Infinite Matrices and Some Matrix Transformations

Rahmet Savaş Eren ${ }^{\text {a }}$
${ }^{a}$ Istanbul Medeniyet University, Department of Mathematics, Üsküdar-Istanbul, Turkey

Abstract

The goal of this paper is to define the spaces $V_{\sigma_{0}}^{\lambda}(p)$ and $V_{\sigma}^{\lambda}(p)$ by using de la Vallée Poussin and invariant mean. Furthermore, we characterize certain matrices in V_{σ}^{λ} which will up a gap in the existing literature.

1. Introduction and Background

Let w denote the set of all real and complex sequences $x=\left(x_{k}\right)$. By l_{∞} and c, we denote the Banach spaces of bounded and convergent sequences $x=\left(x_{k}\right)$ normed by $\|x\|=\sup _{k}\left|x_{k}\right|$, respectively. A linear functional L on l_{∞} is said to be a Banach limit [1] if it has the following properties:

1. $L(x) \geq 0$ if $n \geq 0$ (i.e. $x_{n} \geq 0$ for all n),
2. $L(e)=1$ where $e=(1,1, \ldots)$,
3. $L(D x)=L(x)$, where the shift operator D is defined by $D\left(x_{n}\right)=\left\{x_{n+1}\right\}$.

Let B be the set of all Banach limits on l_{∞}. A sequence $x \in \ell_{\infty}$ is said to be almost convergent if all Banach limits of x coincide. Let \hat{c} denote the space of almost convergent sequences. Lorentz [3] has shown that

$$
\hat{c}=\left\{x \in l_{\infty}: \lim _{m} d_{m, n}(x) \text { exists uniformly in } n\right\}
$$

where

$$
d_{m, n}(x)=\frac{x_{n}+x_{n+1}+x_{n+2}+\cdots+x_{n+m}}{m+1}
$$

If p_{k} is real and $p_{k}>0$, we define (see, Maddox [4])

$$
c_{0}(p)=\left\{x: \lim _{k \rightarrow \infty}\left|x_{k}\right|^{p_{k}}=0\right\}
$$

and

$$
c(p)=\left\{x: \lim _{k \rightarrow \infty}\left|x_{k}-l\right|^{p_{k}}=0, \text { for some } l\right\}
$$

[^0]If p_{m} is real such that $p_{m}>0$ and $\sup p_{m}<\infty$, we define (see, Nanda [16])

$$
\hat{c_{0}}(p)=\left\{x: \lim _{m \rightarrow \infty}\left|d_{m, n}(x)\right|^{p_{m}}=0, \text { uniformly in } n\right\}
$$

and

$$
\hat{c}(p)=\left\{x: \lim _{m \rightarrow \infty}\left|d_{m, n}(x-l)\right|^{p_{m}}=0, \text { for some } l, \text { uniformly in } n\right\} .
$$

Shaefer [26] defined the σ-convergence as follows: Let σ be a one-to-one mapping from the set of natural numbers into itself. A continuous linear functional ϕ on l_{∞} is said to be an invariant mean or a σ-mean provided that
(i) $\phi(x) \geq 0$ when the sequence $x=\left(x_{k}\right)$ is such that $x_{k} \geq 0$ for all k,
(ii) $\phi(e)=1$, where $e=(1,1,1, \ldots)$, and
(iii) $\phi(x)=\phi\left(x_{\sigma(k)}\right)$ for all $x \in l_{\infty}$.

We denote by V_{σ} the space of σ-convergent sequences. It is known that $x \in V_{\sigma}$ if and only if

$$
\frac{1}{m} \sum_{k=1}^{m} x_{\sigma^{k}(n)} \rightarrow \text { a limit }
$$

as $m \rightarrow \infty$, uniformly in n. Here $\sigma^{k}(n)$ denotes the k-th iterate of the mapping σ at n.
A σ-mean extends the limit functional on c in the sense that $\phi(x)=\lim x$ for all $x \in c$ if and only if σ has no finite orbits, that is to say, if and only if, for all $n>0, k \geq 1 \sigma^{k}(n) \neq n$.

In case σ is the translation mapping $n \rightarrow n+1$, a σ-mean reduces to the unique Banach limit and V_{σ} reduces to \hat{c}.

2. (σ, λ)-Convergence

We define the following:

Let $\lambda=\left(\lambda_{m}\right)$ be a non-decreasing sequence of positive numbers tending to ∞ such that

$$
\lambda_{m+1} \leq \lambda_{m}+1, \quad \lambda_{1}=1
$$

A sequence $x=\left(x_{k}\right)$ of real numbers is said to be (σ, λ) - convergent to a number L if and only if $x \in V_{\sigma}^{\lambda}$, where

$$
\begin{aligned}
& V_{\sigma}^{\lambda}=\left\{x \in l_{\infty}: \lim _{m \rightarrow \infty} t_{m n}(x)=L \text { uniformly in } \mathrm{n} ; L=(\sigma, \lambda)-\lim x\right\}, \\
& t_{m n}(x)=\frac{1}{\lambda_{m}} \sum_{i \in I_{m}} x_{\sigma^{i}(n)},
\end{aligned}
$$

and $I_{m}=\left[m-\lambda_{m}+1, m\right]$ (see, [24]). Note that $c \subset V_{\sigma}^{\lambda} \subset l_{\infty}$. For $\sigma(n)=n+1, V_{\sigma}^{\lambda}$ is reduced to the space \hat{V}_{λ} of almost λ-convergent sequences and if we take $\sigma(n)=n+1$ and $\lambda=n, V_{\sigma}^{\lambda}$ reduce to \hat{c} (see, [16]) .

It is quite natural to expect that the sequence V_{σ}^{λ} and $V_{\sigma_{0}}^{\lambda}$ can be extended to $V_{\sigma}^{\lambda}(p)$ and $V_{\sigma_{0}}^{\lambda}(p)$ just as \hat{c} and \hat{c}_{0} were extended to $\hat{c}(p)$ and $\hat{c}_{0}(p)$ respectively.

The main object of this paper is to study $V_{\sigma}^{\lambda}(p)$ and $V_{\sigma_{0}}^{\lambda}(p)$ (the definitions are given below) and characterize certain matrices in $V_{\sigma}^{\lambda}(p)$.

If p_{m} is real such that $p_{m}>0$ and $\sup p_{m}<\infty$, we define

$$
V_{\sigma_{0}}^{\lambda}(p)=\left\{x: \lim _{m \rightarrow \infty}\left|t_{m, n}(x)\right|^{p_{m}}=0, \text { uniformly in } n\right\}
$$

and

$$
V_{\sigma}^{\lambda}(p)=\left\{x: \lim _{m \rightarrow \infty}\left|t_{m, n}(x-l e)\right|^{p_{m}}=0, \text { for some } l, \text { uniformly in } n\right\}
$$

In particular, if $p_{m}=p>0$ for all m, we have $V_{\sigma_{0}}^{\lambda}(p)=V_{\sigma_{0}}^{\lambda}$ and $V_{\sigma}^{\lambda}(p)=V_{\sigma}^{\lambda}$. In Theorem 4, we prove that $V_{\sigma_{0}}^{\lambda}(p)$ and $V_{\sigma}^{\lambda}(p)$ are complete linear topological spaces. Theorem 7 characterizes the matrices in the class $\left(c_{0}(p), V_{\sigma_{0}}(p)\right)$. In Theorem 8 we determine the matrix in the class $\left(c(p), V_{\sigma}^{\lambda}\right)$. Matrix transformations between sequence spaces have also been discussed by Savas and Mursaleen ([23]), Mursaleen ([7-15]), Savas ($[17-22,25]$) and many others.

A linear topological space X is called paranormed space if there exists a subadditive function $g: X \rightarrow \mathbb{R}^{+}$ such that $g(0)=0, g(x)=g(-x)$ and the multiplication is continuous, that is, $\lambda_{n} \rightarrow \lambda$ and $g\left(x_{n}-x\right) \rightarrow 0$ imply that $g\left(\lambda_{n} x_{n}-\lambda x\right) \rightarrow 0$ for $\lambda^{\prime} s \in \mathbb{C}$ and $x \in X$.

Suppose that $M=\max \left(1, \sup p_{m}=H\right)$. Since $p_{m} / M \leq 1$, we have for all m and n

$$
\begin{equation*}
\left|t_{m n}(x+y)^{p_{m} / M} \leq\left|t_{m n}(x)\right|^{p_{m} / M}+\right| t_{m n}(y)^{p_{m} / M} \tag{1}
\end{equation*}
$$

and for all $\lambda \in \mathbb{C}$

$$
\begin{equation*}
|\lambda|^{p_{m} / M} \leq \max (1,|\lambda|) . \tag{2}
\end{equation*}
$$

By using (1) and (2) we can see that $V_{\sigma_{0}}^{\lambda}(p)$ and $V_{\sigma}^{\lambda}(p)$ are linear spaces.

3. Main Results

We first establish a number of lemmas about $V_{\sigma_{0}}^{\lambda}(p)$ and $V_{\sigma}^{\lambda}(p)$.
Lemma 3.1. $V_{\sigma_{0}}^{\lambda}(p)$ is a linear topological space paranormed by g where

$$
g(x)=\sup _{m, n}\left|t_{m, n}(x)\right|^{p_{m} / M}
$$

Proof. One can easily see that $g(0)=0$ and $g(x)=g(-x)$. The subadditivity of g follows from (1). It remains to show that the scalar multiplication is continuous. It follows from (2) that for $\mu \in \mathbb{C}$ and $x \in V_{\sigma_{0}}^{\lambda}(p)$

$$
g(\mu x) \leq \max (1, \mu) g(x)
$$

Therefore $\mu \rightarrow 0, x \rightarrow 0 \Rightarrow \mu x \rightarrow 0$ and if μ is fixed, $x \rightarrow 0 \Rightarrow \mu x \rightarrow 0$. If $x \in V_{\sigma_{0}}^{\theta}(p)$ is fixed, given $\varepsilon>0$, there exists m_{0} such that

$$
\begin{equation*}
\sup _{m>m_{0}}\left|\mu t_{m, n}(x)\right|^{p_{m} / M}<\varepsilon / 2 \tag{3}
\end{equation*}
$$

for all n and we can choose $\delta>0$ such that for $|\mu|<\delta$, we have

$$
\begin{equation*}
\sup _{m \leq m_{0}}\left|\mu t_{m, n}(x)\right|^{p_{m} / M}<\varepsilon / 2 \tag{4}
\end{equation*}
$$

for all n. Thus from (3) and (4) we get

$$
|\mu|<\delta \Rightarrow g(\mu x) \leq \varepsilon
$$

This completes the proof.
Lemma 3.2. $V_{\sigma}^{\lambda}(p)$ is a linear topological space paranormed by g, if $\inf p_{m}>0$.

Proof. It is enough to show that for fixed $x \in V_{\sigma}^{\lambda}(p), \mu \rightarrow 0 \Rightarrow \mu x \rightarrow 0$. Let $\inf p_{m}=p^{\prime}>0$, then we have

$$
g(\mu x) \leq \max \left(|\mu|,|\mu|^{p^{\prime}}\right) g(x)
$$

The result follows from the above inequality.
Lemma 3.3. $V_{\sigma_{0}}^{\lambda}(p)$ and $V_{\sigma}^{\theta}(p)\left(\inf p_{m}>0\right)$ are complete with respect to their paranorm topologies.
Proof. Let $\left\{x^{i}\right\}$ be Cauchy sequence in $V_{\sigma_{0}}^{\lambda}(p)$. Then $\left\{x_{k}^{i}\right\}$ for each k, is Cauchy in \mathbb{C} and hence $x_{k}^{i} \rightarrow x_{k}^{0}$ for each k. Put $x^{0}=\left\{x_{k}^{0}\right\}$. Given $\varepsilon>0$, there exists N_{0} such that for $i, j>N_{0}$,

$$
\begin{equation*}
\left|t_{m, n}\left(x^{i}-x^{j}\right)\right|^{p_{m} / M}<\varepsilon / 5 \tag{5}
\end{equation*}
$$

for all m and n. Taking limit as $j \rightarrow \infty$ we get

$$
\begin{equation*}
\left|t_{m, n}\left(x^{i}-x^{0}\right)\right|^{p_{m} / M}<\varepsilon / 5 \tag{6}
\end{equation*}
$$

for all m and n. Therefore $\left(x^{i}-x^{0}\right)$ and by linearity $x^{0} \in V_{\sigma_{0}}^{\lambda}(p)$. If $\left\{x^{i}\right\}$ be Cauchy sequence in $V_{\sigma}^{\lambda}(p)$ then there exists x^{0} such that $x^{j} \rightarrow x^{0}$. We now show that $x^{0} \in V_{\sigma}^{\lambda}$. Since $x^{i} \in V_{\sigma}^{\lambda}(p)$ there exists $l^{i} \in \mathbb{C}$ such that

$$
\begin{equation*}
\left|t_{m, n}\left(x^{i}-l^{i} e\right)\right|^{p_{m} / M}<\varepsilon / 5 \tag{7}
\end{equation*}
$$

for all m and n. From that (5), (7) and (1) it follows that

$$
\left|t_{m, n}\left(l^{i} e-l^{j} e\right)\right|^{p_{m} / M}<3 / 5 \varepsilon
$$

Thus $\left\{l^{i}\right\}$ is Cauchy in \mathbb{C} and therefore there exists $l \in \mathbb{C}$ such that

$$
\begin{equation*}
\left|t_{m, n}\left(l^{i} e-l e\right)\right|^{p_{m} / M}<3 / 5 \varepsilon \tag{8}
\end{equation*}
$$

Now by (1), (6), (7) and (8) we get

$$
\left|t_{m, n}\left(x^{0}-l e\right)\right|^{p_{m} / M}<\varepsilon
$$

This completes the proof.
Combining the above lemmas we have
Theorem 3.4. $V_{\sigma_{0}}^{\theta}(p)$ and $V_{\sigma}^{\theta}(p)\left(\inf p_{m}>0\right)$ are complete linear topological spaces paranormed by g as defined in Lemma 1.

In general g is not a norm. If $p_{m}=p$ for all m then clearly g is a norm.
The following proposition give inclusion relations among the spaces $V_{\sigma_{0}}^{\lambda}(p)$ and $V_{\sigma}^{\lambda}(p)$. These are routine verifications and therefore we omit the proofs.

Proposition 3.5. If $0<p_{m} \leq q_{m}<\infty$, then
(i) $V_{\sigma_{0}}^{\lambda}(p) \subset V_{\sigma_{0}}^{\lambda}(q)$
(ii) $V_{\sigma}^{\lambda}(p) \subset V_{\sigma}^{\lambda}(q)$.

For $r>0$, a nonempty subset U of a linear space is said to be absolutely r-convex if $x, y \in U$ and $|\alpha|^{r}+|\mu|^{r} \leq 1$ together imply that $\alpha x+\mu y \in U$. A linear topological space X is said to be r-convex (see Maddox and Roles[5]) if every neighbourhood of $0 \in X$ contains as absolutely r-convex neighbourhood of $0 \in X$. We have:

Proposition 3.6. $V_{\sigma_{0}}^{\lambda}(p)$ and $V_{\sigma}^{\lambda}(p)$ are 1-convex.
Proof. If $0<\delta<1$, then

$$
U=\{x: g(x) \leq \delta\}
$$

is an absolutely 1 -convex set, for let $a, b \in U$ and $|\alpha|+|\mu| \leq 1$, then

$$
g(\alpha a+\mu b) \leq(|\alpha|+|\mu|)^{p_{m} / M} \delta \leq \delta .
$$

This completes the proof.
Let X and Y be two nonempty subsets of the space w of complex sequences. Let $A=\left(a_{n k}\right),(n, k=1,2, \ldots)$ be an infinite matrix of complex numbers. We write $A x=\left(A_{n}(x)\right)$ if $A_{n}(x)=\sum_{k} a_{n k} x_{k}$ converges for each n. (Throughout \sum_{k} denotes summation over k from $k=1$ to $\left.k=\infty\right)$. If $x=\left(x_{k}\right) \in X \Rightarrow A x=\left(A_{n}(x)\right) \in Y$ we say that A defines a matrix transformation from X to Y and we denote it by $A: X \rightarrow Y$. By (X, Y) we mean the class of matrices A such that $A: X \rightarrow Y$.

We now characterize the matrices in the class $\left(c_{0}(p), V_{\sigma_{0}}^{\lambda}(p)\right)$. We write

$$
t_{m, n}(A x)=\sum_{k} a(n, k, m) x_{k}
$$

where

$$
a(n, k, m)=\frac{1}{\lambda_{m}} \sum_{i \in I_{n}} a_{\sigma^{i}(n), k} .
$$

Theorem 3.7. $A \in\left(c_{0}(p), V_{\sigma_{0}}^{\lambda}(p)\right.$ if and only if
(i) there exists an integer $B>1$ such that

$$
C_{n}=\sup _{m}\left\{\sum_{k}|a(n, k, m)| B^{-1 / p_{k}}\right\}^{p_{m}}<\infty, \quad(\forall n)
$$

(ii) $\lim _{m \rightarrow \infty}|a(n, k, m)|^{p_{m}}=0$ uniformly in n.

Proof. Necessity. Suppose that $A \in\left(c_{0}(p), V_{\sigma_{0}}^{\lambda}(p)\right)$. Define $e_{k}=\left\{\delta_{n k}\right\}_{n}$ where $\delta_{n k}=0(n \neq k),=1(n=k)$. Since $e_{k} \in c_{0}(p)$, (ii) must hold. Fix $n \in Z^{+}$. Put $f_{m, n}(x)=\left|t_{m, n}(A x)\right|^{p_{m}}$. Now $\left\{f_{m, n}\right\}_{m}$ is a sequence of continuous linear functionals such that $\lim _{m} f_{m, n}(x)$ exists. Therefore by uniform boundedness principle for $0<\delta<1$, there exists $S_{\delta}[0] \subset c_{0}(p)$ and a constant K such that $f_{m, n}(x) \leq K$ for each m and $x \in S_{\delta}[0]$. Define for each r:

$$
y_{k}^{(r)}=\left(\begin{array}{cc}
\delta^{K / p_{k}} \operatorname{sgn}(a(n, k, m), & 0 \leq k \leq r ; \\
0, & r<k .
\end{array}\right.
$$

Now $y_{k}^{(r)} \in S_{\delta}[0]$ and

$$
\left\{\sum_{k=1}^{r}|a(n, k, m)| B^{-1 / p_{k}}\right\}^{p_{m}} \leq K
$$

for each m and each m where $B=\delta^{-K}$. Therefore (i) holds and this proves this necessity.
Sufficiency. Suppose that the conditions (i) and (ii) hold and that $x \in c_{0}(p)$. Fix $n \in \mathbb{Z}^{+}$. Given $\varepsilon>0$, there exists k_{0} such that for k and m both larger than k_{0},

$$
B^{1 / p_{k}}\left|x_{k}\right|<\left(\varepsilon / C_{n}\right)^{1 / p_{m}}
$$

We have, for $C=\max \left(1,2^{H-1}\right)$ the inequality (see Maddox 7, p. 346)

$$
\left|t_{m, n}(A(x))\right|^{p_{m}} \leq C\left(S_{1}+S_{2}\right)
$$

where

$$
S_{1}=\left|\sum_{k \leq k_{0}} a(n, k, m) x_{k}\right|^{p_{m}}
$$

and

$$
S_{2}=\left|\sum_{k>k_{0}} a(n, k, m) x_{k}\right|^{p_{m}} .
$$

Since (ii) holds there exists $m_{0} \in \mathbb{Z}^{+}$such that for $m>m_{0},|a(n, k, m)|<\varepsilon^{1 / p_{m}}$. Therefore for such m,

$$
\begin{aligned}
S_{1} & \leq\left(\sum_{k \leq k_{0}}\left|a(n, k, m) x_{k}\right|\right)^{p_{m}}<\varepsilon\left(\sum_{k \leq k_{0}}\left|x_{k}\right|\right)^{p_{m}} \\
& <\varepsilon \max \left[1,\left(\sum_{k \leq k_{0}}\left|x_{k}\right|\right)^{M}\right]
\end{aligned}
$$

Again for $m>m_{0}$

$$
S_{2}^{1 / p_{m}} \leq \sum_{k>k_{0}}\left|a(n, k, m) x_{k}\right|<\varepsilon^{1 / p_{m}}
$$

and consequently

$$
\begin{equation*}
S_{2} \leq \varepsilon,\left(\forall m>m_{0}\right) \tag{10}
\end{equation*}
$$

Hence the sufficiency follows from (9) and (10). This completes the proof.
We now have

Theorem 3.8. $A \in\left(c(p), V_{\sigma}^{\lambda}\right)$ if and only if
(i) there exists some integer $B>1$ such that
$D_{n}=\sup \sum_{k}|a(n, k, m)| B^{-1 / p_{k}}<\infty,(\forall n) ;$
(ii) there exists $\alpha_{k} \in C$ such that $\lim _{m \rightarrow \infty} a(n, k, m)=\alpha_{k}$ uniformly in n;
(iii) there exists $\alpha \in C$ such that $\lim _{m \rightarrow \infty} \sum_{k} a(n, k, m)=\alpha$ uniformly in n.

Proof. Necessity. Let $A \in\left(c(p), V_{\sigma}^{\theta}\right)$. Since e_{k} and e are in $c(p)$, (ii) and (iii) must hold. Fix $n \in \mathbb{Z}^{+}$. Put $\sigma_{m, n}(x)=t_{m, n}(A x)$. Since $\left(c(p), V_{\sigma}^{\theta}\right) \subset\left(c_{0}(p), V_{\sigma}^{\theta}\right),\left(\sigma_{m, n}\right)_{m}$ is a sequence of continuous linear functionals on $c_{0}(p)$, such that $\lim \sigma_{m, n}(x)$ exists uniformly in n. Therefore as in the necessity part of Theorem 7 the result follows from uniform boundedness principle.

Sufficiency. Suppose that conditions (i)-(iii) hold and $x \in c(p)$. Then there exists l such that $\left|x_{k} \rightarrow l\right|^{p_{k}} \rightarrow 0$. Hence given $0<\varepsilon<1, \exists k_{0}: \forall k<k_{0}$

$$
\left|x_{k} \rightarrow l\right|^{p_{k} / M} \leq \frac{\varepsilon}{B\left(2 D_{n}+1\right)}<1
$$

and therefore for $k<k_{0}$

$$
\begin{aligned}
B^{1 / p_{k}}\left|x_{k} \rightarrow l\right| & <B^{M / p_{k}}\left|x_{k} \rightarrow l\right| \\
& <\left(\varepsilon / 2 D_{n}+1\right)^{M / p_{k}}<\varepsilon / 2 D_{n}+1
\end{aligned}
$$

By (i) and (ii) we have

$$
\sum_{k}\left|a(n, k, m)-\alpha_{k}\right| B^{-1 / p_{k}}<2 D_{n} .
$$

Hence

$$
\begin{equation*}
\sum_{k>k_{0}}\left|\left(a(n, k, m)-\alpha_{k}\right)\left(x_{k}-l\right)\right|<\varepsilon . \tag{11}
\end{equation*}
$$

Also,

$$
\begin{equation*}
\lim \sum_{k \leq k_{0}}\left|\left(a(n, k, m)-\alpha_{k}\right)\left(x_{k}-l\right)\right|=0 \tag{12}
\end{equation*}
$$

uniformly in n . Therefore by (11) and (12) we get

$$
\begin{equation*}
\lim \sum_{k} a(n, k, m) x_{k}=l \alpha+\sum_{k} \alpha_{k}\left(x_{k}-l\right) \tag{13}
\end{equation*}
$$

uniformly in n . This completes the proof.
Corollary 3.9. $A \in\left(c_{0}(p), V_{\sigma}^{\lambda}\right)$ if and only if conditions (i) and (ii) of Theorem 7 hold.
We write $\left(c(p), V_{\sigma}^{\lambda}, P\right)$ to denote the subset of $\left(c(p), V_{\sigma}^{\lambda}\right)$ such that $A x$ is (σ, λ) - convergent to the limit of x in $c(p)$. We now consider the class $\left(c(p), V_{\sigma}^{\lambda}, P\right)$.

Theorem 3.10. $A \in\left(c(p), V_{\sigma}^{\lambda}, P\right)$ if and only if (i) the condition of Theorem 8 holds; (ii) $\lim a(n, k, m)=0$ uniformly in n; (iii) $\sum_{k} a(n, k, m)=1$, uniformly in n.

Proof. Let $A \in\left(c(p), V_{\sigma}^{\lambda}, P\right)$. Then the conditions hold by Theorem 3. Let the conditions $(i)-(i i i)$ hold. Then by Theorem $8 A \in\left(c(p), V_{\sigma}^{\lambda}\right)$ and (13) reduces to

$$
\lim \sum_{k} a(n, k, m) x_{k}=l
$$

uniformly in n. This proves the theorem.

Acknowledgements

The author would like to express their sincere gratitude to the reviewer for the careful reading of this manuscript and the valuable comments.

References

[1] S. Banach, Theorie des Operations linearies, Warszawa, 1932.
[2] V. Karakaya, θ_{σ}-sumable sequences and some matrix transformations, Tamkang J. Math. 35 (2004) 313-320.
[3] G.G. Lorentz, A contribution to the theory of divergent sequences, Acta. Math. 80 (1948) 167-190.
[4] I.J. Maddox, Spaces of strongly summable sequences, Quart. J. Math. 18 (1967) 345-355.
[5] I.J. Maddox, J.W. Roles, Absolute convexity in certain topological linear spaces, Proc. Cambridge Philos. Soc. 66 (1969) $541-545$.
[6] I.J. Maddox, Elements of Functional Analysis, Camb. Univ. Press (1970).
[7] M. Mursaleen, On some new invariant matrix methods of summability, Quart. J. Math. Oxford 34 (1983) 77-86.
[8] M. Mursaleen, A.M. Jarrah, S.A. Mohiuddine, Bounded linear operators for some new matrix transformations, Iranian J. Sci. Tech. Trans. A 33 (A2) 169-177.
[9] M. Mursaleen, On infinite matrices and invarient means, Indian J. Pure Appl. Math. 10 (1979) 457-460.
[10] M. Mursaleen, Invariant means and some matrix transformations, Tamkang J. Math. 10 (1979) 181-184.
[11] M. Mursaleen, A.K. Gaur, T.A. Chishti, On some new sequence spaces of invariant means, Acta Math. Hungar. 75 (1997) 185-190.
[12] M. Mursaleen, E. Savas, M. Aiyub, S.A. Mohiuddine, Matrix transformations between the spaces of Cesaro sequences and invariant means, Internat. J. Math. Math. Sci. Vol. 200 (2006), Article ID 74319, 8 pages.
[13] M. Mursaleen, Some matrix transformations on sequence spaces of invariant means, Hacettepe J. Math. Stat. 38 (2009) 259-264.
[14] M. Mursaleen, On A-invariant mean and A-almost convergence, Anal. Math. 37:3 (2011) 173-180.
[15] M. Mursaleen, S.A. Mohiuddine, Some matrix transformations of convex and paranormed sequence spaces into the spaces of invariant means, J. Funct. Spaces Appl. Vol. 2012, Article ID 612671, 10 pages.
[16] S. Nanda, Infinite matrices and almost convergence, J. Indian Math. Soc. 40 (1976) 173-184.
[17] E. Savaş, Matrix transformations of some generalized sequence spaces, J. Orissa Math. Soc. 4 (1985) 37-51.
[18] E. Savaş, Matrix transformations and absolute almost convergence, Bull. Inst. Math. Acad. Sinica 15 (1987) 345-355.
[19] E. Savaş, Matrix transformations between some new sequence spaces, Tamkang J. Math. 19:4 (1988) 75-80.
[20] E. Savaş, σ-summable sequences and matrix transformations, Chinese J. Math. 18 (1990) 201-207.
[21] E. Savaş, Matrix transformations and almost convergence, Math. Student 59:1-4 (1991) 170-176.
[22] E. Savaş, Matrix transformations of X_{p} into C_{s}, Punjab Univ. J. Math. (Lahore) 24 (1991) 59-66.
[23] E. Savaş, M. Mursaleen, Matrix transformations in some sequence spaces, Istanbul Univ. Fen. Fak. Mat. Derg. 52 (1993) 1-5.
[24] E. Savaş, Strongly almost convergence and almost λ-statistical convergence, Hokkaido J. Math. 29 (2000) 63-68.
[25] E. Savas, On infinite matrices and lacunary σ-convergence, Appl. Math. Comp. 218 (2011) 1036-1040.
[26] P. Schaefer, Infinite matrices and invariant means, Proc. Amer. Math. Soc. 36 (1972) 104-110.

[^0]: 2010 Mathematics Subject Classification. Primary 40C05; Secondary 40H05
 Keywords. Infinite matrices, de la Vallée Poussin, invariant mean, matrix transformations
 Received: 20 August 2015; Revised: 20 November 2015; Accepted: 03 December 2015
 Communicated by Ljubiša D.R. Kočinac
 Email address: rahmet.savas@medeniyet.edu.tr (Rahmet Savaş Eren)

