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Some Remarks on Topologized Groups

Ljubiša D.R. Kočinaca

aUniversity of Niš, Faculty of Sciences and Mathematics, 18000 Niš, Serbia

Abstract. We define and study classes of topologized groups, in particular paratopological groups, related
to precompactness and to several boundedness properties of topological groups and uniform spaces.

1. Introduction

In the last two decades a considerable number of results concerning various kinds of boundedness
in topological groups appeared in the literature: M-boundedness, H-boundedness, R-boundedness, S-
boundedness. These classes of groups have been defined by Kočinac in 1998, and the class of M-bounded
groups was independently introduced by Okunev and Tkachenko in 1998 under the name o-bounded
groups. For more information about these classes see, for example, [3, 4, 9–11, 16, 19, 23]. In this paper we
introduce in a similar way several properties in the class of topologized groups. Our study is mainly related
to paratopological groups and differences between these properties in topological and paratopological
groups. For more details on paratopological groups see [2, 20–22] and also the papers [1, 5, 8, 13–15, 17, 18].

2. Preliminaries and Definitions

Let X be a nonempty set. A familyU of subsets of X × X satisfying conditions

(U1) each U ∈ U contains the diagonal ∆X = {(x, x) : x ∈ X} of X;

(U2) if U,V ∈ U, then U ∩ V ∈ U;

(U3) if U ∈ U and V ⊃ U, then V ∈ U

is called a pre-uniformity on X.
A pre-uniformityU on X is called a quasi-uniformity ifU satisfies also

(U4) for each U ∈ U there is V ∈ Uwith V ◦V ⊂ U, where V ◦V = {(x, y) ∈ X×X : ∃z ∈ V such that (x, z) ∈
V, (z, y) ∈ V}.

A quasi-uniformityU on X is a uniformity if

(U5) for each U ∈ U, U−1 := {(x, y) ∈ X × X : (y, x) ∈ U} ∈ U.
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Elements of the pre-uniformity U are called entourages (of the diagonal). For any entourage U ∈ U, a
point x ∈ X and a subset A of X one defines the set

U[x] := {y ∈ X : (x, y) ∈ U}

called the U-ball with the center x, and the set

U[A] :=
⋃
a∈A

U[a]

called the U-neighborhood of A. We refer the reader to [6, 7] for more information on pre-uniform spaces.

Definition 2.1. A pre-uniform space (X,U) is called

(1) Menger bounded (or M-bounded for short) if for each sequence 〈Un : n ∈ N〉 of entourages there is a
sequence 〈Fn : n ∈N〉 of finite subsets of X such that X =

⋃
n∈NUn[Fn];

(2) Hurewicz bounded (or H-bounded) if for each sequence 〈Un : n ∈ N〉 of entourages there is a sequence
〈Fn : n ∈N〉 of finite subsets of X such that each x ∈ X belongs to all but finitely many Un[Fn];

(3) Rothberger bounded (or R-bounded) if for each sequence 〈Un : n ∈ N〉 of entourages there is a sequence
〈xn : n ∈N〉 of elements of X such that X =

⋃
n∈NUn[xn];

(4) Scheepers bounded (or S-bounded) if for each sequence 〈Un : n ∈ N〉 of entourages there is a sequence
〈Fn : n ∈N〉 of finite subsets of X such that each finite subset A ⊂ X is contained in some set Un[Fn].

Evidently,

H−bounded =⇒ S−bounded =⇒ M−bounded ⇐= R−bounded.

A group (G, ·) equipped with a topology τ is called a topologized group. ByNeG we denote a local base at
the identity element eG ∈ G with respect to the topology τ. By G− = (G, ·, τ−1) we denote the topologized
group (called the conjugate of G) in which {U−1 : U ∈ NeG } is a neighbourhood system at eG− . If (G, ·, τ) is a
topologized group, then we often say simply “a topologized group G”.

Each topologized group G carries two natural pre-uniformities: L generated by

BL = {LU : U ∈ NeG }, where LU = {(x, y) ∈ G × G : x ∈ y ·U}

and R generated by

BR = {RU : U ∈ Ne}, where RU = {(x, y) ∈ G × G : x ∈ U · y}.

For more information on canonical pre-uniformities on topologized groups see [6, 7].

Definition 2.2. A topologized group (G, ·, τ) is said to be M-bounded (H-bounded, R-bounded, S-bounded,
respectively) if the left pre-uniformity L on G is M-bounded (H-bounded, R-bounded, S-bounded, respec-
tively).

A topologized group (G, ·, τ) is a semitopological group (resp. paratopological group) if the group operation
(x, y) 7→ x · y from G × G→ G is a separately (resp. jointly) continuous mapping. A paratopological group
G in which the mapping x 7→ x−1 from G to G is continuous is called a topological group.

For a topologized group (G, ·, τ) by G∗ (respectively G∗) we denote the group G equipped with the
weakest (respectively the strongest) group topology τ∗ (respectively τ∗) such that the identity mapping
(G∗, τ∗) → (G, τ) (respectively (G, τ) → (G∗, τ∗)) is continuous. It is known that for a paratopological group
(G, ·, τ), G∗ is the topological group (G, ·, τ ∨ τ−1) (called the topological group associated to G). Observe that
the local base at the identity element eG∗ ∈ G∗ is the collection {U ∩ U−1 : U ∈ NeG }. For an abelian (more
generally, 2-oscillating [5]) paratopological group (G, ·, τ) the topology of G∗ (called the group reflection of
G) is the topology τ ∧ τ−1. For non-abelian paratopological groups G the topology of G∗ does not coincide
with τ ∧ τ−1, in general (see [5, Example 1]).
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Definition 2.3. A topologized group (G, ·, τ) is said to be

• M∗−bounded (H∗−bounded, R∗−bounded, S∗−bounded) if the topological group G∗ is M−bounded (H−bounded,
R−bounded, S−bounded);

• M∗−bounded (H∗−bounded, R∗−bounded, S∗−bounded) if the topological group G∗ is M−bounded (H−bounded,
R−bounded, S−bounded).

From the definitions above and the fact that for any topologized group G the identity mappings G∗ → G
and G→ G∗ are (uniformly) continuous, we have the following diagram:

H∗−bounded =⇒ H−bounded =⇒ H∗−bounded

⇓ ⇓ ⇓

S∗−bounded =⇒ S−bounded =⇒ S∗−bounded

⇓ ⇓ ⇓

M∗−bounded =⇒ M−bounded =⇒ M∗−bounded

⇑ ⇑ ⇑

R∗−bounded =⇒ R−bounded =⇒ R∗−bounded

In the next sections we will give some examples related to this diagram.

3. First Facts

Recall that a paratopological group G is said to be precompact (pre-Lindelöf, also calledω-narrow in [2, 22])
if for every neighborhood U of the neutral element of G, there is a finite (countable) subset F of G such that
F ·U = G = U · F. A subset A of G is precompact in G if for any U ∈ NeG there is a finite set E ⊂ A such that
A ⊂ E ·U. G is σ-precompact if it is a countable union of precompact sets.

Evidently, that each (σ-)precompact (in particular, everyσ-compact) paratopological group is H-bounded,
and each M-bounded paratopological group is pre-Lindelöf.

Example 3.1. The Sorgenfrey line S is an example of H-bounded (hence M-bounded) paratopological addi-
tive group which is not Menger (see [11] for the definition). This paratopological group is not R-bounded,
too. (Take the sequence 〈[0, 1/2n) : n ∈ N〉 of neighbourhoods of the identity element 0 ∈ S.) The unit
interval I = [0, 1] is precompact subset of S, and its square is precompact in S2 [12]. The paratopological
group QS of rational numbers with the topology inherited from S is H-bounded and R-bounded.

Let K denote the unit Sorgenfrey circle group, i.e. the unit circle T equipped with the Sorgenfrey
topology: a local base at the neutral element 1 ∈ K consists of the sets Un = {eiπϕ : 0 ≤ ϕ < 1/n}.
The (Abelian Tychonoff) paratopological multiplicative group K is precompact and thus H-bounded and
M-bounded. The same is true for the groupKc

+
([22]), where c = 2ω is the continuum.

As we have already mentioned every M∗−bounded (H∗−bounded) paratopological group is M-bounded
(H-bounded). The converse is not true. The topological groups S∗ associated to S and K∗ associated to K
are discrete and uncountable and so they are not M-bounded.

Recall that a topological space X is a P-space if the intersection of any countable family of open sets is an
open set.

Proposition 3.2. Every pre-Lindelöf paratopological group G which is a P-space is R-bounded.

Proof. Let 〈Un : n ∈ N〉 be a sequence of neighbourhoods of eG ∈ G. As G is a P-space, U =
⋂

n∈NUn is an
open neighbourhood of eG. Because of pre-Lindelöfness of G there is a countable set A = {an : n ∈ N} ⊂ G
such that G = A · U. Then we have G =

⋃
n∈N an · Un so that the sequence 〈an : n ∈ N〉 witnesses for

〈Un : n ∈N〉 that G is R-bounded.
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4. Subgroups and Subsets

It is known that subgroups of M-bounded topological groups are also M-bounded [4]. But it is not the
case for M-bounded paratopological groups.

Example 4.1. According to a result by Banakh and Ravsky every discrete Abelian group can be embedded
as a subgroup into a precompact Hausdorff paratopological group [5, Corollary 5].

Here are two concrete examples.
The Sorgenfrey plane S2 is an M-bounded paratopological group. However, its subgroup A = {(x,−x) :

x ∈ R} is discrete and uncountable, so that it cannot be M-bounded.
The paratopological groupK2 is H-bounded (hence M-bounded), being precompact. But its uncountable

subgroup D = {(x, x−1) : x ∈ K} is closed and discrete and thus it is not M-bounded.
Observe that the group reflection of S2 is the Euclidean plane R2, and A∗ = A, so that the group A∗ with

the topology inherited from S2
∗ = R2 is an M-bounded topological group since it is topologically isomorphic

to R.

Theorem 4.2. If a paratopological group (G, ·, τ) is M-bounded and H is a dense subgroup of G, then H is M-bounded.

Proof. Let 〈On : n ∈ N〉 be a sequence of elements of eH ∈ H. For each n ∈ N pick Un ∈ NeG such that
On = Un ∩ H; then choose for each n an Wn ∈ NeG such that Wn ·Wn ⊂ Un. As G is M-bounded there is a
sequence 〈Fn : n ∈N〉 of finite subsets of G such that

⋃
n∈N Fn ·Wn = G. Since H is dense in G, for each n ∈N

and each x ∈ Fn there is ax ∈ H ∩Wn · x−1. Let An = {a−1
x : x ∈ Fn}, n ∈ N. We get the sequence 〈An : n ∈ N〉

of finite subsets of H which witnesses that H is M-bounded.
First we have G =

⋃
n∈N Fn ·Wn ⊂

⋃
n∈N An ·Un. This implies

H ⊂
⋃
n∈N

(An ·Un) ∩H =
⋃
n∈N

An · (Un ∩H) =
⋃
n∈N

An ·On.

By a minor modification in the proof of this theorem we have

Theorem 4.3. If a paratopological group (G, ·, τ) is H-bounded (R-bounded) and H is a dense subgroup in G, then H
is H-bounded (R-bounded).

Remark 4.4. The paratopological group QS is R-bounded and dense in S, but S is not R-bounded.

5. Products

We first characterize paratopological groups which are M-bounded in all finite powers.

Theorem 5.1. For a paratopological group (G, ·, τ) the following are equivalent:

(1) All finite powers of G are M-bounded;

(2) G is S-bounded.

Proof. (1)⇒ (2) Let 〈Un : n ∈N〉 be a sequence fromNeG . PartitionN into infinitely many pairwise disjoint
infinite subsets Mk, k ∈ N. For each k ∈ N, 〈Un : n ∈ Mk〉 is a sequence of neighbourhoods of eG. Apply
(1), to choose for each k ∈ N and each n ∈ Mk a finite subset Fn of G such that the set {(Fn)k

· (Un)k : n ∈ Mk}

covers Gk. (Note (Un)k denotes the product Un × . . .Un, k times, and not the group product.) We prove that
{Fn ·Un : n ∈N} is an ω-cover of G, i.e. that each finite subset of G is contained in Fm ·Um for some m ∈N.

Let S = {x1, . . . , xp} be a finite subset of G. Then x = (x1, . . . , xp) ∈ Gp. Pick an n ∈ Mp such that
x ∈ (Fn)p

· (Un)p. Then, S ⊂ Fn ·Un.
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(2) ⇒ (1) We prove that for a fixed k ∈ N, Gk is M-bounded. Let 〈Un : n ∈ N〉 be a sequence in NeGk .
For each n choose a Vn ∈ NeG such that (Vn)k

⊂ Un. By (2) there is a sequence 〈En : n ∈ N〉 of finite sets in
G such that {En · Vn : n ∈ N} is an ω-cover of G. Then {(En)k

· (Vn)k : n ∈ N} is an open cover of Gk, hence
{(En)k

·Un : n ∈N} covers Gk, i.e. (1) is satisfied.

Example 5.2. There is an S-bounded paratopological group G such that GN is not M-bounded.

Let S be the Sorgenfrey line. Then all finite powers of S are M-bounded. Therefore, S is S-bounded.
Let us prove that SN is not M-bounded. Define the sequence 〈Un : n ∈ N〉 of neighbourhoud of 0 ∈ SN

by

Un = [0, 1/2n) × . . . × [0, 1/2n) ×
∏

i∈N\{1,2,...,n}

Si, (Si = S, i > n).

We claim that for any sequence 〈Fn : n ∈ N〉 of finite subsets of SN we have SN ,
⋃

n∈N Fn ·Un. For n ∈ N,
let pn denote the projection of SN onto the n-th coordinate space Sn = S. Evidently, each set S \pn(Fn) ·pn(Un)
is nonempty; pick a point xn in this set. Then the point x = (xn)n∈N does not belong to

⋃
n∈N Fn ·Un.

Remark 5.3. Note that the space K is S-bounded, and that Kc
+

is also M-bounded (being precompact; see
[22]).

The product of two M-bounded topologized groups need not be M-bounded. It is well known for
M-bounded topological groups (see [4, 16]).

The following two theorems describe the behaviour of M-boundedness of paratopological groups under
product. The proof of the first of them is routine, so omitted.

Theorem 5.4. Let G be an M-bounded paratopological group and H a precompact paratopological group. Then G×H
is an M-bounded paratopological group.

Call a subset A of a topologized group G M-bounded if for each sequence 〈Un : n ∈N〉 of neighbourhoods
of eG ∈ G there are finite sets Fn ⊂ A, n ∈N, such that A ⊂

⋃
n∈N Fn ·Un. The group G is said to be hereditarily

M-bounded if each subset of G is M-bounded. Of course, similar definitions can be applied to other kinds of
boundedness.

Theorem 5.5. Let (G, ·, τ) and (H, σ) be paratopological groups such that G is M∗−bounded, and (H, σ) a hereditarily
precompact paratopological group. Then the product (G ×H, τ∗ × σ) is hereditarily M-bounded.

Proof. Let S ⊂ G × H and let 〈Un : n ∈ N〉 be a sequence of neighbourhoods of eG and 〈Vn : n ∈ N〉
be a sequence of neighbourhoods of eH. Since G is M∗-bounded, there are finite sets Fn in G such that⋃

n∈N Fn ·U∗n = G, where U∗n = Un ∩U−1
n . For each n ∈N and each a ∈ Fn define

B(n, a) = {h ∈ H : there is 1 in a U∗n such that (1, h) ∈ S}.

Fix n ∈ N and a ∈ Fn. Since (H, σ) is hereditarily precompact, hence B(n, a) is precompact, there is a finite
set E(n, a) ⊂ B(n, a) such that B(n, a) ⊂ E(n, a) · Vn.

For each y ∈ E(n, a) there is 1(y,n, a) ∈ a ·U∗n such that (1(y,n, a), y) ∈ S. The set

A(n, a) = {(1(y,n, a), y) : y ∈ E(n, a)},

is a finite subset of S.
Take any (1, h) ∈ S. There are k ∈ N and a ∈ Fk such that 1 ∈ a · U∗k. Therefore h ∈ B(k, a) and there is

some b ∈ B(k, a) such that h ∈ b · Vk. Thus (1(b, k, a), b) ∈ A(k, a), where 1(b, k, a) ∈ a ·U∗k. Using the symmetry
of U∗k, we get

(1, h) ∈ 1(b, k, a) · (U∗k)2
× b · Vk.

This means that the finite sets Ak =
⋃

a∈Fk
A(k, a) witness that (S, (τ∗ × σ) � S) is M-bounded.
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Problem 5.6. If paratopological groups G and H are such that G is hereditarily M-bounded and H is hereditarily
precompact, is then the product G ×H hereditarily M-bounded?1)

6. Relations with Games

To each property of topologized groups (and, more general, of pre-uniform spaces) defined above,
one can correspond, in a natural way, a topological game. We define here a game (similar to the game
introduced in [9] for topological groups) associated to M-boundedness and denoted MG; games associated
to other properties are defined in a similar way.

The game MG is played in the following way: Players ONE and TWO play a round for each positive
integer. In the n-th round, ONE chooses an open neighborhood Un of eG, and then TWO responds by
choosing a finite set An ⊂ G. A play

U1,A1; . . . ,Un,An, · · ·

is won by TWO of G =
⋃

n∈N An ·Un; otherwise, ONE wins.
Call a topologized group G strictly M-bounded if TWO has a winning strategy in the game MG. Evidently,

every strictly M-bounded topologized group is M-bounded.

Theorem 6.1. There is an M-bounded paratopological group which is not strictly M-bounded.

Proof. Let S be the Sorgenfrey line, and SN its countable power. The additive group SN is a paratopological
group. If x = (xn)n∈N ∈ SN, let n1 < n2 < . . . be an enumeration of the set {n ∈N : xn , 0}. Define

X := {x ∈ SN : lim
k→∞

xnk

nk+1
= 0}

and the subgroup G = 〈X〉 of SN generated by X.
Claim 1. G is an M-bounded paratopological group.

(The proof of this part is almost a repetition of the corresponding proof of Example 6.1 in [9] and it is
given here only for the sake of completeness.) Let 〈Un : n ∈ N〉 be a sequence of neighbourhoods of the
identity element eG ∈ G. For each n ∈ N pick a neighbourhood Vn of eG, Vn =

∏k
i=1 Vn,i ×

∏
i>k Si, such

that Vn + . . . + Vn ⊂ Un (n times taken Vn). Define an increasing sequence m1 < m2 < . . . in N such that
{ j ∈N : Vn, j , S = S j} ⊂ {1, 2, . . . ,mn} for each n. To each mi associate the set Bi ⊂ SN defined by

Bi =
∏
j∈N

Ai, j, where Ai, j = [−mi+1,mi+1), for j ≤ mi, and Ai, j = S, for j > mi.

Observe that X ⊂
⋃

n∈N Bn. [Indeed, if x = (xn)n∈N ∈ X. Then limk→∞
xnk
nk+1

= 0 implies that there s ∈ N
such that |xnk | < nk+1 for all k ≥ s. Put t = max{xn1 , . . . , xns } and choose i∗ and ` in N such that mi∗ > t and
mi∗ ≤ n` < mi∗+1. Let k ∈ N be arbitrary. If nk > mi∗ , then Ai∗,nk = S, hence xnk ∈ Ai∗,nk ; if k < s and nk ≤ mi∗ ,
then |xnk | ≤ t < mi∗ so that xnk ∈ Ai∗,nk ; if k ≥ s and nk ≤ mi∗ , then k < `, hence |xnk | < nk+1 < mi∗+1, which
implies xnk ∈ Ai∗,nk , and thus |x j| ∈ Ai∗, j for each j ∈N. So, x ∈ Bi∗ .]

For each n ∈ N choose a finite set Fn ⊂ G such that Bn ⊂ Fn + Vn. Let En = Fn + . . . + Fn (n times Fn).
We prove that the sequence 〈En : n ∈ N〉 witnesses for 〈Un : n ∈ N〉 that G is M-bounded. Let 1 ∈ G; then
1 = x1 + . . . + xr, xi ∈ X for each i ≤ r. We have that for each i ≤ r, xi ∈ Bki for some ki ∈ {1, 2, . . . , r}. If we put
k = max{k1, . . . , kr, r}, then xi ∈ Bk for each i ≤ r. It follows

1 = x1 + . . . + xr ∈ r(Fk + Vk) ⊂ k(Fk + Vk) ⊂ Ek + Uk.

1)T. Banakh remarked that the product S ×K gives a negative answer to Problem 5.6.
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Claim 2. G is not strictly M-bounded.
We prove that ONE has a winning strategy in the game. Let the first move of ONE be a neighbourhood

U1 = G ∩ ([−1, 1) ×
∏

i≥2 Si) of eG, where Si = S for each i. If a finite set F1 ⊂ G is TWO’s response, then
ONE takes x1 ∈ S \ p1(F1 + U1), where p1 : SN → S1 is the projection, pick an integer n2 with such 2|x1| < n2,
and plays the second move U2 = G ∩ ([−1, 1)1 × . . . × [−1, 1)n2 ×

∏
i>n2
Si. If TWO responses by choosing

a finite set F2 ⊂ G, then ONE pick an integer n3, takes a point xn2 such that 3|xn2 | < n3, pick a point
xn3 ∈ S \

⋃
i=1,2 pi(Fi + Ui), and plays the third move U3 = [−1, 1)1 × . . . × [−1, 1)n3 ) ×

∏
i>n3
Si. Two chooses a

finite set F3 ⊂ G. And so on.
Take the point q = (qn)n∈N ∈ SN defined so that qni = xni for i = 1, 2, . . ., and qn = 0, otherwise. Evidently,

q ∈ X and q <
⋃

n∈N(Fn + Un), which gives G \
⋃

n∈N(Fn + Un) , ∅. Therefore, ONE has a winning strategy
in the game, i.e. G is not strictly M-bounded.

It is known that R-bounded σ-compact metrizable topological groups can be characterized game-
theoretically:

Theorem 6.2. ([4]) Let G be a σ-compact metrizable topological group. Then G is R-bounded if and only if ONE has
no winning strategy in the corresponding game RG.

[ONE and TWO play a round per each natural number n. In the n–th round ONE chooses Un ∈ NeG , and
TWO responds by choosing a point xn ∈ G. A play U1, x1; . . . ; Un, xn; . . . is won by TWO if {xn ·Un : n ∈ N}
covers G; otherwise, ONE wins.]

Problem 6.3. Identify classes of paratopological groups in which R-boundedness can be characterized game-theoretically.

Remark 6.4. There is a paratopological group which is not a topological group, but player TWO has a
winning strategy in the Rothberger-type game RG. The space Q of rational numbers with the Sorgenfrey
topology is a metrizable paratopological non-topological group [17], and since it is countable, player TWO
has a winning strategy in RG. In fact, any countable paratopological group which is not a topological group
serves as such an example.

7. Concluding Remarks

In some classes of topological groups R-boundedness has been characterized Ramsey-theoretically. For
example, in [19] it was done for the class of σ-compact metrizable groups.

Recall the notion of ordinary partition symbol. For familiesA and B of subsets of a set X and for positive
integers n and k the symbol

A→ (B)n
k

denotes the statement:

For each A ∈ A and for each function f : [A]n
→ {1, . . . , k} there are a set B ⊆ A and a j ∈ {1, . . . , k}

such that for each Y ∈ [B]n, f (Y) = j, and B ∈ B.

[A]n denotes the set of n-element subsets of A.
A natural problem is the following.

Problem 7.1. In which classes of paratopological groups R-boundedness can be characterized Ramsey-theoretically?

One kind of boundedness in pre-uniform spaces and topologized groups has not been considered here; it
is GN-boundedness which we define for paratopological groups: A paratopological group G is GN-bounded
(abbreviation for Gerlits-Nagy bounded) if for each sequence 〈Un : n ∈ N〉 of neighbourhoods of eG there
are xn ∈ G, n ∈N, such that each 1 ∈ G belongs to xn ·Un for all but finitely many n. It would be interesting
to study this kind of boundedness.
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