∣→ 0 as m,n→∞,

where Kc
Pλm Qµn

(ε) =
{(

j, k
)
, j ∈ Jm and k ∈ In : p jqk

∣∣∣x jk − L
∣∣∣ < ε} .Hence x =

(
x jk

)
is

[
Nλ,µ, p, q, α, β

]
r
− summable

to limit L.

3. Applications

Let C [a, b] be the space of all functions f continuous on [a, b] . We know that C [a, b] is a Banach space
with norm

∥∥∥ f
∥∥∥
∞

= sup
x∈[a,b]

∣∣∣ f (x)
∣∣∣ , f ∈ [a, b] . The classical Korovkin type approximation theorem states as

follows [21]:
Suppose that (Tn) be a sequence positive linear operators from C [a, b] into C [a, b] .

Then, lim
n

∥∥∥Tn
(

f ; x
)
− f (x)

∥∥∥
∞

= 0, for all f ∈ C [a, b] if and only if lim
n

∥∥∥Tn
(

fi; x
)
− fi (x)

∥∥∥
∞

= 0 for i = 0, 1, 2,

where f0 (x) = 1, f1 (x) = x and f2 (x) = x2.
By C (K) we denote the space of all continuous real valued functions on any compact subset of the

real two dimensional space. This space is equipped with the supremum norm
∥∥∥ f

∥∥∥
C(K) = sup

(x,y)∈K

∣∣∣ f (
x, y

)∣∣∣ ,
f ∈ C (K) . Let L be a linear operator from C (K) into C (K) . Then, as usual we say that L is positive linear
operator provided that f ≥ 0 implies L f ≥ 0.Also we denote the value of L f at a point

(
x, y

)
∈ K by L

(
f ; x, y

)
.

Recently Korovkin type approximation theorems have been studied in ([2],[9],[13],[16],[22],[27],[30]).

Theorem 3.1. Let {Tmn} is a double sequence of positive linear operators from C (K) into C (K) . Then, for all f ∈ C (K)

N
2
λµ (st) − lim

m,n

∥∥∥Tmn f − f
∥∥∥

C(K) = 0 (3.1)

if and only if

N
2
λµ (st) − lim

m,n

∥∥∥Tmn fi − fi
∥∥∥

C(K) = 0 (3.2)

(i = 0, 1, 2, 3) , where f0
(
x, y

)
= 1, f1

(
x, y

)
= x , f2

(
x, y

)
= y and f3

(
x, y

)
= x2 + y2.
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Proof. Since each fi ∈ C (K) (i = 0, 1, 2, 3) condition (3.1) follows immediately (3.2) . Assume that (3.2) holds.
Let f ∈ C (K) we can write

∣∣∣ f (
x, y

)∣∣∣ ≤M where M =
∥∥∥ f

∥∥∥
C(K) . Since f is continuous on K for every ε > 0, there

is δ > 0 such that
∣∣∣ f (u, v) − f

(
x, y

)∣∣∣ < ε for all (u, v) ∈ K satisfying |u − x| < δ,
∣∣∣v − y

∣∣∣ < δ. Hence we get∣∣∣ f (u, v) − f
(
x, y

)∣∣∣ < ε +
2M
δ2

{
(u − x)2 +

(
v − y

)2
}

(3.3)

Since Tmn is linear and positive and by (3.3) we obtain∣∣∣Tmn
(

f ; x, y
)
− f

(
x, y

)∣∣∣
=

∣∣∣Tmn
(

f (u, v) − f
(
x, y

)
; x, y

)
− f

(
x, y

)
Tmn

(
f0; x, y

)
− f0

(
x, y

)∣∣∣
≤ Tmn

(∣∣∣ f (u, v) − f
(
x, y

)∣∣∣ ; x, y
)

+ M
∣∣∣Tmn

(
f0; x, y

)
− f0

(
x, y

)∣∣∣
≤

∣∣∣∣∣Tmn

(
ε +

2M
δ2

{
(u − x)2 +

(
v − y

)2
}

; x, y
)∣∣∣∣∣ + M

∣∣∣Tmn
(

f0; x, y
)
− f0

(
x, y

)∣∣∣
≤ ε + M +

2M
δ2

(
A2 + B2

) ∣∣∣Tmn
(

f0; x, y
)
− f0

(
x, y

)∣∣∣
+

4M
δ2 A

∣∣∣Tmn
(

f1; x, y
)
− f1

(
x, y

)∣∣∣ +
4M
δ2 B

∣∣∣Tmn
(

f2; x, y
)
− f2

(
x, y

)∣∣∣
+

2M
δ2

∣∣∣Tmn
(

f3; x, y
)
− f3

(
x, y

)∣∣∣ + ε

where A = max |x| ,B = max
∣∣∣y∣∣∣ . Taking supremum over

(
x, y

)
∈ K we have∥∥∥Tmn f − f

∥∥∥
C(K) ≤ R

{∥∥∥Tmn f0 − f0
∥∥∥

C(K) +
∥∥∥Tmn f1 − f1

∥∥∥
C(K) +

∥∥∥Tmn f2 − f2
∥∥∥

C(K) +
∥∥∥Tmn f3 − f3

∥∥∥
C(K)

}
+ ε,

where

R = max
{
ε + M +

2M
δ2

(
A2 + B2

)
,

4M
δ2 A,

4M
δ2 B,

2M
δ2

}
.

Hence∥∥∥Tmn
(

f ; x, y
)

pmqn − f
(
x, y

)∥∥∥
C(K) ≤ ε + R

3∑
i=0

∥∥∥Tmn
(

fi; x, y
)

pmqn − fi
(
x, y

)∥∥∥
C(K) (3.4)

Now replace Tmn
(
.; x, y

)
pmqn by

Lmn
(
.; x, y

)
=

1
Pλm Qµn

∑
(m,n)∈Jm×In

Tmn
(
.; x, y

)
pmqn

in (3.4) . For a given r > 0 choose ε′ > 0 such that ε′ < r. Define the following sets

D =
{
(m,n) ∈ N2 :

∥∥∥Lmn f − f
∥∥∥

C(K) ≥ r
}
,

Di =
{
(m,n) ∈ N2 :

∥∥∥Lmn fi − fi
∥∥∥

C(K) ≥
r − ε′

4R

}
, i = 0, 1, 2, 3.

Then, D ⊂
3⋃

i=0
Di and so δ (D) ≤ δ (D0) + δ (D1) + δ (D2) + δ (D3) . Therefore, using conditions (3.4) we get

N
2
λµ (st) − lim

m,n

∥∥∥Tmn f − f
∥∥∥

C(K) = 0

This completes the proof.
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Corollary 3.2. Let
{
Lm,n

}
be a sequence of positive linear operators acting from C (K) into itself. Then, for all

f ∈ C (K) ,

P − lim
m,n

∥∥∥Lmn f − f
∥∥∥

C(K) = 0

if and only if

P − lim
m,n

∥∥∥Lmn fi − fi
∥∥∥

C(K) = 0, (i = 0, 1, 2, 3) ,

where f0
(
x, y

)
= 1, f1

(
x, y

)
= x , f2

(
x, y

)
= y and f3

(
x, y

)
= x2 + y2 [36].

Remark 3.3. We now construct an example of sequence of positive linear operators of two variables satis-
fying the conditions of Theorem 3.1, but that does not satisfy the conditions of the Korovkin Theorem. For
this claim, we consider the following Brenstein operators defined as follows

Bm,n
(

f ; x, y
)

=
m∑

k=0

n∑
j=0

f
(

k
m
,

j
n

)
Ck

mxk (1 − x)m−k C j
ny j (1 − y

)n− j ,

where
(
x, y

)
∈ [0, 1] × [0, 1] .

Let

Bm,n
(

f0; x, y
)

= 1
Bm,n

(
f1; x, y

)
= x

Bm,n
(

f2; x, y
)

= y

Bm,n
(

f3; x, y
)

= x2 + y2 +
x − x2

m
+

y − y2

n

Then by Corllary 3.2 we can write for all f ∈ C (K)

P − lim
m,n

∥∥∥Bm,n f − f
∥∥∥

C(K) = 0

Let the sequence Tm,n : C (K) → C (K) with Tm,n
(

f ; x, y
)

= (1 + umn) Bm,n
(

f ; x, y
)

where umn = (−1)n for all
m. Let pm = 1, qn = 1, λm = m, µn = n. The double sequence (umn) is neither P−convergent nor statistically

convertgent, but (umn) is statistically summable
(
N

2
λµ, p, q, α, β

)
to zero.

Bm,n
(
1; x, y

)
= 1, Bm,n

(
x; x, y

)
= x, Bm,n

(
y; x, y

)
= y, Bm,n

(
x2 + y2; x, y

)
= x2 + y2 + x−x2

m +
y−y2

n and the double
sequence Tm,n satisfies condition (3.2) for i = 0, 1, 2, 3. Hence we have

N
2
λµ (st) − lim

m,n

∥∥∥Tmn f − f
∥∥∥

C(K) = 0.

On the other hand, we get Tm,n
(

f , 0, 0
)

= (1 + umn) Bm,n
(

f ; 0, 0
)

since Bm,n
(

f ; 0, 0
)

= f (0, 0) and hence∥∥∥Tmn
(

f ; x, y
)
− f

(
x, y

)∥∥∥
C(K) ≥

∣∣∣Tmn
(

f ; x, y
)
− f

(
x, y

)∣∣∣ ≥ um,n

∣∣∣ f (0, 0)
∣∣∣ .

We see that
(
Tm,n

)
does not satisfy classical Korovkin type theorem since lim umn and st2

− lim umn do not
exists this proves the claim.
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[25] F. Móricz, C. Orhan, Tauberian conditions under which statistical convergence follows from statistical summability by weighted

means, Studia Sci. Math. Hungar. 41 (2004) 391–403.
[26] M. Mursaleen, λ−statistical convergence, Math. Slovaca 50 (2000) 111–115.
[27] M. Mursaleen, V. Karakaya, M. Ertürk, F. Gürsoy, Weighted statistical convergence and its application to Korovkin type approx-

imation theorem, Appl. Math. Comput. 218 (2012) 9132–9137.
[28] M. Mursaleen, O.H.H. Edely, Statistical convergence of double sequences, J. Math. Anal. Appl. 288 (2003) 223–231.
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