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Path-Set Induced Closure Operators on Graphs

Josef Šlapala

aInstitute of Mathematics, Brno University of Technology, 616 69 Brno, Czech Republic

Abstract. Given a simple graph, we associate with every set of paths of the same positive length a closure
operator on the (vertex set of the) graph. These closure operators are then studied. In particular, it is shown
that the connectedness with respect to them is a certain kind of path connectedness. Closure operators
associated with sets of paths in some graphs with the vertex set Z2 are discussed which include the well
known Marcus-Wyse and Khalimsky topologies used in digital topology. This demonstrates possible
applications of the closure operators investigated in digital image analysis.

1. Introduction

Topological spaces in their usual meaning, i.e. those developed by Bourbaki [1], play a basic role in
mathematical analysis (where even special topologies are employed, namely the Hausdorff ones). In many
other branches of mathematics and in computer science, various generalizations of topological spaces are
often used. In particular, closure operators obtained from the Kuratowski ones by omitting some axioms
occur in numerous applications. For example, the so-called closure operators on categories studied in
categorical topology are supposed to satisfy just the axioms of extensiveness and monotony (and a certain
categorical axiom - the axiom of functionality) - see [4]. The closure operators usually employed in algebra
are just the extensive, monotone and idempotent ones. If also the condition is satisfied that the closure of
any set equals the union of the closures of all its finite subsets, we get the well-known algebraic closure
operators (cf. [6]). The convex hull operators used in geometry (cf. [16]) are just the grounded, extensive,
monotone and idempotent closure operators. Such closure operators occur also in logic - they are obtained
by assigning, to a given set A of formulas, the set of all formulas provable from A - cf.[10]. The closure
operators which are, in general, only grounded, extensive and monotone were studied by E.Čech in [2] and
those which are moreover additive, i.e. the so-called pretopologies, were studied by the same author in [3].
Pretopologies were employed for solving problems related to digital image processing in [12-14].

In this note we will study closure operators on graphs which are only grounded, extensive and monotone
in general (i.e. which are closure operators in the sense of [2]). These closure operators are induced by
sets of paths of a given length. We will study properties of the induced closure operators, in particular
the connectedness with respect to them. We will show that the connectedness is a path connectedness for
certain special paths. To demonstrate possible applications of our results in digital image analysis, we will
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J. Šlapal / Filomat 30:3 (2016), 863–871 864

discuss some closure operators associated with sets of paths in certain graphs with the vertex set Z2 and
we will show that these closure operators include some known closure operators on Z2 used in digital
topology, in particular the Marcus-Wyse and Khalimsky topologies.

2. Preliminaries

By a closure operator u on a set X we mean a map u: exp X→ exp X (where exp X denotes the power set
of X) which is
(i) grounded (i.e. u∅ = ∅),
(ii) extensive (i.e. A ⊆ X⇒ A ⊆ uA), and
(iii) monotone (i.e. A ⊆ B ⊆ X⇒ uA ⊆ uB).
The pair (X,u) is then called a closure space and, for every subset A ⊆ X, uA is called the closure of A.

A closure operator u on X which is
(iv) additive (i.e. u(A ∪ B) = uA ∪ uB whenever A,B ⊆ X) and
(v) idempotent (i.e. uuA = uA whenever A ⊆ X)
is called a Kuratowski closure operator or a topology and the pair (X,u) is called a topological space.

Given a cardinal m, a closure operator u on a set X and the closure space (X,u) are called an Sm-closure
operator and an Sm-closure space (briefly, an Sm-space), respectively, if the following condition is satisfied:

A ⊆ X⇒ uA =
⋃
{uB; B ⊆ A, card B < m}.

The algebraic closure operators are obtained from the idempotent Sℵ0 -closure operators by omitting the
requirement of groundedness. In [3], S2-closure operators and S2-spaces are called quasi-discrete. S2-
topological spaces are usually called Alexandroff spaces - see [6]. Of course, any S2-closure operator is
additive and is given by closures of the singleton subsets. It is also evident that any Sα-closure operator is
an Sβ-closure operator whenever α < β. Since any closure operator on a set X is obviously an Sα-closure
operator for each cardinal α with α > card X, there exists a least cardinal α such that u is an Sα-closure
operator. Such a cardinal is then an important invariant of the closure operator u. Evidently, if α ≤ ℵ0, then
any additive Sα-closure operator is an S2-closure operator.

Many concepts known for topological spaces (see e.g. [5]) may be naturally extended to closure spaces.
Given a closure space (X,u), a subset A ⊆ X is called closed if uA = A, and it is called open if X −A is closed.
A closure space (X,u) is said to be a subspace of a closure space (Y, v) if uA = vA ∩ X for each subset A ⊆ X.
We will speak briefly about a subspace X of (Y, v). A closure space (X,u) is said to be connected if ∅ and X are
the only subsets of X which are both closed and open. A subset X ⊆ Y is connected in a closure space (Y, v)
if the subspace X of (Y, v) is connected. A maximal connected subset of a closure space is called a component
of this space. All the basic properties of connected sets and components in topological spaces are preserved
also in closure spaces. A closure space (X,u) is said to be a T0-space if, for any points x, y ∈ X, from x ∈ u{y}
and y ∈ u{x} it follows that x = y, and it is called a T 1

2
-space if each singleton subset of X is closed or open.

Given closure spaces (X,u) and (Y, v), a map ϕ : X → Y is said to be a continuous map of (X,u) into (Y, v) if
f (uA) ⊆ v f (A) for each subset A ⊆ X.

3. N-Path Sets in Graphs and Associated Closure Operators

Given a natural number (i.e. a finite ordinal) m, we write briefly i < m and i ≤ m instead of 0 ≤ i < m
and 0 ≤ i ≤ m, respectively, because i is considered to be a natural number, too (i.e. the linear order < and
the corresponding partial order ≤ are considered to be defined on just the set of natural numbers).

Let G = (V,E) be an (undirected simple) graph with V , ∅ the vertex set and E the set of edges. We denote
by P(G) the set of all paths in G, i.e. the set of all sequences (xi| i ≤ m) where m is a natural number, xi ∈ V
for every i ≤ m, and {xi, xi+1} ∈ E whenever i < m. If B ⊆ P(G), we put B−1 = {(xi| i ≤ m); (xm−i| i ≤ m) ∈ B}.

Given a natural number n > 0, let Bn ⊆ P(G) be a set of paths of length n. Bn will be called an n-path set
in G. We put
B̂n = {(xi| i ≤ m) ∈ P(G); 0 < m ≤ n and there exists (yi| i ≤ n) ∈ Bn such that xi = yi for every i ≤ m} (so that
Bn ⊆ B̂n) and
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B
∗
n = B̂n ∪ B̂

−1
n .

The elements of B∗n will be called Bn-initial segments in G.
For any subset X ⊆ V we put
uBn X = X ∪ {x ∈ V; there exists (xi| i ≤ m) ∈ B̂n with {xi; i < m} ⊆ X and xm = x}.
Clearly, uBn is an Sn+1-closure operator on V. It will be said to be induced by Bn.

Let G = (V,E) and H = (U,F) be graphs. Let Bn and Cn be n-path sets in G and H, respectively (n > 0
a natural umber). A map f : V → U is said to be a (Bn,Cn)-homomorphism from G to H if (xi| i ≤ n) ∈ Bn
implies ( f (xi)| i ≤ n) ∈ Cn. Note that, if n = 1 and Bn and Cn are the sets of all paths of length 1 in G and H,
respectively, we get the usual homomorphism of G into H. The following statement is evident:

Proposition 3.1. Let G = (V,E) and H = (U,F) be graphs and letBn and Cn be n-path sets in G and H, respectively.
If a map f : V → U is a (Bn,Cn)-homomorphism from G to H, then it is a continuous map of (V,uBn ) into (U,uCn ).

Of course, closure operators induced by n-path sets are not additive in general. On the other hand, we
have:

Proposition 3.2. Let G = (V,E) be a graph and let Bn be an n-path set in G. Then the union of a system of closed
subsets of (V,uBn ) is a closed subset of (V,uBn ).

Proof. Let {A j; j ∈ J} be a system of closed subsets of (V,uBn ) and let x ∈ uBn

⋃
j∈J A j be a vertex such that

there exists (xi| i ≤ m) ∈ B̂n with the property that x = xm and xi ∈
⋃

j∈J A j for all i < m. In particular, we have
x0 ∈

⋃
j∈J A j and so there exists j0 ∈ J such that x0 ∈ A j0 . Suppose that {xi; i ≤ m} is not a subset of A j0 . Then

there is a smallest natural number p ≤ m such that xp < A j0 . Consequently, 0 < p and xi ∈ A j0 for all i < p.
Since (xi| i ≤ p) ∈ B̂n, we have xp ∈ uBn A j0 = A j0 , which is a contradiction. Therefore, {xi; i ≤ m} ⊆ A j0 and,
hence, x ∈ A j0 ⊆

⋃
j∈J A j. We have shown that uBn

⋃
j∈J A j ⊆

⋃
j∈J A j. As the converse inclusion is obvious,

the proof is complete.

Proposition 3.3. Let G = (V,E) be a graph and let Bn be an n-path set in G. If uBn is idempotent, then (V,uBn ) is
an Alexandroff topological space.

Proof. Let X ⊆ V be a subset and x ∈ uBn X be a vertex. If x ∈ X, then x ∈
⋃

x∈X uBn {x} because of the
extensiveness of uBn . Let x < X. Then there exists (xi| i ≤ m) ∈ B̂n such that x = xm and xi ∈ X for all i < m.
Consequently, we have x ∈ uBn {xi; i < m} and {xi; i < j} ⊆ uBn {xi; i < j − 1} whenever 1 < j ≤ m. Hence,
we have x ∈ uBn {xi; i < m} ⊆ uBn uBn {xi; i < m − 1} = uBn {xi; i < m − 1} ⊆ uBn uBn {xi; i < m − 2} = uBn {xi; i <
m − 2} ⊆ . . . uBn {x0}. Thus, x ∈

⋃
x∈X uBn {x} and the inclusion uBn X ⊆

⋃
x∈X uBn {x} is proved. As the converse

inclusion follows from the monotony of uBn , the proof is complete.

Definition 3.4. An n-path set Bn in a graph is said to be terse provided that the following condition holds:
If (xi| i ≤ n), (yi| i ≤ n) ∈ Bn are paths with {x0, x1} = {y0, y1}, then (xi| i ≤ n) = (yi| i ≤ n).

Thus, for example, a 1-path set in a graph G = (V,E) is terse if, for every edge {x, y} ∈ E, it contains at
most one of the paths (x, y) and (y, x).

Theorem 3.5. Let Bn be a terse n-path set in a graph G = (V,E). Then (v,uBn ) is a T0-space.

Proof. Let x, y ∈ V, x ∈ uR{y}, y ∈ uR{x}. Then there is a path (xi| i < α) ∈ Bn with x0 = y and x1 = x, and
there is a path (yi| i < α) ∈ Bn with y0 = x and y1 = y. As Bn is terse, (xi| i < α) = (yi| i < α). Therefore, x = y,
so that (X,uBn ) is a T0-space.

Theorem 3.6. Let Bn be a terse n-path set in a graph G = (V,E). Then Bn is a minimal element (with respect to the
set inclusion) of the set of all n-path setsDn in G satisfying uDn = uBn .
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Proof. Let Dn be an n-path set in G with uDn = uBn and let Dn ⊆ Bn. Let (xi| i ≤ n) ∈ Bn be an arbitrary
element. Then (x0, x1) ∈ Bn, hence x1 ∈ uBn {x0}. Consequently, x1 ∈ uDn {x0}, so that (x0, x1) ∈ B̂n. Therefore,
there is (yi| i ≤ n) ∈ Dn such that y0 = x0 and y1 = x1. Since (yi| i ≤ n) ∈ Bn and Bn is terse, we have
(xi| i ≤ n) = (yi| i ≤ n). Consequently,Dn = Bn.

Definition 3.7. An n-path setBn in a graph is said to be strongly terse provided that the following condition
holds:

If (xi| i ≤ n), (yi| i ≤ n) ∈ Bn are paths with {x0, x1} = {yi0 , yi1 } for some i0, i1 ≤ n, then (xi| i ≤ n) = (yi| i ≤ n).

Theorem 3.8. If Bn is a strongly terse n-path set in a graph G, then the correspondence Bn 7→ uBn is one-to-one.

Proof. Given a natural number n > 0, for any closure operator u on G we define an n-path set in G as follows:
Bn(u) = {(xi| i ≤ n) ∈ P(G); (xi| i ≤ n) has the property that, for each j, 0 < j ≤ n, and each proper subset A j ⊂

{xi; i < j}, we have x j ∈ u{xi; i < j} − uA j}.
Let Bn be a strongly terse n-path set in G and let (xi| i ≤ n) ∈ Bn. If i0, 0 < i0 ≤ n, is an arbitrary natural
number, then xi0 ∈ uBn {xi; i < i0}. Let A ⊆ {xi; i < i0} be an arbitrary subset and let xi0 ∈ uBn A. Then there
exist a path (y j| j ≤ n) ∈ Bn and a natural number j0, 0 < j0 ≤ n, such that xi0 = y j0 and {y j; j < j0} ⊆ A,
hence {y j; j ≤ j0} ⊆ {xi; i ≤ i0}. Thus, {y0, y1} ⊆ {xi; i ≤ n} and, consequently, (xi| i ≤ n) = (y j| j ≤ n). Hence,
i0 = j0 and, therefore, A = {xi; i < i0}. We have shown that xi0 < uBn A whenever A ⊆ {xi; i < i0} is a proper
subset. It follows that (xi| i ≤ n) ∈ Bn(uBn ) which results in Bn ⊆ Bn(uBn ).

Conversely, let (xi| i ≤ n) ∈ Bn(uBn ). As x1 ∈ uBn {x0} and Bn is strongly terse, there is a unique path
(yi| i ≤ n) ∈ Bn with x0 = y0 and x1 = y1. Let i0, 1 < i0 ≤ n, be a natural number such that xi = yi for all
i < i0. Since xi0 ∈ uR{xi; i < i0}, there are a path (z j| j ≤ n) ∈ Bn and a natural number j0, 0 < j0 ≤ n, such that
xi0 = z j0 and {z j; j < j0} ⊆ {xi; i < i0}. Then xi0 ∈ uBn {z j; j < j0}, hence {z j; j < j0} = {xi; i < i0} = {yi; i < i0}. We
have i0 = j0, so that xi0 = zi0 = yi0 (because (yi| i ≤ n) is unique). Consequently, (xi| i ≤ i0) = (yi| i ≤ i0). Now
the principle of mathematical induction implies (xi| i ≤ n) = (yi| i ≤ n). We have shown that (xi| i ≤ n) ∈ Bn,
which results in Bn(uBn ) ⊆ Bn. Therefore, Bn(uBn ) = Bn and the proof is complete.

We will need the following

Lemma 3.9. Let Bn be a strongly terse n-path set in a graph G, let p, q be natural numbers with 0 < p < q ≤ n, and
let (xi| i ≤ p), (yi| i ≤ q) be Bn-initial segments in G such that {xi; i ≤ p} ⊆ {yi; i ≤ q} and x0 = y0. Then there exists
a unique path (zi| i < n) ∈ Bn such that xi = zi for all i ≤ p and yi = zi for all i ≤ q.

Proof. As (xi| i ≤ p) is a Bn-initial segment, there is a path (ti| i ≤ n) ∈ Bn such that 1) xi = ti for all i ≤ p or 2)
xi = tp−i for all i ≤ p. Similarly, as (yi| i ≤ q) is a Bn-initial segment, there is a path (zi| i ≤ n) ∈ Bn such that
1’) yi = zi for all i ≤ q or 2’) yi = zq−i for all i ≤ q. Admit that 1) and 2’) are valid. Then t0 = x0 = y0 = zq and
t1 = x1 ∈ {yi; i ≤ q} ⊆ {zi; i ≤ n}, hence (ti| i ≤ n) = (zi| i ≤ n). We have z0 = t0 = zq, which is a contradiction.
Admit that 2) and 1’) are valid. Then t0 = xp ∈ {yi; i ≤ q} ⊆ {zi; i ≤ n} and t1 = xp−1 ∈ {yi; i ≤ q} ⊆ {zi; i ≤ n},
hence (ti| i ≤ n) = (zi| i ≤ n). We have t0 = z0 = y0 = x0 = tp, which is a contradiction. Admit that 2)
and 2’) are valid. Then t0 = xp ∈ {yi; i ≤ q} ⊆ {zi; i ≤ n} and t1 = xp−1 ∈ {yi; i ≤ q} ⊆ {zi; i ≤ n}, hence
(ti| i ≤ n) = (zi| i ≤ n). We have tp = x0 = y0 = zq = tq, which is a contradiction because p < q. Consequently,
only 1) and 1’) may be valid simultaneously. Then t0 = x0 = y0 = z0 and t1 = x1 ∈ {yi; i ≤ q} ⊆ {zi; i ≤ n},
hence (ti| i ≤ n) = (zi| i ≤ n). The existence of (zi| i < n) is proved. As Bn is (strongly) terse, (zi| i < n) is
clearly unique.

Definition 3.10. An n-path set Bn in a graph G = (V,E) is said to be plain provided that the following
condition is satisfied:

If (xi| i ≤ n), (yi| i ≤ n) ∈ Bn and there are natural numbers i0, i1, i′0, i′1 ≤ n, i0 , i1, such that xi0 = yi′0 and
xi1 = yi′1 , then (xi| i ≤ n) = (yi| i ≤ n).

Clearly, every plain n-path set is strongly terse and every 1-path set is plain.
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Theorem 3.11. Let Bn be a plain n-path set in a graph G = (V,E), let x ∈ V and let A,B ⊆ V be minimal (with
respect to set inclusion) subsets with the properties x ∈ uBn A−A and x ∈ uBn B− B, respectively. Then A∩ B = ∅ or
A = B.

Proof. Suppose that A ∩ B , ∅. There exist a path (xi| i ≤ n) ∈ Bn and a natural number i0, 0 < i0 ≤ n, such
that x = xi0 and xi ∈ A for each i < i0. Similarly, there exist a path (yi| i ≤ n) ∈ Bn and a natural number i1,
0 < i1 ≤ n, such that x = yi1 and yi ∈ B for each i < i1. Since A and B are minimal, we have A = {xi; i < i0}
and B = {yi; i < i1}. Let y ∈ A ∩ B be a point. Then y , x and we have {x, y} ⊆ {xi; i ≤ n} ∩ {yi; i ≤ n}.
Consequently, (xi| i ≤ n) = (yi| i ≤ n). It follows that A = B because i0 = i1.

4. Connectedness

Definition 4.1. Let Bn be an n-path set in a graph G = (V,E). A sequence C = (xi| i ≤ m), m > 0, of vertices
of V is called a Bn-walk in G if there is an increasing sequence ( jk| k ≤ p) of natural numbers with j0 = 0 and
jp = m such that jk − jk−1 ≤ n and (x j| jk−1 ≤ j ≤ jk) ∈ B∗n for every k with k ≤ p. The sequence ( jk| k ≤ p) is
said to be a binding sequence of C.

If the members of C are pairwise different, then C is called a Bn-path in G.

A Bn-walk C is said to be closed if x0 = xm, and it is said to be a Bn-cycle if, for every pair i0, i1 of different
natural numbers with i0, i1 ≤ m, xi0 = xi1 is equivalent to {i0, i1} = {0,m}.

Of course, everyBn-walk (Bn-path) in a graph G = (V,E) is a walk (path) in G and both concepts coincide
if Bn = B1 = E′ where E′ is an arbitrary set of paths of length 1 such that, (1) for every {x, y} ∈ E, (x, y) ∈ E′

and (y, x) ∈ E′ and (2) for every (x, y) ∈ E′, {x, y} ∈ E.
Observe that, if (x0, x1, ..., xm) is a Bn-walk in G, then (xm, xm−1, ..., x0) is a Bn-walk in G, too. Further, if

(xi| i ≤ m) and (yi| i ≤ p) are Bn-walks in G with xm = y0, then, putting zi = xi for all i ≤ m and zi = yi−m for
all i with m ≤ i ≤ m + p, we get a Bn-walk (zi| i ≤ m + p) in G.

Definition 4.2. Let Bn be an n-path set in a graph G = (V,E). A subset of V is said to be Bn-connected if it is
connected in (V,uBn ). A maximal Bn-connected subset of V is called a Bn-component of G.

Of course, every initial segment of G is Bn-connected.

Theorem 4.3. Let Bn be an n-path set in a graph G = (V,E). A subset A ⊆ V is Bn-connected if and only if any two
different vertices from A may be joined by a Bn-walk in G contained in A.

Proof. If A = ∅, then the statement is trivial. Let A , ∅. If any two vertices from A can be joined by aBn-walk
in G contained in A, then A is clearly Bn-connected. Conversely, let A be Bn-connected and suppose that
there are vertices x, y ∈ A which can not be joined by a Bn-walk in G contained in A. Let B be the set of
all vertices from A which can be joined with x by a Bn-it walk in G contained in A. Let z ∈ uBn B ∩ A be a
vertex and assume that z < B. Then there are a path (xi| i ≤ n) ∈ Bn and a natural number i0, 0 < i0 ≤ n, such
that z = xi0 and {xi; i < i0} ⊆ B. Thus, x and x0 can be joined by a Bn-walk in G contained in A, and also x0
and z can be joined by a Bn-walk in G contained in A - namely by the Bn-initial segment (xi| i ≤ i0) ∈ B∗n. It
follows that x and z can be joined by a Bn-walk in G contained in A, which is a contradiction. Therefore,
z ∈ B, i.e. uBn B ∩ A = B. Consequently, B is closed in the subspace A of (V,uBn ).

Further, let z ∈ uBn (A − B) ∩ A be a vertex and assume that z ∈ B. Then z < A − B, thus there are a
path (xi| i < n) ∈ Bn and a natural number i0, 0 < i0 ≤ n, such that z = xi0 and {xi; i < i0} ⊆ A − B. Since x
can be joined with z by a Bn-walk in G contained in A (because we have assumed that z ∈ B) and z can be
joined with x0 by a Bn-walk in G contained in A - namely by the initial segment (xi0−i| i ≤ i0) ∈ B∗n, also x
and x0 can be joined by a Bn-walk in G contained in A. This is a contradiction with x0 < B. Thus, z < B, i.e.
uBn (A − B) ∩ A = A − B. Consequently, A − B is closed in the subspace A of (V,uBn ). Hence, A is the union
of the nonempty disjoint sets B and A − B closed in the subspace A of (V,uBn ). But this is a contradiction
because A is Bn-connected. Therefore, any two points of A can be joined by a Bn-walk in G contained in
A.
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Note that, if two vertices of a graph G can be joined by a Bn-walk in G, they need not be joined by a
Bn-path in G.

Theorem 4.4. If Bn is a plain n-path set in G, then every Bn-path in G has exactly one binding sequence.

Proof. Let C = (xi| i ≤ m) be aBn-path in G and let ( jk| k ≤ p) and (lk| k ≤ q) be binding sequences of C. Clearly,
j0 = 0 = l0. Let k < p be a natural number such that k ≤ q and jk = lk. Then lk = jk < jp = m = lq, hence k < q.
Assume that jk+1 < lk+1. As both (xi| jk ≤ i ≤ jk+1) and (xi| lk ≤ i ≤ lk+1) are Bn-initial segments, there exists a
path (yi| i ≤ n) ∈ Bn with yi = xlk+i for all i ≤ lk+1 − lk by Lemma 3.9. Since jk+1 < lk+1 ≤ m, we have jk+1 < m.
Thus, there is a Bn-initial segment (xi| jk+1 ≤ i ≤ jk+2), which means that there is a path (zi| i ≤ n) ∈ Bn such
that 1) xi = zi− jk+1 whenever jk+1 ≤ i ≤ jk+2 or 2) xi = z jk+2−i whenever jk+1 ≤ i ≤ jk+2. Suppose that 1) is
valid. Then z0 = x jk+1 = y jk+1− jk and z1 = x jk+1+1 = y jk+1− jk+1. As Bn is plain, we have (yi| i ≤ n) = (zi| i ≤ n).
Suppose that 2) is valid and put i0 = jk+1 − jk, i1 = jk+2 − jk+1 − 1. Then yi0 = y jk+1− jk = x jk+1 = z jk+2− jk+1 = zi1+1
and zi1 = z jk+2− jk+1−1 = x jk+1+1 = y jk+1− jk+1 = yi0+1. As Bn is plain, we have (yi| i ≤ n) = (zi| i ≤ n). Thus,
y0 = z0 in both cases, which is a contradiction because y0 = xlk = x jk and, on the other hand, z0 = x jk+1 or
z0 = x jk+2 . Therefore, jk+1 ≮ lk+1. Analogously, by interchanging j and l, we can easily show that lk+1 ≮ jk+1.
Consequently, jk+1 = lk+1 and, by the mathematical induction principle, k ≤ q and jk = lk for each k ≤ p.
Since lp = jp = m = lq implies p = q, we get ( jk| k ≤ p) = (lk| k ≤ q). The proof is complete.

The previous theorem enables us to define:

Definition 4.5. Let Bn be a plain n-path set in a graph G, let C be a Bn-path in G and let ( jk| k ≤ p) be the
binding sequence of C. Then C is called a Bn-arc in G provided that, for every Bn-initial segment D ∈ B∗n
with D ⊆ C, there is a natural number k < p such that D is a subset of theBn initial segment (xi| jk ≤ i ≤ jk+1).

Theorem 4.6. Let Bn be a plain n-path set in G and C be a Bn-arc in G joining vertices x and y. If D is a Bn-walk
in G joining x and y such that D ⊆ C, then C = D.

Proof. Let C = (xi| i ≤ m) and let D = (yi| i ≤ s) be a Bn-walk in G with y0 = x and ys = y such
that {yi; i ≤ s} ⊆ {xi; i ≤ m}. Let ( jk| k ≤ p) be the binding sequence of C and for each k < p put
Ck = (xi| jk ≤ i ≤ jk+1). Let (lk| k ≤ q) be the binding sequence of (yi| i ≤ s) and for each k < q put
Dk = (yi| lk ≤ i ≤ lk+1). Clearly, x j0 = x0 = x = y0 = yl0 . Let k∗ < q be a natural number with k∗ ≤ p, jk∗ = lk∗ ,
and xi = yi for all i ≤ jk∗ (such k∗ exists because we may put k∗ = 0). As x jk∗ = ylk∗ , ylq−1 = y, we have k∗ < p.
Since Dk∗ ⊆ C, there is a Bn-initial segment Ck0 with Dk∗ ⊆ Ck0 . As ylk∗ = x jk∗ ∈ Dk∗ ∩ Ck∗ , we have k0 = k∗. (Of
course, we also have ylk∗ = x jk∗ ∈ Dk∗ ∩Ck∗−1, but Dk∗ * Ck∗−1 because ylk∗+1 ∈ Dk∗ −{yi; i ≤ lk∗ } = {xi; i ≤ jk∗ } and
Ck∗−1 ⊆ {xi; i ≤ jk∗ }.) Admit that lk∗+1 , jk∗+1. Then lk∗+1 < jk∗+1 (because Dk∗ ⊆ Ck∗ ) and, by Lemma 3.9, there
is a path (zi| i ≤ n) ∈ Bn such that yi = zi−lk∗ for all i with lk∗ ≤ i ≤ lk∗+1 and xi = zi−lk∗ for all i with jk∗ ≤ i ≤ jk∗+1.
Thus, lk∗+1 < jk∗+1 and xi = yi for all i with kk∗ ≤ i ≤ lk∗+1. If k∗ + 1 = q, then xlk∗+1 = ylk∗+1 = y = x jp−1 ,
which is a contradiction because lk∗+1 < jk∗+1 ≤ jp. So, we have k∗ + 1 < q. Since Dk∗+1 ⊆ C, there is an
initial segment Ck1 with Dk∗+1 ⊆ Ck1 . As ylk∗+1 = xlk∗+1 ∈ Ck∗ and x jk∗ , xlk∗+1 , x jk∗+1 , we have k1 = k∗. Hence
Dk∗+1 ⊆ Ck∗ ⊆ {zi; i ≤ n}. Clearly, we have Dk∗ ⊆ Dk∗+1 or Dk∗+1 ⊆ Dk∗ . This is a contradiction because
ylk∗ ∈ Dk∗ −Dk∗+1 and ylk∗+2 ∈ Dk∗+1 −Dk∗ . Therefore, lk∗ = jk∗ and, consequently, xi = yi for all i ≤ jk∗+1. Thus,
according to the mathematical induction principle, whenever k ≤ q, we have k ≤ p, jk = lk and xi = yi for all
i ≤ jk. As x jq−1 = ylq−1 = y, we get jq−1 = jp−1, i.e. p = q. Hence (xi| i ≤ m) = (yi| i ≤ s).

The previous statement, if Bn is plain, then Bn-arcs are minimal (with respect to set inclusion) Bn-walks
joining a given pair of vertices.

Definition 4.7. Let Bn be a plain n-path set in G. A closed Bn-walk C = (xi| i ≤ m) in G is said to be simple if
its binding sequence ( jk| k ≤ p) has the property that p ≥ 3 and (x jk+l(mod p) | l < p) is an arc in G whenever k < p.

It is evident that every simple closed Bn-walk in G is a Bn-cycle in G.
Let Bn be an n-path set in G = (V,E), U ⊆ V be a subset, and H = (U,F) be the induced subgraph of G.

We denote byBn/U the subset ofBn consisting of the paths belonging toBn that are paths in H. Thus,Bn/U
is an n-path set in H. We say that a subset J ⊆ V separates G into two components if, putting U = V − J, the
induced subgraph (U,F) of G has exactly two Bn/U-components.
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Definition 4.8. A simple closed Bn-path (xi| i ≤ m) in G is said to be a Jordan curve if {xi| i ≤ m} separates G
into two components.

The following statement is evident:

Theorem 4.9. A simple closedBn-path (xi| i ≤ m) in G is a Jordan curve if and only if there areBn-connected subsets
X1,X2 ⊆ V with X1 ∩ X2 = ∅ and X1 ∪ X2 = V − {xi| i ≤ m} such that a subset A ⊆ X1 ∪ X2 is not Bn-connected
whenever A ⊃ X1 or A ⊃ X2.

5. Closure Operators Induced by N-Path Sets in Graphs with the Vertex Set Z2

It is well known [15] that closure operators which are more general than the Kuratowski ones have
useful applications in computer science. By Theorem 4.3, Bn-connectedness in graphs is a certain type of
path connectedness. This enables us to apply closure operators induced by n-path sets in digital topology,
which is a theory that has arisen for the study of geometric and topological properties of digital images
(cf. [11]). One of the problems of digital topology is to find structures for the digital plane Z2 convenient
for the study of digital images. A basic criterion of such a convenience is the validity of a digital analogue
of the Jordan curve theorem (which says that every simple closed curve in the real plane separates this
plane into precisely two connected components). The thing is that digital Jordan curves represent borders
of objects on digital pictures. Though the classical approach to the problem is based on using graph theory
(the 4-adjacency and 8-adjacency relations) for structuring the digital plane, a new approach based on using
topological structures is being developed since the beginning of the 90’s of the last century - see [8]. There
are two well-known topologies on Z2 which are employed in digital topology, the so-called Marcus-Wyse
topology [9] and Khalimsky topology [7]. Recall that the Marcus-Wyse and Khalimsky topologies are the
Alexandroff topologies s and t, respectively, on Z2 with the closures of singleton subsets given as follows:

For any z = (x, y) ∈ Z2,

s{z} =
{
{z} ∪ A4(z) if x + y is even,
{z} otherwise

and

t{z} =


{z} ∪ A8(z) if x, y are even,
{(x + i, y); i ∈ {−1, 0, 1}} if x is even and y is odd,
{(x, y + j); j ∈ {−1, 0, 1}} if x is odd and y is even,
{z} otherwise.

We will show that both of these topologies and also the closure operators discussed in [12] may be
obtained as closure operators induced by n-path sets in certain graphs with the vertex set Z2.

While the concept ofBn-connectedness is useless if n = 1 (because then it coincides with the usual graph
connectedness), a different situation occurs if n > 1.

Example 5.1. Put B1 = {((xi, yi)| i ≤ 1); (xi, yi) ∈ Z2 for every i ≤ 1, |x0 − x1|+ |y0 − y1| = 1, x0 + y0 even} and
let G = (Z2,E) be an arbitrary graph (with the vertex set Z2) such that B1 ⊆ P(G). Then B1 is a plain 1-path
set in G. A portion of the set B1 is shown in the following figure where the 1-paths from B1 are represented
by arrows oriented from first to last vertex.
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Clearly, (Z2,uB1 ) is a connected Alexandroff T 1
2
-space in which the points (x, y) ∈ Z2 with x + y even are

open while those with x + y odd are closed. The closure operator uB1 coincides with the Marcus-Wyse
topology.

Example 5.2. For an arbitrary natural number n, let Bn be the set of all sequences ((xi, yi)| i ≤ n) such that
(xi, yi) ∈ Z2 for every i ≤ n and one of the following eight conditions is satisfied:

(1) x0 = x1 = ... = xn and there is k ∈ Z such that yi = 2kn + i for all i ≤ n,
(2) x0 = x1 = ... = xn and there is k ∈ Z such that yi = 2kn − i for all i ≤ n,
(3) y0 = y1 = ... = yn and there is k ∈ Z such that xi = 2kn + i for all i ≤ n,
(4) y0 = y1 = ... = yn and there is k ∈ Z such that xi = 2kn − i for all i ≤ n,
(5) there is k ∈ Z such that xi = 2kn + i for all i ≤ n and there is l ∈ Z such that yi = 2ln + i for all i ≤ n,
(6) there is k ∈ Z such that xi = 2kn + i for all i ≤ n and there is l ∈ Z such that yi = 2ln − i for all i ≤ n,
(7) there is k ∈ Z such that xi = 2kn − i for all i ≤ n and there is l ∈ Z such that yi = 2ln + i for all i ≤ n,
(8) there is k ∈ Z such that xi = 2kn − i for all i ≤ n and there is l ∈ Z such that yi = 2ln − i for all i ≤ n.

Let G = (Z2,E) be an arbitrary graph (with the vertex set Z2) such that Bn ⊆ P(G). Then Bn is a plain
n-path set in G. A portion of the set Bn is demonstrated in the following figure. The paths belonging to
Bn are represented by arrows oriented from first to last term. Between any pair of neighboring parallel
horizontal or vertical arrows (having the same orientation), there are n − 1 more parallel arrows with the
same orientation that are not displayed.
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Clearly, (Z2,uBn ) is a connected Alexandroff T0-space. The closure operators uBn coincide with the
closure operators on Z2 studied in [12] where a Jordan curve theorem was proved for these operators
thus showing their convenience for applications in digital topology. In particular, uB1 coincides with the
Khalimsky topology on Z2 (for which a Jordan curve theorem was proved in [7]). Note that for n > 1, the
Bn-connectedness in Gn cannot be obtained as the usual graph connectedness. In particular, for n = 2, the
above portion of the graph Gn looks, in full detail, as follows:
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