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Abstract. In this paper we introduce the concept of statistical summability (N, p) of sequences of fuzzy
numbers. We also present Tauberian conditions under which statistical convergence of a sequence of
fuzzy numbers follows from its statistical summability (N, p). Furthermore, we prove a Korovkin-type
approximation theorem for fuzzy positive linear operators by using the notion of statistical summability
(N, p).

1. Introduction

Following the introduction of sequences of fuzzy numbers by Matloka [15], summability of sequences
of fuzzy numbers is studied by many researcher and bacame a recent research area in fuzzy set theory.
Several summablity methods have been defined for sequence of fuzzy numbers and Tauberian theorems
are given for these methods. Cesàro summability method is defined by Subrahmanyam[23] and various
Tauberian conditions for Cesàro summability method are given by Talo and Çakan [24], Talo and F. Başar
[26], Çanak [14]. Nörlund and Riesz mean of sequences of fuzzy numbers are studied by Tripathy and
Baruah [27], Çanak [13], Önder et al. [20]. Furthermore, various power series methods of summability for
sequences and series of fuzzy numbers are studied by Yavuz and Talo [28], Sezer and Çanak [22], Yavuz
and Çoşkun [29].

The concept of statistical convergence of sequences of real numbers was originally introduced by Fast
[11], and extended to sequences of fuzzy numbers by Nuray and Savaş [19]. Altn et. al. [1] have studied
the concept of statistical summability (C; 1) for sequences of fuzzy numbers. Talo and Çakan [25] have
recently proved necessary and sufficient Tauberian conditions under which statistical convergence follows
from statistically (C, 1)-convergence of sequences of fuzzy numbers.

In the present paper our primary interest is to generalize the results in [1, 25] to a large class of
summability methods (N, p) by weighted means. We also obtain a Korovkin-type approximation theorem
for fuzzy positive linear operator by means of the concept of statistical summability (N, p).

2010 Mathematics Subject Classification. Primary 03E72; Secondary 40A35, 40G15
Keywords. Sequences of fuzzy numbers, summability by weigted mean, Tauberian conditions, statistical convergence, fuzzy

Korovkin theory
Received: 30 August 2015; Revised 01 December 2015; Accepted: 02 December 2015
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2. Definitions and Notation

Let K be a subset of natural numbersN and Kn = {k ≤ n : k ∈ K}, The natural density of K is given by

δ(K) = lim
n→∞

1
n + 1

|Kn|

if this limit exists, where |A| denotes the number of elements in A. The concept of statistical convergence
was introduced by Fast [11]. A sequence (xk)k∈N of real (or complex) numbers is said to be statistically
convergent to some number l if for every ε > 0 we have

lim
n→∞

1
n + 1

|{k ≤ n : |xk − l| ≥ ε}| = 0.

In this case, we write st− limk→∞ xk = l. Basic results on statistical convergence may be found in [9, 10, 16]
We recall the basic definitions dealing with fuzzy numbers.
A fuzzy number is a fuzzy set on the real axis, i.e. a mapping u : R→ [0, 1] which satisfies the following

four conditions:
(i) u is normal, i.e. there exists an x0 ∈ R such that u(x0) = 1;
(ii) u is fuzzy convex, i.e. u[λx + (1 − λ)y] ≥ min{u(x),u(y)} for all x, y ∈ R and for all λ ∈ [0, 1];
(iii) u is upper semi-continuous;
(iv) The set [u]0 := {x ∈ R : u(x) > 0} is compact,

where {x ∈ R : u(x) > 0} denotes the closure of the set {x ∈ R : u(x) > 0} in the usual topology of R.
We denote the set of all fuzzy numbers on R by E1 and called it as the space of fuzzy numbers. α-level set
[u]α of u ∈ E1 is defined by

[u]α :=
 {x ∈ R : u(x) ≥ α} , if 0 < α ≤ 1,

{t ∈ R : u(x) > α} , if α = 0.

The set [u]α is closed, bounded and non-empty interval for each α ∈ [0, 1] which is defined by [u]α :=
[u−(α),u+(α)]. R can be embedded in E1, since each r ∈ R can be regarded as a fuzzy number r defined by

r(x) :=
{

1 , if x = r,
0 , if x , r.

Let u, v,w ∈ E1 and k ∈ R. Then the operations addition and scalar multiplication are defined on E1 by

u + v = w ⇐⇒ [w]α = [u]α + [v]α for all α ∈ [0, 1]
⇐⇒ w−(α) = u−(α) + v−(α) and w+(α) = u+(α) + v+(α) for all α ∈ [0, 1],

[ku]α = k[u]α for all α ∈ [0, 1].

The operations addition and scalar multiplication on fuzzy numbers have the following properties.

Lemma 2.1. ([8])

(i) If 0 ∈ E1 is neutral element with respect to +,i.e u + 0 = 0 + u = u, for all u ∈ E1;

(ii) With respect to 0, none of u , r, r ∈ R has opposite in E1;

(iii) For any a, b ∈ R with a, b ≥ 0 or a, b ≤ 0, and any u ∈ E1, we have (a + b)u = au + bu. For general a, b ∈ R,
the above property does not hold;

(iv) For any a ∈ R and any u, v ∈ E1, we have a(u + v) = au + av;

(v) For any a, b ∈ R and any u ∈ E1, we have a(bu) = (ab)u.
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Properties (ii) and (iii) show us that (E1,+, ·) is not a linear space over R.
Let W be the set of all closed bounded intervals A of real numbers with endpoints A and A, i.e. A := [A,A].

Define the relation d on W by

d(A,B) := max{|A − B|, |A − B|}.

Then it can be easily observed that d is a metric on W and (W, d) is a complete metric space, (see Nanda
[18]). Now, we may define the metric D on E1 by means of the Hausdorff metric d as follows

D(u, v) := sup
α∈[0,1]

d([u]α, [v]α) := sup
α∈[0,1]

max{|u−(α) − v−(α)|, |u+(α) − v+(α)|}.

One can see that

D(u, 0) = sup
α∈[0,1]

max{|u−(α)|, |u+(α)|} = max{|u−(0)|, |u+(0)|}. (1)

Now, we may give:

Proposition 2.2. ([8]) Let u, v,w, z ∈ E1 and k ∈ R. Then,

(i) (E1,D) is a complete metric space;

(ii) D(ku, kv) = |k|D(u, v);

(iii) D(u + v,w + v) = D(u,w);

(iv) D(u + v,w + z) ≤ D(u,w) + D(v, z);

(v) |D(u, 0) −D(v, 0)| ≤ D(u, v) ≤ D(u, 0) + D(v, 0).

One can extend the natural order relation on the real line to intervals as follows:

A � B if and only if A ≤ B and A ≤ B.

Also, the partial ordering relation on E1 is defined as follows:

u � v⇐⇒ [u]α � [v]α for all α ∈ [0, 1]⇐⇒ u−(α) ≤ v−(α) and u+(α) ≤ v+(α) for all α ∈ [0, 1].

Following Matloka [15], we give some definitions concerning the sequences of fuzzy numbers. A
sequence u = (uk) of fuzzy numbers is said to be convergent to µ ∈ E1, if for every ε > 0 there exists an
n0 = n0(ε) ∈N such that

D(un, µ) < ε for all n ≥ n0.

A sequence (un) of fuzzy numbers is said to be bounded if there exists M > 0 such that D(un, 0) ≤ M for
all n ∈N.

Statistical convergence of sequences of fuzzy numbers was introduced by Nuray and Savaş [19]. A
sequence (uk : k = 0, 1, 2, . . .) of fuzzy numbers is said to be statistically convergent to a fuzzy number µ0 if
for every ε > 0 we have

lim
n→∞

1
n + 1

∣∣∣{k ≤ n : D(uk, µ0) ≥ ε}
∣∣∣ = 0.

In this case we write

st− lim
k→∞

uk = µ0. (2)

For more results on statistical convergence of sequences of fuzzy numbers we refer to [4–7, 12, 21].
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3. Main Results

Let p = (pk : k = 0, 1, 2, . . . ) be a sequence of nonnegative numbers such that p0 > 0 and

Pn :=
n∑

k=0

pk →∞ (n→∞)

and set

tn :=
1

Pn

n∑
k=0

pkuk, n = 0, 1, 2, . . .

We say that the sequence (uk) of fuzzy numbers is statistically summable to fuzzy number µ0 by the
weighted mean method determined by the sequence p = (pk), briefly: statistically summable (N, p) if

st− lim
n→∞

tn = µ0. (3)

If pn = 1 for all n in (3), we have

st− lim
n→∞

1
n

n∑
k=0

uk = µ0. (4)

Then we say that the sequence (un) of fuzzy numbers is statistically summable (C, 1) to µ0.

Example 3.1. Let (uk) = (u0, v0,u0, v0, ...) where

u0(t) =


t − 1 , if 1 ≤ t ≤ 2,
−t + 3 , if 2 ≤ t ≤ 3,

0 , otherwise

and

v0(t) =


t + 1 , if − 1 ≤ t ≤ 0,
−t + 1 , if 0 ≤ t ≤ 1,

0 , otherwise.

The sequence (un) is statistically summable (C, 1) to w0 = (u0 + v0)/2. But (un) is not statistically summable
(N, 2n).

We claim that if a sequence (uk) of fuzzy numbers is bounded, then

st− lim
k→∞

uk = µ0. implies st− lim
n→∞

tn = µ0. (5)

In fact,

D
(
tn, µ0

)
= D

 1
Pn

n∑
k=0

pkuk, µ0


= D

 1
Pn

n∑
k=0

pkuk,
1

Pn

n∑
k=0

pkµ0


≤

1
Pn

n∑
k=0

pkD(uk, µ0)
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Since the real sequence of (D(uk, µ0)) is bounded and st− lim
n→∞

D(uk, µ0) = 0, we have

st− lim
n→∞

1
Pn

n∑
k=0

pkD(uk, µ0) = 0.

Thus, we have st− lim
n→∞

D
(
tn, µ0

)
= 0. This means that st− lim

n→∞
tn = µ0.

The converse implication in (5) is not true in general, even in real case (see [17]). Our main goal is to
find conditions under which

st− lim
n→∞

tn = µ0 implies st− lim
k→∞

uk = µ0. (6)

We give two-sided Tauberian conditions, each of which is necessary and sufficient in order that statistical
convergence follow from statistical summability (N, p).

Throughout this paper, λn denotes the integral part of the product λn; i.e., λn := [λn].
The concepts of statistical limit inferior and superior of a sequence of real numbers were introduced by

Fridy and Orhan [10] and the following lemma was proved by Móricz and Orhan [17]. We use it for the
proof of our results.

Lemma 3.2. ([17, Lemma1]) If (Pn) is a nondecreasing sequence of positive numbers, then conditions

st− lim inf
n→∞

Pλn

Pn
> 1 f or every λ > 1 (7)

and

st− lim inf
n→∞

Pn

Pλn

> 1 f or every 0 < λ < 1. (8)

are equivalent.

We need the following lemmas.

Lemma 3.3. Let p = (pk) be a sequence of nonnegative numbers such that p0 > 0 and condition (7) is satisfied, and
let (uk) be a sequence of fuzzy numbers which is statistically summable (N, p) to a fuzzy number µ0. Then for every
λ > 0,

st− lim
n→∞

tλn = µ0. (9)

The proof can be carried out in the same way as in the proof of Lemma 2 in [17].

Lemma 3.4. Let p = (pk) be a sequence of nonnegative numbers such that p0 > 0 and condition (7) is satisfied, and
let (uk) be a sequence of fuzzy numbers which is statistically summable (N, p) to a fuzzy number µ0. Then, for every
λ > 1,

st− lim
n→∞

1
Pλn − Pn

λn∑
k=n+1

pkuk = µ0 (10)

and for every 0 < λ < 1,

st− lim
n→∞

1
Pn − Pλn

n∑
k=λn+1

pkuk = µ0. (11)
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Proof. Case λ > 1. If Pλn > Pn, then

D

 1
Pλn − Pn

λn∑
k=n+1

pkuk, µ0

 = D

 1
Pλn − Pn

λn∑
k=n+1

pkuk + tn, µ0 + tn


≤ D

 1
Pλn − Pn

λn∑
k=n+1

pkuk, tn

 + D(tn, µ0)

and

D

 1
Pλn − Pn

λn∑
k=n+1

pkuk, tn

 = D

 1
Pλn − Pn

λn∑
k=n+1

pkuk,
1

Pn

n∑
k=0

pkuk


= D

 1
Pλn − Pn

λn∑
k=n+1

pkuk +
1

Pλn − Pn

n∑
k=0

pkuk,
1

Pn

n∑
k=0

pkuk +
1

Pλn − Pn

n∑
k=0

pkuk


= D

 1
Pλn − Pn

λn∑
k=0

pkuk,
Pλn

Pλn − Pn

1
Pn

n∑
k=0

pkuk


= D

 Pλn

Pλn − Pn

1
Pλn

λn∑
k=0

pkuk,
Pλn

Pλn − Pn

1
Pn

n∑
k=0

pkuk


=

Pλn

Pλn − Pn
D

 1
Pλn

λn∑
k=0

pkuk,
1

Pn

n∑
k=0

pkuk


=

Pλn

Pλn − Pn
D

(
tλn , tn

)
.

So, we have the following inequality

D

 1
Pλn − Pn

λn∑
k=n+1

pkuk, µ0

 ≤ Pλn

Pλn − Pn
D

(
tλn , tn

)
+ D(tn, µ0). (12)

By (7) we have

st− lim sup
n→∞

Pλn

Pλn − Pn
= 1 +

{
−1 + st− lim inf

n→∞

Pλn

Pn

}−1

< ∞. (13)

Therefore (10) follows from (12), (13), Lemma 3.3 and the statistical convergence of (tn).
Case 0 < λ < 1. This time, we make use of the following inequality:

D

 1
Pn − Pλn

n∑
k=λn+1

pkuk, µ0

 ≤ Pλn

Pn − Pλn

D
(
tλn , tn

)
+ D(tn, µ0) (14)

provided Pn > Pλn . By Lemma 3.2 we obtain

st− lim sup
n→∞

Pλn

Pn − Pλn

=

{
−1 + st− lim inf

n→∞

Pn

Pλn

}−1

< ∞. (15)

Therefore (11) follows from (14), (15), Lemma 3.3 and the statistical convergence of (tn).

Now we are ready to give our main results.
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Theorem 3.5. Let p = (pk) be a sequence of nonnegative numbers such that p0 > 0 and condition (7) is satisfied,
and let (uk) be a sequence of fuzzy numbers which is statistically summable (N, p) to a fuzzy number µ0.Then (uk) is
statistically convergent to µ0 if and only if one of the following two conditions holds: for every ε > 0,

inf
λ>1

lim sup
N→∞

1
N + 1

∣∣∣∣∣∣∣
n ≤ N : D

 1
Pλn − Pn

λn∑
k=n+1

pkuk,un

 ≥ ε

∣∣∣∣∣∣∣ = 0 (16)

or

inf
0<λ<1

lim sup
N→∞

1
N + 1

∣∣∣∣∣∣∣
n ≤ N : D

 1
Pn − Pλn

n∑
k=λn+1

pkuk,un

 ≥ ε

∣∣∣∣∣∣∣ = 0. (17)

Proof. The necessity follows from Lemma 3.4.
Sufficiency. Assume that conditions (3) and one of (16) and (17) are satisfied. In order to prove (2), it is

enough to prove that

st− lim
n→∞

D(un, tn) = 0.

First, we consider the case λ > 1. Since

D(tn,un) ≤ D

 1
Pλn − Pn

λn∑
k=n+1

pkuk,un

 +
Pλn

Pλn − Pn
D

(
tλn , tn

)
,

for any ε > 0 we have

{n ≤ N : D(tn,un) ≥ ε} ⊆
{

n ≤ N :
Pλn

Pλn − Pn
D

(
tλn , tn

)
≥
ε
2

}
∪

n ≤ N : D

 1
Pλn − Pn

λn∑
k=n+1

pkuk,un

 ≥ ε2
 .

Given any δ > 0 , by (16) there exists some λ > 1 such that

lim sup
N→∞

1
N + 1

∣∣∣∣∣∣∣
n ≤ N : D

 1
Pλn − Pn

λn∑
k=n+1

pkuk,un

 ≥ ε2

∣∣∣∣∣∣∣ ≤ δ. (18)

On the other hand, by Lemma 3.3, we have

lim sup
N→∞

1
N + 1

∣∣∣∣∣∣
{

n ≤ N :
Pλn

Pλn − Pn
D

(
tλn , tn

)
≥
ε
2

}∣∣∣∣∣∣ = 0. (19)

Combining (18) with (19) we get that

lim sup
N→∞

1
N + 1

|{n ≤ N : D (un, tn) ≥ ε}| ≤ δ.

Since δ > 0 is arbitrary, we conclude that for every ε > 0,

lim
N→∞

1
N + 1

|{n ≤ N : D (un, tn) ≥ ε}| = 0.

Secondly, we consider the case 0 < λ < 1. Since

D(tn,un) ≤ D

 1
Pn − Pλn

n∑
k=λn+1

pkuk,un

 +
Pλn

Pn − Pλn

D
(
tλn , tn

)
for any ε > 0, we have

{n ≤ N : D(tn,un) ≥ ε} ⊆
{

n ≤ N :
Pλn

Pn − Pλn

D
(
tλn , tn

)
≥
ε
2

}
∪

n ≤ N : D

 1
Pn − Pλn

n∑
k=λn+1

pkuk,un

 ≥ ε2
 .
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Given any δ > 0 , by (17) there exist some 0 < λ < 1 such that

lim sup
N→∞

1
N + 1

∣∣∣∣∣∣∣
n ≤ N : D

 1
Pn − Pλn

n∑
k=λn+1

pkuk,un

 ≥ ε2

∣∣∣∣∣∣∣ ≤ δ.

Using a similar argument as in the case λ > 1, by Lemma 3.3 and condition (11), we conclude that

lim
N→∞

1
N + 1

|{n ≤ N : D (un, tn) ≥ ε}| = 0.

This completes the proof.

Following Talo and Çakan [25], a sequence (uk) of fuzzy numbers is said to be statistically slowly oscillating
if for every ε > 0,

inf
λ>1

lim sup
N→∞

1
N + 1

∣∣∣∣∣∣
{

n ≤ N : max
n<k≤λn

D(uk,un) ≥ ε
}∣∣∣∣∣∣ = 0 (20)

or equivalently,

inf
0<λ<1

lim sup
N→∞

1
N + 1

∣∣∣∣∣∣
{

n ≤ N : max
λn<k≤n

D(uk,un) ≥ ε
}∣∣∣∣∣∣ = 0. (21)

The conditions (20) and (21) are clearly imply the conditions (16) and (17), respectively. This gives rise
to the following corollary of Theorem 3.5.

Corollary 3.6. Let p = (pk) be a sequence of nonnegative numbers such that p0 > 0 and condition (7) is satisfied,
and let (uk) be a statistically slowly oscillating sequence of fuzzy numbers. Then the implication (6) hold.

4. Application to Fuzzy Korovkin Theory

In this section we prove a fuzzy Korovkin-type theorem via the concept of statistical summability (N, p).
We denote by C[a, b] the space of all continuous real functions on [a, b]. This space is equipped with the

supremum norm

‖h‖ = sup
x∈[a,b]

|h(x)|.

A fuzzy-number-valued function f : [a, b]→ E1 has the parametric representation

[ f (x)]α = [ f−α (x), f +
α (x)]

for each x ∈ [a, b] and α ∈ [0, 1]. Let f , 1 : [a, b]→ E1 be fuzzy number valued functions. Then, the distance
between f and 1 is given by

D∗( f , 1) = sup
x∈[a,b]

D( f (x), 1(x))

= sup
x∈[a,b]

sup
α∈[0,1]

max{| f−α (x) − 1−α (x)|, | f +
α (x) − f +

α (x)|}.

A fuzzy-number-valued function f : [a, b] → E1 is said to be continuous at x0 ∈ [a, b] if for each ε > 0
there is a δ > 0 such that D( f (x), f (x0)) < ε whenever x ∈ [a, b] with |x − x0| < δ. If f (x) is continuous at each
x ∈ [a, b], then we say f (x) is continuous on [a, b]. The set of all fuzzy continuous functions on the interval
[a, b] is denoted by CF [a, b].

Now let L : CF [a, b]→ CF [a, b] be an operator. Then L is said to be fuzzy linear if, for every λ1, λ2 ∈ R,
f1, f2 ∈ CF [a, b] and x ∈ [a, b] ,

L(λ1 f1 + λ2 f2; x) = λ1L( f1; x) + λ2L( f2; x)
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holds. Also L is called fuzzy positive linear operator if it is fuzzy linear and the condition L( f ; x) � L(1; x)
is satisfied for any f , 1 ∈ CF [a, b] and all x ∈ [a, b] with f (x) � 1(x).

The fuzzy Korovkin approximation theorem has been obtained by Anastassiou[2]. Its statistical version
was given by Anastassiou and Duman [3]. The fuzzy Korovkin approximation theorem states as follows:

Theorem 4.1. Let {Ln}n∈N be a sequence of fuzzy positive linear operators from CF [a, b] into itself. Assume that
there exists a corresponding sequence {L̃n}n∈N of positive linear operators from C[a, b] into itself with the property{

Ln( f ; x)
}±
α = L̃n( f±α ; x) (22)

for all x ∈ [a, b], α ∈ [0, 1],n ∈N and f ∈ CF [a, b]. Assume further that

lim
n→∞
‖ L̃n(ei) − ei ‖= 0,

with ei(x) = xi, i = 0, 1, 2. Then, for all f ∈ CF [a, b], we have

lim
n→∞

D∗(Ln( f ), f ) = 0.

Now we prove the following result by using the notion of statistical summability (N, p).

Theorem 4.2. Let {Ln}n∈N be a sequence of fuzzy positive linear operators from CF [a, b] into itself. Assume that
there exists a corresponding sequence {L̃n}n∈N of positive linear operators from C[a, b] into itself with the property
(22). Assume further that

st − lim
n→∞

∥∥∥∥∥∥∥ 1
Pn

n∑
k=0

pkL̃k(ei) − ei

∥∥∥∥∥∥∥ = 0 (23)

with ei(x) = xi, i = 0, 1, 2. Then ,for all f ∈ CF[a, b], we have

st − lim
n→∞

D∗
 1

Pn

n∑
k=0

pkLk( f ), f

 = 0. (24)

Proof. Let f ∈ CF [a, b], x ∈ [a, b] and α ∈ [0, 1]. By the hypothesis, since f±α ∈ CF [a, b], we may write, for
every ε > 0, that there exists a number δ > 0 such that | f±α (y)− f±α (x) |< ε holds for every y ∈ [a, b] satisfying
|y − x| < δ. Then we immediately get, for all y ∈ [a, b], that

| f±α (y) − f±α (x)| ≤ ε + 2M
(y − x)2

δ2 , (25)

where M := supx∈[a,b] D( f (x), 0). Now using the linearity and the positivity of the operators L̃n ,we have , for
each n ∈N , that∣∣∣∣∣∣∣ 1

Pn

n∑
k=0

pk̃Lk
(

f±α ; x
)
− f±α (x)

∣∣∣∣∣∣∣ ≤ 1
Pn

n∑
k=0

pk̃Lk

(∣∣∣ f±α (y) − f±α (x)
∣∣∣ ; x

)
+ M

∣∣∣∣∣∣∣ 1
Pn

n∑
k=0

pk̃Lk(e0; x) − e0(x)

∣∣∣∣∣∣∣
≤ ε + (ε + M)

∣∣∣∣∣∣∣ 1
Pn

n∑
k=0

pk̃Lk(e0; x) − e0(x)

∣∣∣∣∣∣∣ +
2M
δ2

∣∣∣∣∣∣∣ 1
Pn

n∑
k=0

pk̃Lk((y − x)2; x)

∣∣∣∣∣∣∣
which yields∣∣∣∣∣∣∣ 1

Pn

n∑
k=0

pk̃Lk( f±α ; x) − f±α (x)

∣∣∣∣∣∣∣ ≤ ε +

(
ε + M +

2c2M
δ2

) ∣∣∣∣∣∣∣ 1
Pn

n∑
k=0

pk̃Lk(e0; x) − e0(x)

∣∣∣∣∣∣∣
+

4cM
δ2

∣∣∣∣∣∣∣ 1
Pn

n∑
k=0

pk̃Lk(e1; x) − e1(x)

∣∣∣∣∣∣∣ +
2M
δ2

∣∣∣∣∣∣∣ 1
Pn

n∑
k=0

pk̃Lk(e2; x) − e2(x)

∣∣∣∣∣∣∣ ,
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where c := max{|a|, |b|}. Also letting K(ε) := max
{
ε + M + 2c2M

δ2 ,
4cM
δ2 ,

2M
δ2

}
and taking supremum over x ∈ [a, b],

the above inequallity implies that∥∥∥∥∥ 1
Pn

n∑
k=0

pk̃Lk( f±α ; x) − f±α (x)
∥∥∥∥∥ ≤ ε + K(ε)

{∥∥∥∥∥ 1
Pn

n∑
k=0

pk̃Lk(e0) − e0

∥∥∥∥∥ (26)

+

∥∥∥∥∥ 1
Pn

n∑
k=0

pk̃Lk(e1) − e1

∥∥∥∥∥ +

∥∥∥∥∥ 1
Pn

n∑
k=0

pk̃Lk(e2) − e2

∥∥∥∥∥}.
It follows from (22) that

D∗
 1

Pn

n∑
k=0

pkLk( f ), f

 = sup
x∈[a,b]

D

 1
Pn

n∑
k=0

pkLk( f ; x), f (x)


= sup

x∈[a,b]
sup
α∈[0,1]

max


∣∣∣∣∣∣∣ 1
Pn

n∑
k=0

pk̃Lk( f−α ; x) − f−α (x)

∣∣∣∣∣∣∣ ,
∣∣∣∣∣∣∣ 1
Pn

n∑
k=0

pk̃Lk( f +
α ; x) − f +

α (x)

∣∣∣∣∣∣∣


= sup
α∈[0,1]

max


∥∥∥∥∥∥∥ 1

Pn

n∑
k=0

pk̃Lk( f−α ) − f−α

∥∥∥∥∥∥∥ ,
∥∥∥∥∥∥∥ 1

Pn

n∑
k=0

pk̃Lk( f +
α ) − f +

α

∥∥∥∥∥∥∥
 .

Combining the above equality with (26), we have

D∗
 1

Pn

n∑
k=0

pkLk( f ), f

 ≤ ε + K(ε)
{∥∥∥∥∥ 1

Pn

n∑
k=0

pk̃Lk(e0) − e0

∥∥∥∥∥ +

∥∥∥∥∥ 1
Pn

n∑
k=0

pk̃Lk(e1) − e1

∥∥∥∥∥ +

∥∥∥∥∥ 1
Pn

n∑
k=0

pk̃Lk(e2) − e2

∥∥∥∥∥}. (27)

Now, for a given ε′ > 0, choose ε > 0 such that 0 < ε < ε′ ,and also define the following sets:

U : =

n ∈N : D∗
 1

Pn

n∑
k=0

pkLk( f ), f

 ≥ ε′
 ,

U0 : =

n ∈N :

∥∥∥∥∥∥∥ 1
Pn

n∑
k=0

pkL̃k(e0) − e0

∥∥∥∥∥∥∥ ≥ ε′ − ε3K(ε)

 ,
U1 : =

n ∈N :

∥∥∥∥∥∥∥ 1
Pn

n∑
k=0

pkL̃k(e1) − e1

∥∥∥∥∥∥∥ ≥ ε′ − ε3K(ε)

 ,
U2 : =

n ∈N :

∥∥∥∥∥∥∥ 1
Pn

n∑
k=0

pkL̃k(e2) − e2

∥∥∥∥∥∥∥ ≥ ε′ − ε3K(ε)

 ,
Then inequality (27) gives U ⊆ U0∪U1∪U2 and so δ(U) ≤ δ(U0) + δ(U1) + δ(U2). Then using the hypothesis
(23), we get (24). The proof is completed.

Example 4.3. Consider the sequence of fuzzy Bernstein-type polynomials [2]

Bn( f ; x) =

n∑
k=0

f
(

k
n

) (
n
k

)
xk(1 − x)n−k, (28)

where f ∈ CF [0, 1], x ∈ [0, 1]. Let pk = 1 for all k. Then (N, p)-mean is reduced to (C, 1)-mean. Define the
sequence x = (xk) by

xk =

{
1 , if k is odd,
−1 , if k is even.
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Observe now that, st − limn→∞
1
n
∑n

k=0 xk = 0. We define the following fuzzy positive linear operators

Ln( f ; x) = (1 + xn)Bn( f ; x). (29)

Then, the sequence {Ln} satisfies conditions of Theorem 4.2. Hence, we have

st − lim
n→∞

D∗
1

n

n∑
k=0

Lk( f ), f

 = 0.

However, (xn) is neither convergent nor statistical convergent to 0. So the classical fuzzy Korovkin theorem
4.1 and the statistical fuzzy Korovkin theorem ([3, Theorem 2.1.]) do not work for our operators defined by
(29).
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[23] P.V. Subrahmanyam, Cesàro summability of fuzzy real numbers, Journal of Analysis 7 (1999) 159-168.
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