Filomat 30:3 (2016), 785–789 DOI 10.2298/FIL1603785I

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Constant Curvature Ratios in L⁶

Esen İyigün^a

^aDepartment of Mathematics, Faculty of Science and Arts, University of Uludag, TR-16059 Bursa, Turkey

Abstract. In this paper, we find a relation between Frenet formulas and harmonic curvatures, and also a relation between Frenet formulas and e-curvature functions of a curve of osculating order 6 in 6 dimensional Lorentzian space \mathbb{L}^6 . Moreover, we give a relation between harmonic curvatures and ccr-curves of a curve in \mathbb{L}^6 .

1. Introduction

Let $X = (x_1, x_2, x_3, x_4, x_5, x_6)$ and $Y = (y_1, y_2, y_3, y_4, y_5, y_6)$ be two non-zero vectors in 6-dimensional Lorentz Minkowski space \mathbb{R}_1^6 . We briefly denoted \mathbb{R}_1^6 by \mathbb{L}^6 . For $X, Y \in \mathbb{L}^6$

$$\langle X, Y \rangle = -x_1 y_1 + \sum_{i=2}^6 x_i y_i$$

is called *Lorentzian inner product*. The couple { \mathbb{R}_{1}^{6} , \langle , \rangle } is called *Lorentzian space* and denoted by \mathbb{L}^{6} . Then a vector X of \mathbb{L}^{6} is called **i**) time-like if $\langle X, X \rangle < 0$, **ii**) space-like if $\langle X, X \rangle > 0$ or X = 0, **iii**) null (or light-like) vector if $\langle X, X \rangle = 0$, $X \neq 0$. Similarly, an arbitrary curve $\alpha = \alpha(s)$ in \mathbb{L}^{6} can locally be space-like, time-like or null, if all of its velocity vectors $\alpha'(s)$ are space-like, time-like or null, respectively. Also, recall that the norm of a vector X is given by $||X|| = (|\langle X, X \rangle|)^{\frac{1}{2}}$. Therefore, X is a unit vector if $\langle X, X \rangle = \pm 1$. Next, two vectors X, Y in \mathbb{L}^{6} are said to be orthogonal if $\langle X, Y \rangle = 0$. The velocity of the curve α is given by $||\alpha'||$. Thus, a space-like or a time-like α is said to be parametrized by arclength function s if $\langle X', X' \rangle = \pm 1$ [1].

2. Basic Definitions of L⁶

Definition 2.1. Let $\alpha : I \longrightarrow \mathbb{L}^6$ be a unit speed non-null curve in \mathbb{L}^6 . The curve α is called the Frenet curve of osculating order 6 if its 6th order derivatives $\alpha'(s), \alpha''(s), \alpha'''(s), \cdots \alpha^{tv}(s), \alpha^{v}(s), \alpha^{v_l}(s)$ are linearly independent and $\alpha'(s), \alpha''(s), \alpha'''(s), \alpha^{vv}(s), \alpha^{vv}(s), \alpha^{vv}(s), \alpha^{vv}(s)$ are no longer linearly independent for all $s \in I$. For each Frenet curve of order 6 one can associate an orthonormal 6–frame { $V_1, V_2, V_3, V_4, V_5, V_6$ } along

Communicated by Ekrem Savaş

²⁰¹⁰ Mathematics Subject Classification. Primary 53C40; Secondary 53C42

Keywords. Lorentz-Minkowski space, Frenet curvatures, constant curvature ratios, harmonic curvatures

Received: 12 August 2015; Revised: 11 December 2015; Accepted: 12 December 2015

The research was supported by the Scientific Research Project Unit of Uludag University, Project No. KUAP (F) 2015-13 *Email address:* esen@uludag.edu.tr (Esen İyigün)

 α (such that $\alpha'(s) = V_1$) which is called the Frenet frame and $k_i: I \longrightarrow \mathbb{R}$, $1 \le i \le 5$ are called the Frenet curvatures, such that the Frenet formulas are defined in the usual way

$$\left(\begin{array}{c} \nabla_{V_1} V_1 = \varepsilon_2 k_1 V_2 \\ \nabla_{V_1} V_2 = -\varepsilon_1 k_1 V_1 + \varepsilon_3 k_2 V_3 \\ \nabla_{V_1} V_3 = -\varepsilon_2 k_2 V_2 + \varepsilon_4 k_3 V_4 \\ \nabla_{V_1} V_4 = -\varepsilon_3 k_3 V_3 + \varepsilon_5 k_4 V_5 \\ \nabla_{V_1} V_5 = -\varepsilon_4 k_4 V_4 + \varepsilon_6 k_5 V_6 \\ \nabla_{V_1} V_6 = -\varepsilon_5 k_5 V_5, \end{array} \right)$$

where $\varepsilon_i = \langle V_i, V_i \rangle = \pm 1$.

Definition 2.2. Let $M \subset \mathbb{L}^6$, $\alpha : I \longrightarrow \mathbb{L}^6$ be a curve in \mathbb{L}^6 and k_i , $1 \le i \le 5$, be the Frenet curvatures of α . Then for the unit tangent vector $V_1 = \alpha'(s)$ over M, the *i*th e-curvature function m_i , $1 \le i \le 6$ is defined by

$$m_{i} = \begin{cases} 0 , & i = 1 \\ \frac{\varepsilon_{1}\varepsilon_{2}}{k_{1}} , & i = 2 \\ \left[\frac{d}{dt}(m_{i-1}) + \varepsilon_{i-2}m_{i-2}k_{i-2} \right] \frac{\varepsilon_{i}}{k_{i-1}} , & 2 < i \le 6, \end{cases}$$

where $\varepsilon_i = \langle V_i, V_i \rangle = \pm 1$.

Definition 2.3. A non-null curve $\alpha : I \longrightarrow \mathbb{L}^6$ is called a W – *curve* (or helix) of *rank* 6, if α is a Frenet curve of osculating order 6 and the Frenet curvatures k_i , $1 \le i \le 5$ are non-zero constants.

3. A General Helix of Rank 4

Definition 3.1. Let α be a non-null curve of osculating order 6. The harmonic functions

$$H_j: I \longrightarrow \mathbb{R} \quad , \quad 0 \le j \le 4,$$

defined by

$$H_{0} = 0, H_{1} = \frac{k_{1}}{k_{2}},$$
$$H_{j} = \left\{ \nabla_{v_{1}} \left(H_{(j-1)} \right) + \varepsilon_{(j-2)} H_{(j-2)} k_{j} \right\} \frac{\varepsilon_{j}}{k_{(j+1)}}, \ 2 \le j \le 4$$

are called the harmonic curvatures of α where k_i , for $1 \le i \le 5$, are Frenet curvatures of α which are not necessarily constant.

Definition 3.2. Let α be a non-null of osculating order 6. Then α is called a general helix of *rank* 4 if

$$\sum_{i=1}^4 H_i^2 = c,$$

holds, where $c \neq 0$ is a real constant.

We have the following result.

Proposition 3.3. If α is a general helix of rank 4 then

 $H_1^2 + H_2^2 + H_3^2 + H_4^2 = c.$

Proof. By the use of above definition we obtain the proof. \Box

Proposition 3.4. Let α be a curve in \mathbb{L}^6 of osculating order 6. Then

$$\begin{split} \nabla_{V_1} V_1 &= \varepsilon_2 k_2 H_1 V_2, \\ \nabla_{V_1} V_2 &= -\varepsilon_1 k_2 H_1 V_1 + \varepsilon_3 \frac{k_1}{H_1} V_3, \\ \nabla_{V_1} V_3 &= -\varepsilon_2 \frac{k_1}{H_1} V_2 + \varepsilon_4 \varepsilon_2 \frac{H'_1}{H_2} V_4, \\ \nabla_{V_1} V_4 &= -\varepsilon_3 \varepsilon_2 \frac{H'_1}{H_2} V_3 + \varepsilon_5 \varepsilon_3 \left(\frac{H_2 H'_2 + \varepsilon_1 \varepsilon_2 H_1 H'_1}{H_2 H_3} \right) V_5, \\ \nabla_{V_1} V_5 &= -\varepsilon_4 \varepsilon_3 \left(\frac{H_2 H'_2 + \varepsilon_1 \varepsilon_2 H_1 H'_1}{H_2 H_3} \right) V_4 + \varepsilon_4 \varepsilon_6 \left(\frac{H_3 H'_3 + \varepsilon_2 \varepsilon_3 H_2 H'_2 + \varepsilon_1 \varepsilon_3 H_1 H'_1}{H_3 H_4} \right) V_6, \\ \nabla_{V_1} V_6 &= -\varepsilon_5 \varepsilon_4 \left(\frac{H_3 H'_3 + \varepsilon_2 \varepsilon_3 H_2 H'_2 + \varepsilon_1 \varepsilon_3 H_1 H'_1}{H_3 H_4} \right) V_5, \end{split}$$

where H_i , for $1 \le i \le 4$, are harmonic curvatures of α .

Proof. By using the Frenet formulas and definitions of the harmonic curvatures, we get the result. \Box **Proposition 3.5.** ([7]) *a*)*Let* α *be a time-like curve. Then*

$$k_r = \frac{\varepsilon_{(r-2)} \left(\sum_{i=1}^{r-2} H_i^2\right)'}{2H_{(r-2)}H_{(r-1)}}, 2 < r \le 4,$$

where $(H_i)'$ stands for differentiation with respect to parameter t. b)Let α be a time-like curve. Then

$$k_r = \frac{\varepsilon_{(r-2)}\left(\sum_{i=2}^r m_i^2\right)}{2m_r m_{(r+1)}}, 2 \le r < 6,$$

where m_i , for $2 \le i \le 6$, are the i^{th} e-curvature functions of α .

4. ccr-curves in L⁶

Definition 4.1. A curve $\alpha : I \longrightarrow \mathbb{L}^6$ is said to have constant curvature ratios (that is to say, it is a ccr-curve) if all the quotients $\varepsilon_i\left(\frac{k_{i+1}}{k_i}\right)$ are constant. Here; k_i, k_{i+1} are Frenet curvatures of α and $\varepsilon_i = \langle V_i, V_i \rangle = \pm 1, (1 \le i \le 4)$.

 $\begin{array}{l} \textbf{Proposition 4.2. } a) \ For \ i=1, \ the \ ccr-curve \ is \ \frac{\mathcal{E}_1}{H_1}. \\ b) \ For \ i=2, \ the \ ccr-curve \ is \ \frac{H_1H_1'}{H_2k_1}. \\ c) \ For \ i=3, \ the \ ccr-curve \ is \ \frac{\varepsilon_2H_2H_2' + \varepsilon_1H_1H_1'}{H_1'H_3}. \\ d) \ For \ i=4, \ the \ ccr-curve \ is \ \frac{\varepsilon_3H_2H_3H_3' + \varepsilon_2H_2^2H_2' + \varepsilon_1H_2H_1H_1'}{H_2H_2'H_4 + \varepsilon_1\varepsilon_2H_1H_1'H_4}. \\ Here, \ for \ 1 \le i \le 4, \ H_i \ are \ harmonic \ curvatures \ of \ \alpha. \end{array}$

Proof. The proof can easily be seen from the definitions of harmonic curvature and ccr-curve. \Box

Proposition 4.3. *a)* If the vector V_1 is time-like then the ccr-curve is $\frac{-1}{H_1}$, where $\varepsilon_1 = \langle V_1, V_1 \rangle = -1$. *b)* If the vector V_1 is space-like then the ccr-curve is $\frac{1}{H_1}$, where $\varepsilon_1 = \langle V_1, V_1 \rangle = 1$. *c)* If the vector V_2 is time-like then the ccr-curve is $\frac{-H_2H'_2 + H_1H'_1}{H'_1H_3}$, where $\varepsilon_2 = \langle V_1, V_1 \rangle = -1$, $\varepsilon_1 = \langle V_1, V_1 \rangle = 1$. *d)* If the vector V_2 is space-like then the ccr-curve is $\frac{H_2H'_2 - H_1H'_1}{H'_1H_3}$, where $\varepsilon_2 = \langle V_1, V_1 \rangle = 1$, $\varepsilon_1 = \langle V_1, V_1 \rangle = -1$.

Theorem 4.4. α *is a ccr-curve in* $\mathbb{L}^6 \Leftrightarrow \sum_{i=1}^4 \varepsilon_i H_i^2 = constant.$

Proof. By using the definitions of a general helix of *rank* 4 and ccr-curve, the proof of theorem follows.

Theorem 4.5. *i)* Let $\alpha : I \longrightarrow \mathbb{L}^6$ be a non-null curve, $\{V_1, V_2, V_3, V_4, V_5, V_6\}$ be a Frenet frame and k_1, k_2, k_3, k_4, k_5 ($k_6 = 0$) be curvature functions. If $k_1 = 1$ and k_2, k_3, k_4, k_5 are constants, then

$$\nabla_{V_1}^6 V_1 - \left(1 + 2\varepsilon_1 \varepsilon_3 \frac{k_1^2}{H_1^2} + \frac{k_1^4}{H_1^4}\right) \nabla_{V_1}^2 V_1 = 0$$

where H_1 is the harmonic curvature of α .

ii)

$$\nabla_{V_1}^6 V_1 - \left(1 + 2\varepsilon_1 \varepsilon_3 \frac{\left(m_2'\right)^2}{\left(m_3\right)^2} + \frac{\left(m_2'\right)^4}{\left(m_3\right)^4}\right) \nabla_{V_1}^2 V_1 = 0,$$

where m_2 and m_3 are 2^{nd} and 3^{rd} e-curvature functions of α .

Proof. i) As $k_1 = 1$, we have

$$\nabla_{V_1} V_1 = \varepsilon_2 V_2 \Longrightarrow \nabla_{V_1}^2 V_1 = \varepsilon_2 \nabla_{V_1} V_2 \Longrightarrow \nabla_{V_1}^3 V_1 = \varepsilon_2 \nabla_{V_1}^2 V_2 \Longrightarrow \nabla_{V_1}^4 V_1 = \varepsilon_2 \nabla_{V_1}^3 V_2$$
$$\Longrightarrow \nabla_{V_1}^5 V_1 = \varepsilon_2 \nabla_{V_1}^4 V_2 \Longrightarrow \nabla_{V_1}^6 V_1 = \varepsilon_2 \nabla_{V_1}^5 V_2.$$

Since H_1 = constant, H'_1 = 0, that is k_3 = 0. Thus we have

$$\begin{aligned} \nabla_{V_1}^2 V_1 &= -\varepsilon_1 \varepsilon_2 V_1 + \varepsilon_2 \varepsilon_3 k_2 V_3, \\ \nabla_{V_1}^3 V_1 &= -\varepsilon_1 V_2 - \varepsilon_3 k_2^2 V_2, \\ \nabla_{V_1}^4 V_1 &= \left(-\varepsilon_1 \varepsilon_2 - \varepsilon_2 \varepsilon_3 k_2^2 \right) \nabla_{V_1}^2 V_1 \end{aligned}$$

and

$$\nabla_{V_1}^5 V_1 = \left(-\varepsilon_1 - \varepsilon_3 k_2^2\right) \nabla_{V_1}^2 V_2,$$

where

$$\begin{split} \nabla^2_{V_1}V_2 &= -\varepsilon_1\varepsilon_2V_2 - \varepsilon_2\varepsilon_3k_2^2V_2,\\ \nabla^3_{V_1}V_2 &= \left(-\varepsilon_1 - \varepsilon_3k_2^2\right)\nabla^2_{V_1}V_1, \end{split}$$

$$\begin{aligned} \nabla_{V_1}^4 V_2 &= \left(-\varepsilon_1 \varepsilon_2 - \varepsilon_2 \varepsilon_3 k_2^2\right) \nabla_{V_1}^2 V_2, \\ \nabla_{V_1}^5 V_2 &= \left(\varepsilon_2 + 2\varepsilon_1 \varepsilon_2 \varepsilon_3 k_2^2 + \varepsilon_2 k_2^4\right) \nabla_{V_1}^2 V_1 \end{aligned}$$

or since $k_2 = \frac{k_1}{H_1}$, we obtain

$$\nabla_{V_1}^6 V_1 - \left(1 + 2\varepsilon_1 \varepsilon_3 \frac{k_1^2}{H_1^2} + \frac{k_1^4}{H_1^4}\right) \nabla_{V_1}^2 V_1 = 0$$

ii) By using definitions of the m_2 and m_3 which are 2^{nd} and 3^{rd} e-curvature functions of α , we get the result. \Box

Corollary 4.6. *i)* If the vector V_1 is time-like, then

$$\nabla_{V_1}^6 V_1 - \left(1 - 2\varepsilon_3 \frac{k_1^2}{H_1^2} + \frac{k_1^4}{H_1^4}\right) \nabla_{V_1}^2 V_1 = 0.$$

ii) If the vector V_3 is time-like, then

$$\nabla_{V_1}^6 V_1 - \left(1 - 2\varepsilon_1 \frac{k_1^2}{H_1^2} + \frac{k_1^4}{H_1^4}\right) \nabla_{V_1}^2 V_1 = 0$$

iii) If the vector V_1 is time-like, then

$$\nabla_{V_1}^6 V_1 - \left(1 - 2\varepsilon_3 \frac{\left(m_2'\right)^2}{\left(m_3\right)^2} + \frac{\left(m_2'\right)^4}{\left(m_3\right)^4}\right) \nabla_{V_1}^2 V_1 = 0.$$

iv) If the vector V_3 is time-like, then

$$\nabla_{V_1}^6 V_1 - \left(1 - 2\varepsilon_1 \frac{\left(m_2'\right)^2}{\left(m_3\right)^2} + \frac{\left(m_2'\right)^4}{\left(m_3\right)^4}\right) \nabla_{V_1}^2 V_1 = 0$$

References

- [1] B.O'Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Pres, New York, 1983.
- [2] K. Arslan, Y. Çelik, H.H. Hacısalihoğlu, On harmonic curvatures of a Frenet curve, Commun. Fac. Sci. Univ. Ank. Series A1 49 (2000) 15–23.
- [3] M. Petrovic-Torgasev, E. Sucurovic, W-curves in Minkowski space-time, Novi Sad J. Math. 32:2 (2002) 55-65.
- [4] N. Ekmekçi, H.H. Hacısalihoğlu, K. İlarslan, Harmonic curvatures in Lorentzian space, Bull. Malaysian Math. Sci. Soc. (Second Series) 23 (2000) 173–179.
- [5] H.H. Hacısalihoğlu, Diferensiyel Geometri, İnönü Ünv. Fen-Edb. Fak. Yayınları Mat., 1983.
- [6] E. İyigün, K. Arslan, On harmonic curvatures of curves in Lorentzian n-space, Commun. Fac. Sci. Univ. Ank. Series A1 54 (2005) 29–34.
- [7] D. Soylu, M. Bektaş, M. Ergüt, Characterizations for osculator hypersphere in Lorentzian space, J. Inst. Math. Comp. Sci. (Math. Ser.) 12 (1999) 229–235.

789