Constant Curvature Ratios in \mathbb{L}^{6}

Esen İyigün ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematics, Faculty of Science and Arts, University of Uludag, TR-16059 Bursa, Turkey

Abstract

In this paper, we find a relation between Frenet formulas and harmonic curvatures, and also a relation between Frenet formulas and e-curvature functions of a curve of osculating order 6 in 6 dimensional Lorentzian space \mathbb{L}^{6}. Moreover, we give a relation between harmonic curvatures and ccr-curves of a curve in \mathbb{L}^{6}.

1. Introduction

Let $X=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)$ and $Y=\left(y_{1}, y_{2}, y_{3}, y_{4}, y_{5}, y_{6}\right)$ be two non-zero vectors in 6-dimensional Lorentz Minkowski space \mathbb{R}_{1}^{6}. We briefly denoted \mathbb{R}_{1}^{6} by \mathbb{L}^{6}. For $X, Y \in \mathbb{L}^{6}$

$$
\langle X, Y\rangle=-x_{1} y_{1}+\sum_{i=2}^{6} x_{i} y_{i}
$$

is called Lorentzian inner product. The couple $\left\{\mathbb{R}_{1}^{6},\langle\rangle,\right\}$ is called Lorentzian space and denoted by \mathbb{L}^{6}. Then a vector X of \mathbb{L}^{6} is called i) time-like if $\langle X, X\rangle\langle 0$, ii) space-like if $\langle X, X\rangle>0$ or $X=0$, iii) null (or light-like) vector if $\langle X, X\rangle=0, X \neq 0$. Similarly, an arbitrary curve $\alpha=\alpha(s)$ in \mathbb{L}^{6} can locally be space-like, time-like or null, if all of its velocity vectors $\alpha^{\prime}(s)$ are space-like, time-like or null, respectively. Also, recall that the norm of a vector X is given by $\|X\|=(|\langle X, X\rangle|)^{\frac{1}{2}}$. Therefore, X is a unit vector if $\langle X, X\rangle= \pm 1$. Next, two vectors X, Y in \mathbb{L}^{6} are said to be orthogonal if $\langle X, Y\rangle=0$. The velocity of the curve α is given by $\left\|\alpha^{\prime}\right\|$. Thus, a space-like or a time-like α is said to be parametrized by arclength function s if $\left\langle X^{\prime}, X^{\prime}\right\rangle= \pm 1$ [1].

2. Basic Definitions of \mathbb{L}^{6}

Definition 2.1. Let $\alpha: I \longrightarrow \mathbb{L}^{6}$ be a unit speed non-null curve in \mathbb{L}^{6}. The curve α is called the Frenet curve of osculating order 6 if its $6^{t h}$ order derivatives $\alpha^{\prime}(s), \alpha^{\prime \prime}(s), \alpha^{\prime \prime \prime}(s), \cdots \alpha^{1 v}(s), \alpha^{v}(s), \alpha^{v l}(s)$ are linearly independent and $\alpha^{\prime}(s), \alpha^{\prime \prime}(s), \alpha^{\prime \prime \prime}(s), \alpha^{v v}(s), \alpha^{v}(s), \alpha^{v l}(s), \alpha^{v u}(s)$ are no longer linearly independent for all $s \in I$. For each Frenet curve of order 6 one can associate an orthonormal 6-frame $\left\{V_{1}, V_{2}, V_{3}, V_{4}, V_{5}, V_{6}\right\}$ along

[^0]α (such that $\alpha^{\prime}(s)=V_{1}$) which is called the Frenet frame and $k_{i}: I \longrightarrow \mathbb{R}, 1 \leq i \leq 5$ are called the Frenet curvatures, such that the Frenet formulas are defined in the usual way
\[

\left\{$$
\begin{array}{c}
\nabla_{V_{1}} V_{1}=\varepsilon_{2} k_{1} V_{2} \\
\nabla_{V_{1}} V_{2}=-\varepsilon_{1} k_{1} V_{1}+\varepsilon_{3} k_{2} V_{3} \\
\nabla_{V_{1}} V_{3}=-\varepsilon_{2} k_{2} V_{2}+\varepsilon_{4} k_{3} V_{4} \\
\nabla_{V_{1}} V_{4}=-\varepsilon_{3} k_{3} V_{3}+\varepsilon_{5} k_{4} V_{5} \\
\nabla_{V_{1}} V_{5}=-\varepsilon_{4} k_{4} V_{4}+\varepsilon_{6} k_{5} V_{6} \\
\nabla_{V_{1}} V_{6}=-\varepsilon_{5} k_{5} V_{5}
\end{array}
$$\right\}
\]

where $\varepsilon_{i}=\left\langle V_{i}, V_{i}\right\rangle= \pm 1$.
Definition 2.2. Let $M \subset \mathbb{L}^{6}, \alpha: I \longrightarrow \mathbb{L}^{6}$ be a curve in \mathbb{L}^{6} and $k_{i}, 1 \leq i \leq 5$, be the Frenet curvatures of α. Then for the unit tangent vector $V_{1}=\alpha^{\prime}(s)$ over M, the $i^{\text {th }}$ e-curvature function $m_{i}, 1 \leq i \leq 6$ is defined by

$$
m_{i}=\left\{\begin{array}{ll}
0 & , \quad i=1 \\
\frac{\varepsilon_{1} \varepsilon_{2}}{k_{1}} & , \quad i=2 \\
{\left[\frac{d}{d t}\left(m_{i-1}\right)+\varepsilon_{i-2} m_{i-2} k_{i-2}\right] \frac{\varepsilon_{i}}{k_{i-1}}} & , \quad 2<i \leq 6
\end{array}\right\}
$$

where $\varepsilon_{i}=\left\langle V_{i}, V_{i}\right\rangle= \pm 1$.
Definition 2.3. A non-null curve $\alpha: I \longrightarrow \mathbb{L}^{6}$ is called a W - curve (or helix) of rank 6 , if α is a Frenet curve of osculating order 6 and the Frenet curvatures $k_{i}, 1 \leq i \leq 5$ are non-zero constants.

3. A General Helix of Rank 4

Definition 3.1. Let α be a non-null curve of osculating order 6 . The harmonic functions

$$
H_{j}: I \longrightarrow \mathbb{R} \quad, \quad 0 \leq j \leq 4
$$

defined by

$$
\begin{aligned}
& H_{0}=0, H_{1}=\frac{k_{1}}{k_{2}} \\
& H_{j}=\left\{\nabla_{v_{1}}\left(H_{(j-1)}\right)+\varepsilon_{(j-2)} H_{(j-2)} k_{j}\right\} \frac{\varepsilon_{j}}{k_{(j+1)}}, 2 \leq j \leq 4
\end{aligned}
$$

are called the harmonic curvatures of α where k_{i}, for $1 \leq i \leq 5$, are Frenet curvatures of α which are not necessarily constant.

Definition 3.2. Let α be a non-null of osculating order 6 . Then α is called a general helix of rank 4 if

$$
\sum_{i=1}^{4} H_{i}^{2}=c
$$

holds, where $c \neq 0$ is a real constant.
We have the following result.
Proposition 3.3. If α is a general helix of rank 4 then

$$
H_{1}^{2}+H_{2}^{2}+H_{3}^{2}+H_{4}^{2}=c
$$

Proof. By the use of above definition we obtain the proof.
Proposition 3.4. Let α be a curve in \mathbb{L}^{6} of osculating order 6 . Then

$$
\begin{aligned}
& \nabla_{V_{1}} V_{1}=\varepsilon_{2} k_{2} H_{1} V_{2}, \\
& \nabla_{V_{1}} V_{2}=-\varepsilon_{1} k_{2} H_{1} V_{1}+\varepsilon_{3} \frac{k_{1}}{H_{1}} V_{3}, \\
& \nabla_{V_{1}} V_{3}=-\varepsilon_{2} \frac{k_{1}}{H_{1}} V_{2}+\varepsilon_{4} \varepsilon_{2} \frac{H_{1}^{\prime}}{H_{2}} V_{4}, \\
& \nabla_{V_{1}} V_{4}=-\varepsilon_{3} \varepsilon_{2} \frac{H_{1}^{\prime}}{H_{2}} V_{3}+\varepsilon_{5} \varepsilon_{3}\left(\frac{H_{2} H_{2}^{\prime}+\varepsilon_{1} \varepsilon_{2} H_{1} H_{1}^{\prime}}{H_{2} H_{3}}\right) V_{5}, \\
& \nabla_{V_{1}} V_{5}=-\varepsilon_{4} \varepsilon_{3}\left(\frac{H_{2} H_{2}^{\prime}+\varepsilon_{1} \varepsilon_{2} H_{1} H_{1}^{\prime}}{H_{2} H_{3}}\right) V_{4}+\varepsilon_{4} \varepsilon_{6}\left(\frac{H_{3} H_{3}^{\prime}+\varepsilon_{2} \varepsilon_{3} H_{2} H_{2}^{\prime}+\varepsilon_{1} \varepsilon_{3} H_{1} H_{1}^{\prime}}{H_{3} H_{4}}\right) V_{6}, \\
& \nabla_{V_{1}} V_{6}=-\varepsilon_{5} \varepsilon_{4}\left(\frac{H_{3} H_{3}^{\prime}+\varepsilon_{2} \varepsilon_{3} H_{2} H_{2}^{\prime}+\varepsilon_{1} \varepsilon_{3} H_{1} H_{1}^{\prime}}{H_{3} H_{4}}\right) V_{5},
\end{aligned}
$$

where H_{i}, for $1 \leq i \leq 4$, are harmonic curvatures of α.
Proof. By using the Frenet formulas and definitions of the harmonic curvatures, we get the result.
Proposition 3.5. ([7]) a)Let α be a time-like curve. Then

$$
k_{r}=\frac{\varepsilon_{(r-2)}\left(\sum_{i=1}^{r-2} H_{i}^{2}\right)^{\prime}}{2 H_{(r-2)} H_{(r-1)}}, 2<r \leq 4,
$$

where $\left(H_{i}\right)^{\prime}$ stands for differentiation with respect to parameter t.
b)Let α be a time-like curve. Then

$$
k_{r}=\frac{\varepsilon_{(r-2)}\left(\sum_{i=2}^{r} m_{i}^{2}\right)^{\prime}}{2 m_{r} m_{(r+1)}}, 2 \leq r<6
$$

where m_{i}, for $2 \leq i \leq 6$, are the $i^{\text {th }} e$-curvature functions of α.

4. ccr-curves in L^{6}

Definition 4.1. A curve $\alpha: I \longrightarrow \mathbb{L}^{6}$ is said to have constant curvature ratios (that is to say, it is a ccr-curve) if all the quotients $\varepsilon_{i}\left(\frac{k_{i+1}}{k_{i}}\right)$ are constant. Here; k_{i}, k_{i+1} are Frenet curvatures of α and $\varepsilon_{i}=\left\langle V_{i}, V_{i}\right\rangle= \pm 1,(1 \leq$ $i \leq 4$).
Proposition 4.2. a) For $i=1$, the ccr-curve is $\frac{\varepsilon_{1}}{H_{1}}$.
b) For $i=2$, the ccr-curve is $\frac{H_{1} H_{1}^{\prime}}{H_{2} k_{1}}$.
c) For $i=3$, the ccr-curve is $\frac{\varepsilon_{2} H_{2} H_{2}^{\prime}+\varepsilon_{1} H_{1} H_{1}^{\prime}}{H_{1}^{\prime} H_{3}}$.
d) For $i=4$, the ccr-curve is $\frac{\varepsilon_{3} H_{2} H_{3} H_{3}^{\prime}+\varepsilon_{2} H_{2}^{2} H_{2}^{\prime}+\varepsilon_{1} H_{2} H_{1} H_{1}^{\prime}}{H_{2} H_{2}^{\prime} H_{4}+\varepsilon_{1} \varepsilon_{2} H_{1} H_{1}^{\prime} H_{4}}$.

Here, for $1 \leq i \leq 4, H_{i}$ are harmonic curvatures of α.

Proof. The proof can easily be seen from the definitions of harmonic curvature and ccr-curve.
Proposition 4.3. a) If the vector V_{1} is time-like then the ccr-curve is $\frac{-1}{H_{1}}$, where $\varepsilon_{1}=\left\langle V_{1}, V_{1}\right\rangle=-1$.
b) If the vector V_{1} is space-like then the ccr-curve is $\frac{1}{H_{1}}$, where $\varepsilon_{1}=\left\langle V_{1}, V_{1}\right\rangle=1$.
c) If the vector V_{2} is time-like then the ccr-curve is $\frac{-H_{2} H_{2}^{\prime}+H_{1} H_{1}^{\prime}}{H_{1}^{\prime} H_{3}}$, where $\varepsilon_{2}=\left\langle V_{1}, V_{1}\right\rangle=-1, \varepsilon_{1}=\left\langle V_{1}, V_{1}\right\rangle=1$.
d) If the vector V_{2} is space-like then the ccr-curve is $\frac{H_{2} H_{2}^{\prime}-H_{1} H_{1}^{\prime}}{H_{1}^{\prime} H_{3}}$, where $\varepsilon_{2}=\left\langle V_{1}, V_{1}\right\rangle=1, \varepsilon_{1}=\left\langle V_{1}, V_{1}\right\rangle=-1$.

Theorem 4.4. α is a ccr-curve in $\mathbb{L}^{6} \Leftrightarrow \sum_{i=1}^{4} \varepsilon_{i} H_{i}^{2}=$ constant.
Proof. By using the definitions of a general helix of rank 4 and ccr-curve, the proof of theorem follows.
Theorem 4.5. i) Let $\alpha: I \longrightarrow \mathbb{L}^{6}$ be a non-null curve, $\left\{V_{1}, V_{2}, V_{3}, V_{4}, V_{5}, V_{6}\right\}$ be a Frenet frame and $k_{1}, k_{2}, k_{3}, k_{4}, k_{5}$ $\left(k_{6}=0\right)$ be curvature functions. If $k_{1}=1$ and $k_{2}, k_{3}, k_{4}, k_{5}$ are constants, then

$$
\nabla_{V_{1}}^{6} V_{1}-\left(1+2 \varepsilon_{1} \varepsilon_{3} \frac{k_{1}^{2}}{H_{1}^{2}}+\frac{k_{1}^{4}}{H_{1}^{4}}\right) \nabla_{V_{1}}^{2} V_{1}=0
$$

where H_{1} is the harmonic curvature of α.
ii)

$$
\nabla_{V_{1}}^{6} V_{1}-\left(1+2 \varepsilon_{1} \varepsilon_{3} \frac{\left(m_{2}^{\prime}\right)^{2}}{\left(m_{3}\right)^{2}}+\frac{\left(m_{2}^{\prime}\right)^{4}}{\left(m_{3}\right)^{4}}\right) \nabla_{V_{1}}^{2} V_{1}=0
$$

where m_{2} and m_{3} are $2^{\text {nd }}$ and $3^{\text {rd }}$ e-curvature functions of α.
Proof. i) As $k_{1}=1$, we have

$$
\begin{aligned}
\nabla_{V_{1}} V_{1} & =\varepsilon_{2} V_{2} \Longrightarrow \nabla_{V_{1}}^{2} V_{1}=\varepsilon_{2} \nabla_{V_{1}} V_{2} \Longrightarrow \nabla_{V_{1}}^{3} V_{1}=\varepsilon_{2} \nabla_{V_{1}}^{2} V_{2} \Longrightarrow \nabla_{V_{1}}^{4} V_{1}=\varepsilon_{2} \nabla_{V_{1}}^{3} V_{2} \\
& \Longrightarrow \nabla_{V_{1}}^{5} V_{1}=\varepsilon_{2} \nabla_{V_{1}}^{4} V_{2} \Longrightarrow \nabla_{V_{1}}^{6} V_{1}=\varepsilon_{2} \nabla_{V_{1}}^{5} V_{2}
\end{aligned}
$$

Since $H_{1}=$ constant, $H_{1}^{\prime}=0$, that is $k_{3}=0$. Thus we have

$$
\begin{aligned}
& \nabla_{V_{1}}^{2} V_{1}=-\varepsilon_{1} \varepsilon_{2} V_{1}+\varepsilon_{2} \varepsilon_{3} k_{2} V_{3} \\
& \nabla_{V_{1}}^{3} V_{1}=-\varepsilon_{1} V_{2}-\varepsilon_{3} k_{2}^{2} V_{2} \\
& \nabla_{V_{1}}^{4} V_{1}=\left(-\varepsilon_{1} \varepsilon_{2}-\varepsilon_{2} \varepsilon_{3} k_{2}^{2}\right) \nabla_{V_{1}}^{2} V_{1}
\end{aligned}
$$

and

$$
\nabla_{V_{1}}^{5} V_{1}=\left(-\varepsilon_{1}-\varepsilon_{3} k_{2}^{2}\right) \nabla_{V_{1}}^{2} V_{2}
$$

where

$$
\begin{aligned}
& \nabla_{V_{1}}^{2} V_{2}=-\varepsilon_{1} \varepsilon_{2} V_{2}-\varepsilon_{2} \varepsilon_{3} k_{2}^{2} V_{2} \\
& \nabla_{V_{1}}^{3} V_{2}=\left(-\varepsilon_{1}-\varepsilon_{3} k_{2}^{2}\right) \nabla_{V_{1}}^{2} V_{1}
\end{aligned}
$$

$$
\begin{aligned}
& \qquad \nabla_{V_{1}}^{4} V_{2}=\left(-\varepsilon_{1} \varepsilon_{2}-\varepsilon_{2} \varepsilon_{3} k_{2}^{2}\right) \nabla_{V_{1}}^{2} V_{2} \\
& \qquad \nabla_{V_{1}}^{5} V_{2}=\left(\varepsilon_{2}+2 \varepsilon_{1} \varepsilon_{2} \varepsilon_{3} k_{2}^{2}+\varepsilon_{2} k_{2}^{4}\right) \nabla_{V_{1}}^{2} V_{1} \\
& \text { or since } k_{2}=\frac{k_{1}}{H_{1}} \text {, we obtain }
\end{aligned}
$$

$$
\nabla_{V_{1}}^{6} V_{1}-\left(1+2 \varepsilon_{1} \varepsilon_{3} \frac{k_{1}^{2}}{H_{1}^{2}}+\frac{k_{1}^{4}}{H_{1}^{4}}\right) \nabla_{V_{1}}^{2} V_{1}=0
$$

ii) By using definitions of the m_{2} and m_{3} which are $2^{\text {nd }}$ and $3^{r d}$ e-curvature functions of α, we get the result.

Corollary 4.6. i) If the vector V_{1} is time-like, then

$$
\nabla_{V_{1}}^{6} V_{1}-\left(1-2 \varepsilon_{3} \frac{k_{1}^{2}}{H_{1}^{2}}+\frac{k_{1}^{4}}{H_{1}^{4}}\right) \nabla_{V_{1}}^{2} V_{1}=0
$$

ii) If the vector V_{3} is time-like, then

$$
\nabla_{V_{1}}^{6} V_{1}-\left(1-2 \varepsilon_{1} \frac{k_{1}^{2}}{H_{1}^{2}}+\frac{k_{1}^{4}}{H_{1}^{4}}\right) \nabla_{V_{1}}^{2} V_{1}=0
$$

iii) If the vector V_{1} is time-like, then

$$
\nabla_{V_{1}}^{6} V_{1}-\left(1-2 \varepsilon_{3} \frac{\left(m_{2}^{\prime}\right)^{2}}{\left(m_{3}\right)^{2}}+\frac{\left(m_{2}^{\prime}\right)^{4}}{\left(m_{3}\right)^{4}}\right) \nabla_{V_{1}}^{2} V_{1}=0
$$

$i v)$ If the vector V_{3} is time-like, then

$$
\nabla_{V_{1}}^{6} V_{1}-\left(1-2 \varepsilon_{1} \frac{\left(m_{2}^{\prime}\right)^{2}}{\left(m_{3}\right)^{2}}+\frac{\left(m_{2}^{\prime}\right)^{4}}{\left(m_{3}\right)^{4}}\right) \nabla_{V_{1}}^{2} V_{1}=0
$$

References

[1] B.O'Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Pres, New York, 1983.
[2] K. Arslan, Y. Çelik, H.H. Hacısalihoğlu, On harmonic curvatures of a Frenet curve, Commun. Fac. Sci. Univ. Ank. Series A1 49 (2000) 15-23.
[3] M. Petrovic-Torgasev, E. Sucurovic, W-curves in Minkowski space-time, Novi Sad J. Math. 32:2 (2002) 55-65.
[4] N. Ekmekçi, H.H. Hacısalihoğlu, K. İlarslan, Harmonic curvatures in Lorentzian space, Bull. Malaysian Math. Sci. Soc. (Second Series) 23 (2000) 173-179.
[5] H.H. Hacısalihoğlu, Diferensiyel Geometri, İnönü Ünv. Fen-Edb. Fak. Yayınları Mat., 1983.
[6] E. İyigün, K. Arslan, On harmonic curvatures of curves in Lorentzian n-space, Commun. Fac. Sci. Univ. Ank. Series A1 54 (2005) 29-34.
[7] D. Soylu, M. Bektaş, M. Ergüt, Characterizations for osculator hypersphere in Lorentzian space, J. Inst. Math. Comp. Sci. (Math. Ser.) 12 (1999) 229-235.

[^0]: 2010 Mathematics Subject Classification. Primary 53C40; Secondary 53C42
 Keywords. Lorentz-Minkowski space, Frenet curvatures, constant curvature ratios, harmonic curvatures
 Received: 12 August 2015; Revised: 11 December 2015; Accepted: 12 December 2015
 Communicated by Ekrem Savaş
 The research was supported by the Scientific Research Project Unit of Uludag University, Project No. KUAP (F) 2015-13
 Email address: esen@uludag.edu.tr (Esen İyigün)

