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Abstract. The aim of the present work is to study the initial value problem for neutral linear fractional
differential system with distributed delays in incommensurate case. Furthermore, in the autonomous case
with derivatives in the Riemann-Liouville or Caputo sense we establish that if all roots of the introduced
characteristic equation have negative real parts, then the zero solution is globally asymptotically stable.
The proposed condition coincides with the conditions which guaranty the same result in the particular case
of system with constant delays.

1. Introduction

In the last two decades the fractional calculus has been intensively investigated by reason of their
applicability in several science fields as rheology, viscoelasticity, electrochemistry, electromagnetism, etc.
For details, see the monographs of Kilbas et al. [5], Kiryakova [6], Podlubny [9] and Das [1] and the
references therein. The survey from Li, Zhang [7] gives a good overview of the contributions to the stability
theory of fractional differential equations. Stability results are received in the noteworthy works of Deng,
Li, Lu [2] and Qian, Li, Agarwal, Wong [10] for fractional system with constant delays, and in [11] for
fractional system with distributed delays. It must be mentioned that the first detailed study of the linear
delay differential equations and system with distributed delays (fundamental theory, stability, oscillation
behavior, etc.) was done by A. D. Myshkis in his fundamental monograph [8]. The theory for fractional
equations and systems with distributed delays, and especially in the case of neutral systems as in the integer
case, is generally speaking more difficult at least technically but not only. In [12] it is studied fractional
linear autonomous system of neutral type with constant delays. Our paper extends and improves the
results obtained in [12] for the case of distributed delays.

The aim of this work is to clear the existence and the uniqueness of the solution of the initial value
problem for linear incommensurate fractional differential system with distributed delays in the cases of
Riemann-Liouville and Caputo derivatives. For the autonomous case we generalize the result obtained in
[12] and prove the classical result that if all roots of an analogue of the characteristic equation introduced
in [7] have negative real parts, then the zero solution of the considered homogeneous linear fractional
differential system with distributed delay is asymptotically stable.
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2. Preliminaries

As is known, there are many different definitions of the fractional derivative, all of which generalize the
usual integer order derivative. Below we recall the definitions of Riemann-Liouville and Caputo fractional
derivatives as well as some of their basic properties.

Let us denote by Lloc
1 (R,R) the linear space of all locally Lebesgue integrable functions f : R→ R. Then

for each a ∈ R and f ∈ Lloc
1 (R,R) the left-sided fractional integral operator of order α > 0, α ∈ R is defined

by

(D−αa+ f )(t) = (Iαa+ f )(t) =
1

Γ(α)

t∫
a

(t − s)α−1 f (s)ds, t > a

(D0
0+ f )(t) = (I0

0+ f )(t) = f (t)
and the corresponding left side Riemann-Liouville fractional derivative by

RLDα
a+ f (t) =

(
d
dt

)n

(In−α
a+ f )(t) =

1
Γ(n − α)

(
d
dt

)n t∫
a

(t − s)n−α−1 f (s)ds,

where t > a,n = [α] + 1, α <N and n = α, α ∈N. Note some properties of the Riemann-Liouville fractional
derivative, where with Id we denote the identity operator:

(j) RLDα
a+D−αa+ = Id, α > 0;

(jj) D−αa+ RLDα
a+ f (t) = f (t) −

n∑
k=1

[RLDα−k
a+ f (t)](a)

Γ(α−k+1) (t − a)α−k;

(jjj) RLDα
0+

tγ =
Γ(γ+1)tγ−α

Γ(γ+1−α) , α > 0, γ > −1, t > 0.

The Caputo fractional left side derivative CDα
a+ is defined by the equality

CDα
a+ f (t) =

1
Γ(n − α)

t∫
a

(t − s)n−α−1 f (n)(s)ds,

where t > a,n = [α] + 1, α < N and n = α, α ∈ N. The next formula clears the close connection between the
Caputo and the Riemann-Liouville derivatives:

CDα
a+ f (t) = RLDα

a+[ f (s) −
n−1∑
k=0

f (k)(a)
k!

(s − a)k](t)

Note some properties of the Caputo fractional derivative:

(jv) D−αa+ CDα
a+ f (t) = f (t) −

n−1∑
k=0

f (k)(a)
Γ(k+1) (t − a)k;

(v) RLDα
a+ f (t) =

n−1∑
k=0

f (k)(a)
Γ(1+k−α) (t − a)k−α + CDα

a+ f (t).

The Laplace transform of the Riemann-Liouville fractional derivative RLDα
0+

f (t) is

(vj) (LRLDα
0+

f )(p) =
∞∫
0

e−pt
RLDα

0+
f (t)dt = pα f̂ (p) −

n−1∑
k=0

pk[RLDα−k−1
0+

f (t)]t=0

and the Laplace transform of the Caputo fractional derivative CDα
a+ f (t) is

(vjj) (LCDα
0+

f )(p) =
∞∫
0

e−pt
CDα

0+
f (t)dt = pα f̂ (p) −

n−1∑
k=0

pα−k−1 f (k)(0), n − 1 ≤ α < n,

where (L f )(p) =
∞∫
0

e−pt f (t)dt = f̂ (p),n ∈N.
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3. Equivalence between the Initial Value Problem and the Volterra Integral Equation

Consider the neutral linear delayed system of incommensurate type with distributed delay

Dαk
0+

[xk(t) −
n∑

j=1

0∫
−t

x j(t + θ)dv j
k(t, θ)] =

n∑
j=1

0∫
−σ

x j(t + θ)dθu j
k(t, θ) + fk(t) k = 1, 2, . . . ,n (3.1)

where Dαk
0+

denotes either RLDαk
0+

(the Riemann-Liouville fractional derivative) or CDαk
0+

(the Caputo fractional
derivative), αk ∈ (0, 1), τ, σ ∈ R0+ = (0,∞).

Introduce the following notations:

X(t) = (x1(t), ..., xn(t))T, |X(t)| =
n∑

k=1

|xt(t)|, F(t) = ( f1(t), . . . , fn(t))T

RLDα
0+X(t) = (RLDα1

0+
x1(t), . . . ,RL Dαn

0+
xn(t))T, CDα

0+X(t) = (CDα1
0+

x1(t), . . . ,C Dαn
0+

xn(t))T,

for each t ∈ R+ = [0,∞). For W : R × R → Rn×n,W(t, θ) = {wi
j(t, θ)}ni, j=1 we denote |W(t, θ)| =

n∑
k, j=1
|w j

k(t, θ)|.

With Cwe denote the Banach space of the initial vector functions

C = {Φ : [−h, 0]→ Rn
| Φ(t) = (φ1(t), . . . , φn(t))T, φk ∈ C([−h, 0],R), 1 ≤ k ≤ n, h = max(σ, τ)}

with the norm ||Φ|| = sup
t∈[−σ,0]

n∑
k=1
|φk(t)| = sup

t∈[−σ,0]
|Φ(t)| and by BV[a, b] the linear space of functions W :

R × R → Rn×n with bounded variation in θ on [a, b] ⊂ R, a ≤ b for every t ∈ R+, where Var[a,b]W(t, ·) =
n∑

k, j=1
Var[a,b]w

j
k(t, ·).

We say that for the kernels U,V : R×R→ Rn×n the conditions (S) are fulfilled if the following conditions
hold:

(S1) The functions (t, θ)→ U(t, θ) and (t, θ)→ V(t, θ) are measurable on (t, θ) ∈ R ×R and normalized
so that U(t, θ) = 0,V(t, θ) = 0 for θ ≥ 0 and U(t, θ) = U(t,−σ) for θ ≤ −σ and V(t, θ) = V(t,−τ) for θ ≤ −τ .

(S2) For each t ∈ R+ the functions U(t, θ) and V(t, θ) are continuous from the left in θ on (−σ, 0) and
(−τ, 0) respectively.

(S3) U(t, ·) ∈ BV[−h, 0] and there exists a function z ∈ Lloc
1 (R,R+) such that Var[−σ,0]U(t, ·) ≤ z(t).

(S4) V(t, ·) ∈ BV[−h, 0] and is uniformly nonatomic at zero (see [4]), i.e. for every ε > 0, there exists

δ(ε) > 0 such that Var[−δ,0]V(t, ·) =
n∑

k, j=1
Var[−δ,0]v

j
k(t, ·) < ε.

(S5) For each t ∈ R+ the following relations hold:
0∫
−σ

|U(t, θ)−U(t∗, θ)|dθ→ 0,
0∫
−τ

|V(t, θ)−V(t∗, θ)|dθ→ 0

when t∗ → t.
(S6) The Lebesgue decomposition of the kernel V(t, θ) has no singular part and has the form:

V(t, θ) = ℵ(t, θ) +

θ∫
−τ

B(t, s)ds, (3.2)

where t ∈ R+, θ ∈ [−τ, 0],ℵ(t, θ) = {a j
k(t)H(θ + τ j

k(t))}nk, j=1,B(t, θ) = {b j
k(t, θ)}nk, j=1 and H(t) is the Heaviside

function.
(S7) T ∈ C(R+,Rn

+),A ∈ Lloc
1 (R+,Rn), where T(t) = {τ j

k(t))}nk, j=1, A(t) = {a j
k(t))}nk, j=1 is locally bounded and

B(t, θ) is continuous in respect of t for each θ ∈ [−τ, 0].
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First we will study the system (3.1) when the derivatives are in Riemann-Liouville sense and consider
the Cauchy problem for (3.1) under the initial conditions

Dαk−1
0+

xk(t) = φk(t), t ∈ [−h, 0],Φ ∈ C, 1 ≤ k ≤ n. (3.3)

Taking into account Lemma 3.2 in [5], the initial value problem IVP (3.1), (3.3) can be rewritten in the
form

Dα
0+(X(t) −

0∫
−τ

[dθV(t, θ)]X(t + θ)) =

0∫
−σ

[dθU(t, θ)]X(t + θ) + F(t), (3.4)

Xα(t) = Φ(t), t ∈ [−h, 0],Φ ∈ C, (3.5)

where α = (α1, . . . , αn) and Xα(t) = (Γ(α1)t1−α1 x1(t), . . . ,Γ(αn)t1−αn xn(t))T.
Let J ⊂ R be an arbitrary interval and denote with `(J,Rn) the real linear space of all Lebesgue measurable

functions G = (11, . . . , 1n)T : J→ Rn.

Definition 3.1. A function G ∈ `(J,Rn) is said to be α-continuous at t0 ∈ J if there exists an α = (α1, ..., αn)
such that the functions fk(t) := |t − t0|

αk1k(t) are continuous at t0 ∈ J, 1 ≤ k ≤ n.

Denote by CαM(Cα∞) the real linear space of all α-continuous at zero functions G : JM → Rn(G : J∞ → Rn)
for which the functions fk, 1 ≤ k ≤ n in the representation given in Definition 3.1 are continuous in
JM = [−h,M](J∞ = [−h,∞)).

Definition 3.2. The vector function X(t) = (x1(t), ..., xn(t))T is a solution of the IVP (3.1), (3.3) in J∞(JM) if
X ∈ Cα∞(CαM) satisfies the system (3.1) for t ∈ R0+ (t ∈ (0,M]) and the initial condition (3.3) for t ∈ [−h, 0].

Consider the system

xk(t) =
φk(0)tαk−1

Γ(αk)
+

n∑
j=1

0∫
−τ

x j(t + θ)dv j
k(t, θ)+

+
1

Γ(αk)
[

t∫
0

(t − s)αk−1(
n∑

j=1

0∫
−σ

x j(s + θ)dθu j
k(s, θ))ds +

t∫
0

(t − s)αk−1 fk(s)ds]

(3.6)

k = 1, 2, . . . ,n.

Lemma 3.3. Let the following conditions hold:

1. Conditions (S) hold.
2. F ∈ Lloc

1 (R+,Rn) be locally bounded.

3. τ j
k(0) > 0, 1 ≤ k, j ≤ n.

Then every solution X ∈ Cα∞ of IVP (3.1), (3.3) is a solution of the system (3.6) and satisfies the condition(3.5) and
vice versa.

Proof. Let X ∈ Cα∞be an arbitrary solution of the IVP (3.1), (3.3). Then applying for k = 1, 2, . . . ,n the operator
D−αk

0+
on the both sides of (3.1) taking into account (3.2) and ( j j) we obtain the equality
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xk(t) −
n∑

j=1

0∫
−τ

x j(t + θ)dv j
k(t, θ) −

tαk−1

Γ(αk)

[RLDαk−1
0+

xk(t)](0) − [RLDαk−1
0+

n∑
j=1

0∫
−τ

x j(t + θ)dv j
k(t, θ)](0)

 =

=
1

Γ(αk)
[

t∫
0

(t − s)αk−1(
n∑

j=1

0∫
−σ

x j(s + θ)dθu j
k(s, θ))ds +

t∫
0

(t − s)αk−1 fk(s)ds]

(3.7)

Applying Lemma 3.2 in [5] to the third and the fourth addend in the left side of (3.7) and taking into account
conditions (S6) and (S7) we receive that

tαk−1

Γ(αk)
[RLDαk−1

0+
xk(t)](0) = tαk−1 lim

t→0+
t1−αk xk(t) = tαk−1φk(0) (3.8)

and

tαk−1

Γ(αk)
[RLDαk−1

0+

n∑
j=1

0∫
−τ

x j(t + θ)dv j
k(t, θ)](0) = tαk−1 lim

t→0+
t1−αk

n∑
j=1

0∫
−τ

x j(t + θ)dv j
k(t, θ) =

= tαk−1 lim
t→0+

t1−αk

n∑
j=1

(a j
k(t)x j(t − τ

j
k(t)) +

0∫
−τ

b j
k(t, θ)x j(t + θ)dθ)

(3.9)

From conditions (S) and condition 3 of the lemma it follows that

lim
t→0+

t1−αk

n∑
j=1

(a j
k(t)x j(t − τ

j
k(t)) +

0∫
−τ

b j
k(t, θ)x j(t + θ)dθ) = 0. (3.10)

Then from (3.7) it follows that the solution X ∈ Cα∞ of IVP (3.1), (3.3) is a solution of the system (3.6) and
satisfies the condition (3.5).

Let X ∈ Cα∞ be a solution of the system (3.6) for t ∈ R0+ which satisfies the condition (3.5). Taking into
account ( j) and ( j j j) we conclude that every such solution is a solution of the IVP (3.1), (3.3).

Remark 3.4. Note that if the Lebesgue decompositions of the kernels U(t, θ) and V(t, θ) have no singular
and absolutely continuous part and the delays are finite number and constants as in the case considered in
[12] then the condition 3 of Lemma 3.3 is ultimately fulfilled.

Corollary 3.5. Let the conditions of Lemma 3.3 hold. Then the condition φk(0) = 0, 1 ≤ k ≤ n is necessary for the
IVP (3.1), (3.3) to have a solution X ∈ C(J∞,Rn).

Proof. Let suppose that there exists a solution of IVP(3.1), (3.3) such that X ∈ C(J∞,Rn). For arbitrary fixed
t0 ∈ R0+ we denote M(t0) = max

1≤k≤n
(max( sup

t∈[0,t0]
|xk(t)|, sup

t∈[0,t0]
| f (t)k|)). Then for each t ∈ (0, t0] in virtue of Lemma

3.3 for the third addend from (3.6) we obtain the estimation

|
1

Γ(αk)

n∑
j=1

t∫
0

[(t − s)αk−1

0∫
−σ

x j(s + θ)dθu j
k(s, θ)]ds +

1
Γ(αk)

t∫
0

(t − s)αk−1 fk(s)ds| ≤

≤
M(t0)
αkΓ(αk)

 sup
t∈[0,t0]

Var[−σ,0]U(t, ·) + 1

 tαk

(3.11)

Lemma 1 in [8] implies that the second addend from (3.6) has a finite limit for t→ 0+. Then from (3.6) and
(3.11) it follows that lim

t→0+
xk(t) < ∞ if φk(0) = 0, 1 ≤ k ≤ n.
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4. Existence and Uniqueness of the Solutions of the Initial Value Problem

Let Φ ∈ C be an arbitrary initial function and for each M > 0 define the set

ΩΦ
M = {G : JM → R

n
| G ∈ CαM,Gα(t) = Φ(t), t ∈ [−h, 0]},

where Gα(t) = (Γ(α1)t1−α111(t), . . . ,Γ(αn)t1−αn1n(t))T.
Introduce for G,G∗ ∈ ΩΦ

M the metric function dM : ΩΦ
M ×ΩΦ

M → R+ with

dM(G,G∗) = sup
t∈JM

n∑
k=1

|t|1−αk |1k(t) − 1∗k(t)|.

Since every G ∈ ΩΦ
M is α-continuous at zero, then the metric function dM takes only finite values and

therefore the set ΩΦ
M equipped with dM is a complete metric space.

Introduce for each G = (11, ..., 1n)T
∈ ΩΦ

M the operator<with<G(t) = (<111(t), ...,<n1n(t)), where

<k1k(t) =
φk(0)tαk−1

Γ(αk)
+

n∑
j=1

0∫
−τ

1 j(t + θ)dv j
k(t, θ)+

+
1

Γ(αk)
[

t∫
0

(t − s)αk−1(
n∑

j=1

0∫
−σ

1 j(s + θ)dθu j
k(s, θ))ds +

t∫
0

(t − s)αk−1 fk(s)ds]

(4.1)

for t > 0 and Dαk−1
0+
<k1k(t) = φk(t) for t ∈ [−h, 0] .

Theorem 4.1. Let the conditions of Lemma 3.3 hold. Then there exists M > 0 such that the IVP (3.1), (3.3) has a
unique solution X ∈ CαM.

Proof. Since F ∈ Lloc
1 (R+,Rn) and is locally bounded we can conclude that the third addend in the right

side of (4.1) is a continuous function for t ∈ R0+. From conditions (S) and Lemma 1 in [8] it follows that
n∑

j=1

0∫
−τ

1 j(t + θ)dv j
k(t, θ) is a continuous function for t ∈ R0+ and each 1 ≤ j, k ≤ n. Taking into account that

from (4.1) and Lemma 3.2 in [5] it follows that (<G)α(t)|t=0 = Φ(0) holds, we can conclude that the operator
<maps ΩΦ

M into ΩΦ
M.

Let G,G∗ ∈ ΩΦ
M be arbitrary. Then from (3.7) for 0 < t < τ we have the estimation

|<k1k(t) −<k1
∗

k(t)| ≤
n∑

j=1

|

0∫
−σ

(1 j(t + θ) − 1∗j(t + θ))dθv j
k(t, θ)|+

+
1

Γ(αk)

t∫
0

(t − s)αk−1
n∑

j=1

|

0∫
−σ

(1 j(s + θ) − 1∗j(s + θ))dθu j
k(s, θ)|ds ≤

≤

n∑
j=1

|a j
k(t)(1 j(t − τ

j
k(t) − 1∗j(t − τ

j
k(t))))| +

0∫
−t

|b j
k(t, θ)| |1 j(t + θ) − 1∗j(t + θ)|dθ+

+

sup
t∈JM

Vars∈[−σ,0]U(t, s)

Γ(αk)
sup
t∈JM

|(1k(t) − 1∗k(t))|

t∫
0

(t − s)αk−1ds

(4.2)
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Conditions (S) and condition 3 of Lemma 3.3 implies that there exists point t∗ ∈ (0, τ) and constant B∗ > 0,
such that for t ∈ [−h, t∗]we have that t − τ j

k(t) < 0 and therefore from (4.2) follows the inequality

|<k1k(t) −<k1
∗

k(t)| ≤ (tB∗ + tαk

sup
t∈JM

Vars∈[−σ,0]U(t, s)

αkΓ(αk)
) sup

t∈JM

|(1k(t) − 1∗k(t))| (4.3)

Let 0 < q < 1 be arbitrary. Then there exists M(q) ∈ (0, t∗] such that for t ∈ [−h,M] from (4.3) it follows
dM(<G,<G∗) ≤ qdM(G,G∗) and therefore the operator< is contractive in ΩΦ

M.

From Theorem 4.1 it follows that any solution of the IVP (3.1), (3.3) is unique on each interval where this
solution does exists. Let assume that there exist two solutions X1,X2 of the IVP (3.1), (3.3), with intervals
of existence JM1 and JM2 ,M1 < M2. Then it is simply to see that X1(t) = X2(t), t ∈ JM1 and therefore X2(t) is a
continuations of X1(t).

Corollary 4.2. Let the conditions of Theorem 4.1 hold. Then the IVP (3.1), (3.3) has a unique solution X ∈ Cα∞.

Proof. Let Φ ∈ C be an arbitrary fixed initial function. Then according to Theorem 4.1 there exists M0 > 0
such that the IVP (3.1), (3.3) has a unique solution X0

Φ
∈ CαM0

.
Without loss of generality we can assume that 0 < M0 < h. Let consider an auxiliary IVP for the system

(3.6) with the initial condition

X(t) = X0
Φ(t), t ∈ [M0 − h,M0]. (4.4)

Then there exists M1 > M0 such that the IVP (3.6), (4.4) has a unique solution in the interval [M0,M1] which
is α-continuous at zero, continuous for t ∈ [M0 − h,M1] \ {0} and satisfies the initial condition (4.4).

As in the proof of Theorem 4.1, for each M1 > M0 we define the metric space

ΩΦ
M1

= {G : [M0 − h,M1]→ Rn
| G ∈ C([M0,M1],Rn),G(t) = X0

Φ(t), t ∈ [M0 − h,M0]}

with metric function dM1 : ΩΦ
M1
×ΩΦ

M1
→ R+ with

dM1 (G,G∗) = sup
t∈[M0−h,M1]

n∑
k=1

|t|1−αk |1k(t) − 1∗k(t)|.

For each G = (11, ..., 1n)T
∈ ΩΦ

M1
define the operator <G(t) = (<111(t), ...,<n1n(t)) with equation (4.1).

Further the proof that the operator < is contractive when M1 is small enough is similar to the proof of
Theorem 4.1 and will be omitted.

Then using the step method until Mm < h we find a sequence of solutions Xm
Φ

(t),m = 2, 3, . . . satisfying
the system (3.6) for t ∈ [Mm,Mm+1] and the initial condition

X(t) = Xm
Φ(t), t ∈ [Mm − h,Mm],m = 1, 2, . . . (4.5)

The corresponding metric spaces for each step are defined with

ΩΦ
Mm

= {G : [Mm−1 − h,Mm]→ Rn
| G ∈ C([Mm−1,Mm],Rn),G(t) = Xm−1

Φ (t), t ∈ [Mm−1 − h,Mm−1]}

with metric function

dMm (G,G∗) = sup
t∈[Mm−1−h,Mm]

n∑
k=1

|t|1−αk |1k(t) − 1∗k(t)|.

and corresponding operator<G(t) = (<111(t), ...,<n1n(t)) acting in ΩΦ
Mm

and defined by (4.1).
If there exists a number m0 ≥ 1 for which Mm0 ≥ h then the function Xm0

Φ
(t) will be continuous at teast

in the interval (Mm0 − h,Mm0 ]. Then the function Xm0+1
Φ

(t) will be continuous in [Mm0 ,Mm0+1] and can be
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used as continuous initial function for the IVP (3.6), (4.5) for m = m0 + 2. The existence of a unique solution
for the IVP (3.6), (4.5) defined in the interval [Mm0+1 − h,∞) is well known result and thus in this case the
statement of Corollary 4.2 is proved.

Let assume that Mm < h,m = 1, 2, . . . and denote sup
m∈N

Mm = tmax
≤ h. If we suppose that Mm∗ = h for

some m∗ ∈N then Mm∗+1 > tmax which is impossible.
Let introduce partial ordering by inclusion in the set of the definition intervals of all solutions of the

IVP (3.6), (3.5) and the IVP (3.6), (4.4) for each initial interval [M − h,M],M ∈ (0, tmax). From Zorn’s lemma
it follows that there exists a maximal solution Xmax(t) of the IVP (3.1), (3.3) defined in an open interval
t ∈ (0, tmax) which is a continuation of all other solutions of the IVP (3.6), (3.5) and the IVP (3.6), (4.4) for
each initial interval [M− h,M],M ∈ (0, tmax). From Theorem 4.1 and (3.6) passing t→ tmax it follows that the
equation (3.6) holds for t = tmax, which is impossible. Thus tmax = ∞.

Consider the system (3.1) in the case when the fractional derivatives are in Caputo sense with the initial
condition

X(t) = Φ(t), t ∈ [−h, 0],Φ ∈ C (4.6)

It is not difficult using ( jv) to see that if the conditions (S1) - (S5) hold then every solution X ∈ C(J∞,Rn)
of the IVP (3.1), (4.6) (with derivatives in the Caputo sense) is a continuous solution on R+ of the system

xk(t) = φk(0) +

n∑
j=1

0∫
−τ

x j(t + θ)dv j
k(t, θ)+

+
1

Γ(αk)
[

t∫
0

(t − s)αk−1(
n∑

j=a

0∫
−σ

x j(s + θ)dθu j
k(s, θ))ds +

t∫
0

(t − s)αk−1 fk(s)ds]

(4.7)

for k = 1, 2, . . . ,n satisfying the initial condition (4.6) for t ∈ [−h, 0] and vice versa - every continuous solution
on R+ of (4.7) satisfying the initial condition (4.6) for t ∈ [−h, 0] is a solution of IVP (3.1), (4.6).

Theorem 4.3. Let the following conditions hold:

1. The conditions (S1) - (S5) hold.
2. F ∈ Lloc

1 (R+,Rn) and is locally bounded.

Then the IVP (3.1), (4.6)has a unique solution X ∈ C(J∞,Rn).

The proof is fully analogical of the proofs of Theorem 4.1 and Corollary 4.2 and will be omitted.

Corollary 4.4. Let the conditions of Theorem 4.3 hold. Then the necessary and sufficient condition the IVP (3.1),
(3.3) (with RL derivatives) to have a unique solution X ∈ C(J∞,Rn) is φk(0) = 0, 1 ≤ k ≤ n.

Proof. Obviously the systems (3.6) and (4.7) coincides when φk(0) = 0, 1 ≤ k ≤ n and therefore the statement
of Corollary 4.4 follows from Corollary 3.5 and Theorem 4.3.

5. Stability Analysis of the Autonomous Linear Fractional Differential System

Consider the IVP for the autonomous case of system (3.1)

Dα
0+(X(t) −

0∫
−τ

[dV(θ)]X(t + θ)) =

0∫
−σ

[dU(θ)]X(t + θ)) (5.1)

with the initial conditions (3.3).
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Definition 5.1. The zero solution of the system (5.1), t ∈ R+ is said to be:
(a) Stable (uniformly) if for any ε > 0 there is a δ(ε) > 0 such that for every initial function Φ ∈ C with
||Φ|| < δ the corresponding solution X(t) satisfies for each t ∈ R+ the inequality |X(t)| ≤ ε.

(b) Locally asymptotically stable if there is a ∆ > 0 such that for every initial function Φ ∈ C with ||Φ|| < ∆
for the corresponding solution X(t) we have that lim

t→∞
|X(t)| = 0.

(c) Globally asymptotically stable (GAS) if for every initial function Φ ∈ C for the corresponding solution
X(t) we have that lim

t→∞
|X(t)| = 0.

For the system (5.1) we call the matrix valued function G(p)

G(p) =



pα1 [1 −
0∫
−τ

epθdv1
1(θ)] −

0∫
−σ

epθdu1
1(θ) −[pα1

0∫
−τ

epθdv2
1(θ) +

0∫
−σ

epθdu2
1(θ)] . . . −[pα1

0∫
−τ

epθdvn
1 (θ) +

0∫
−σ

epθdun
1 (θ)]

−[pα2
0∫
−τ

epθdv1
2(θ) +

0∫
−σ

epθdu1
2(θ)] pα2 [1 −

0∫
−τ

epθdv2
2(θ)] −

0∫
−σ

epθdu2
2(θ) . . . −[pα2

0∫
−τ

epθdvn
2 (θ) +

0∫
−σ

epθdun
2 (θ)]

. . .

−[pαn
0∫
−τ

epθdv1
n(θ) +

0∫
−σ

epθdu1
n(θ)] −[pαn

0∫
−τ

epθdv2
n(θ) +

0∫
−σ

epθdu2
n(θ)] . . . pαn [1 −

0∫
−τ

epθdvn
n(θ)] −

0∫
−σ

epθdun
n(θ)


(5.2)

characteristic matrix and the equation

det(G(p)) = 0 (5.3)

characteristic equation.
The next Theorem 5.2 establishes the dependence of the stability of the zero solution of system (5.1) with

derivatives in the Riemann-Liouville sense from the distribution of the roots of the characteristic equation.

Theorem 5.2. Let the following conditions be fulfilled:
1. The conditions (S) hold.
2. All roots of the characteristic equation (5.3) have negative real parts.

Then the zero solution of the system (5.1) with derivatives in the Riemann-Liouville sense is globally asymptotically
stable.

Proof. Let denote with X̂(p) = (x̂1(p), ..., x̂n(p))T, p ∈ C the Laplace-transform for the function X(t). Applying
the Laplace transform on the left side of (5.1), taking into account (vj), (3.2) and Lemma 3.2 in [5] we obtain
for each 1 ≤ k ≤ n

LRLDαk
0+

[xk(t)−
n∑

j=1

0∫
−τ

x j(t + θ)dv j
k(θ)](p) = pαk x̂k(p) − pαk

∞∫
0

e−pt(
n∑

j=1

0∫
−τ

x j(t + s)dv j
k(s))dt−

− Γ(αk)[φk(0) − lim
t→0+

t1−αk

n∑
j=1

a j
kx j(t − τ

j
k) − lim

t→0+
t1−αk

n∑
j=1

0∫
−τ

b j
k(θ)x j(t + θ)dθ]

(5.4)

Taking into account (3.3) and the Fubini-Tonelli theorem we obtain

∞∫
0

e−pt(
n∑

j=1

0∫
−τ

x j(t + θ)dv j
k(θ))dt =

n∑
j=1

0∫
−τ

(

∞∫
0

e−ptx j(t + θ)dt)dv j
k(θ) =

n∑
j=1

0∫
−τ

(

∞∫
θ

e−p(s−θ)x j(s)ds)dv j
k(θ) =

=

n∑
j=1

0∫
−τ

(

0∫
θ

e−p(s−θ)D1−α j

0+
φ j(s)ds)dv j

k(θ) +

n∑
j=1

0∫
−τ

epθ(

∞∫
0

e−psx j(s)ds)dv j
k(θ) =

=

n∑
j=1

0∫
−τ

(

0∫
θ

e−p(s−θ)D1−α j

0+
φ j(s)ds)dv j

k(θ) +

n∑
j=1

x̂ j(p)

0∫
−τ

epθdv j
k(θ)

(5.5)
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From conditions (S) and condition 3 of the Lemma 3.3 it follows that

lim
t→0+

t1−αk

n∑
j=1

a j
kx j(t − τ

j
k) − lim

t→0+
t1−αk

n∑
j=1

0∫
−τ

b j
k(θ)x j(t + θ)dθ = 0 (5.6)

Applying the Laplace transform on the right side of (5.1), the same way as in (5.3) we obtain that

n∑
j=1

0∫
−σ

(

∞∫
0

e−ptx j(t + θ)dt)dv j
k(θ) =

n∑
j=1

0∫
−σ

(

0∫
θ

e−p(s−θ)D1−α j

0+
φ j(s)ds)du j

k(s) +

n∑
j=1

x̂ j(p)

0∫
−σ

epsdu j
k(s). (5.7)

Then from (5.1) taking into account (5.4) - (5.7) we obtain the system

G(p)X̂(p) = r(p) (5.8)

where G(p) is the characteristic matrix given with (5.2), r(p) = (r1(p), . . . , rn(p))T, and for each 1 ≤ k ≤ n, we
have

rk(p) = pαk

n∑
j=1

0∫
−τ

(

0∫
θ

e−p(s−θ)D1−α j

0+
φ j(s)ds)dv j

k(θ) +

n∑
j=1

0∫
−σ

(

0∫
θ

e−p(s−θ)D1−α j

0+
φ j(s)ds)du j

k(θ) + φk(0)Γ(αk).

Multiplying both sides of (5.8) with p ∈ Cwe obtain that

G(p)pX̂(p) = pb(p) (5.9)

Condition 2 of the theorem implies that for Rep ≥ 0 the function pX̂(p) is a unique solution of the system
(5.9). The final value theorem of the Laplace transform [3] implies that for each k, 1 ≤ k ≤ n we have that
lim
t→∞

xk(t) = lim
p→0,Rep≥0

px̂k(p) = 0

Remark 5.3. According the knowledge of the authors the result of Theorem 5.2 is new even in the important
particular case of finite number constant delays.

Consider the system (5.1) in the case when Dαk
0+

are fractional derivatives in the Caputo sense CDαk
0+
, αk ∈

(0, 1), 1 ≤ k ≤ n, with the initial condition (3.9). It is not difficult to see that if the conditions of Theorem 5.2
hold, then the statements of the theorem are still true.

Theorem 5.4. Let the following conditions be fulfilled:

1. The conditions (S1) - (S5) hold.
2. All roots of the characteristic equation (5.3) have negative real parts.

Then the zero solution of system (5.1) with derivatives in Caputo sense is globally asymptotically stable.

Proof. Indeed as in the proof of Theorem 4.3 applying the Laplace transform on the both sides of (5.1),
taking into account (vjj), (3.9) we receive that

LDαk
0+

[xk(t) −
n∑

j=1

0∫
−τ

x j(t + θ)dv j
k(θ)](p) =

= pαk x̂k(p) − pαk

∞∫
0

e−pt(
n∑

j=1

0∫
−τ

x j(t + θ)dv j
k(θ))dt − pαk−1[φk(0) −

n∑
j=1

0∫
−τ

x j(θ)dv j
k(θ)]
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and then in the same way as in Theorem 5.2 from (5.1) we obtain the system

G(p)X̂(p) = r∗(p), (5.10)

where the matrix G(p) is the characteristic matrix given with (5.2), r∗(p) = (r∗1(p), . . . , r∗n(p))T,

r∗k(p) = pαk

n∑
j=1

0∫
−τ

(

0∫
θ

e−p(s−θ)φ j(s)ds)dv j
k(θ) +

n∑
j=1

0∫
−σ

(

0∫
θ

e−p(s−θ)φ j(s)ds)du j
k(θ) + pαk−1[φk(0) −

n∑
j=1

0∫
−τ

x j(θ)dv j
k(θ)]

for each k, 1 ≤ k ≤ n. Further the proof is similar as the proof of Theorem 5.2.

Remark 5.5. Note that the conditions (S) are ultimately fulfilled in the case considered in [12], when the
kernels have the form V(θ) = {vi

j(θ)}ni, j=1 = {ai jH(θ−τi j)}ni, j=1 and U(θ) = {ui
j(θ)}ni, j=1 = {ci jH(θ−σi j)}ni, j=1, ai j, ci j ∈

R, σi j ∈ [0, σ], τi j ∈ [0, τ], 1 ≤ i, j ≤ n, i.e. the kernels are autonomous and the Lebesgue decompositions have
no absolutely continuous and singular part and include only finite number of jumps.

Hence the statement of Theorem 5.4 generalized the result obtained in [12] for neutral systems with left
side derivatives in the Caputo sense in the particular case of finite number constant delays.

Moreover, if U(θ) has no jumps and singular part, then we have stability criteria for linear system of
fractional integro-differential equations.
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