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Abstract. In this paper we introduce and study the relationQγ in le-Γ-semigroups. This relation in general
turns out to have better properties than the relationHγ studied in [10]. We give several properties that hold
in every Qγ-class of an le-Γ-semigroup and especially in every Qγ-class satisfying the Green’s condition. In
particular, the γ-regularity and γ-intra-regularity of aQγ-class is studied. We also consider a case aQγ-class
of an le-Γ-semigroup M forms a subsemigroup of Mγ = (M, ◦).

1. Introduction and Preliminaries

In [10], it is studied the relation Hγ and investigated several properties that hold in every Hγ-classes
of an le-Γ-semigroup satisfying the so-called Green’s condition and a necessary and sufficient condition
when an Hγ-class H of an le-Γ-semigroup M is a subgroup of Mγ = (M, ◦) is provided. In [10], there are
also provided several conditions that ensure that anHγ-class forms a subsemigroup of Mγ extending and
generalizing those for le-semigroups studied in [7].

In [1], it is introduced and studied the relation Bγ which turns out to be finer thatHγ. This means that
eachHγ-class can be partitioned into Bγ-classes. An investigation of several properties that hold in every
Bγ-classes have been provided and also several results which shows that the relation Bγ may be a better
candidate than Hγ for developing the structure theory for le-Γ-semigroups have been proved. It has been
showed that the Green’s condition is sufficient for a Bγ-class to be γ-regular and γ-intra-regular. Also, in
[1], several conditions were found ensuring that an Bγ-class of an le-Γ-semigroup M forms a subsemigroup
in Mγ = (M, ◦).

The aim of this paper is to introduce and study the relationQγ in le-Γ-semigroups that mimics the relation
Q in le-semigroups [4]. This relation in general turns out to have better properties than the relation Hγ

studied in [10]. We give several properties that hold in every Qγ-class of an le-Γ-semigroup and especially
in every Qγ-class satisfying the Green’s condition. In particular, the γ-regularity and γ-intra-regularity of
a Qγ-class is studied. We also consider a case a Qγ-class of an le-Γ-semigroup M forms a subsemigroup of
Mγ = (M, ◦) (cf. Theorem 5.3).

We introduce below necessary notions and present a few auxiliary results that will be used throughout
the paper.
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In 1986, Sen and Saha [9] defined Γ-semigroup as a generalization of semigroup and ternary semigroup.
We give the definition of Γ-semigroup in a different way as follows:

Definition 1.1. Let R and Γ be two non-empty sets. Any map from R× Γ×R→ R will be called a Γ-multiplication
in R and denoted by (·)Γ. The result of this multiplication for a, b ∈ R and α ∈ Γ is denoted by aαb. A Γ-semigroup
R is an ordered pair (R, (·)Γ) where R and Γ are non-empty sets and (·)Γ is a Γ-multiplication on R which satisfies the
following property : ∀(a, b, c, α, β) ∈ R3

× Γ2, (aαb)βc = aα(bβc).

Example 1.2. Let M be a semigroup and Γ be any non-empty set. Define a mapping M × Γ ×M→ M by aγb = ab
for all a, b ∈M and γ ∈ Γ. Then M is a Γ-semigroup.

Example 1.3. Let M be a set of all negative rational numbers. Obviously M is not a semigroup under usual product
of rational numbers. Let Γ = {− 1

p |p is prime}. Let a, b, c ∈ M and α, β ∈ Γ. Now if aαb is equal to the usual product
of rational numbers a, α, b, then aαb ∈M and (aαb)βc = aα(bβc). Hence M is a Γ-semigroup.

Example 1.4. Let M = {−i, 0, i} and Γ = M. Then M is a Γ-semigroup under the multiplication over complex
numbers while M is not a semigroup under complex number multiplication.

These examples show that every semigroup is a Γ-semigroup. Therefore, Γ-semigroups are a general-
ization of semigroups.

An element a of a Γ-semigroup M is called a γ-idempotent if exists γ ∈ Γ, aγa = a.
For non-empty subsets A and B of M and a non-empty subset Γ′ of Γ, let AΓ′B = {aγb|a ∈ A, b ∈ B and

γ ∈ Γ′}. If A = {a}, then we also write aΓ′B instead of {a}Γ′B, and similarly if B = {b} or Γ′ = {γ}.
A Γ-semigroup M is called commutative Γ-semigroup if for all a, b ∈M and γ ∈ Γ, aγb = bγa. A non-empty

subset K of a Γ-semigroup M is called a sub-Γ-semigroup of M if for all a, b ∈ K and γ ∈ Γ, aγb ∈ K.

Example 1.5. Let M = [0, 1] and Γ = { 1
n |n is a positive integer}. Then M is a Γ-semigroup under usual multiplication.

Let K = [0, 1
2 ]. We have that K is a nonemtpy subset of M and aγb ∈ K for all a, b ∈ K and γ ∈ Γ. Then K is a

sub-Γ-semigroup of M.

Let M be a Γ-semigroup and γ be a fixed element of Γ. In [9] is defined a ◦ b in M by a ◦ b = aγb for all
a, b ∈ M and is shown that (M, ◦) is a semigroup and this semigroup is denoted by Mγ. Also, it is shown
that if Mγ is a group for some γ ∈ Γ, then Mγ is a group for all γ ∈ Γ. A Γ-semigroup M is called a Γ-group if
Mγ is a group for some (hence for all) γ ∈ Γ [9].

Definition 1.6. A po-Γ-semigroup is an ordered set M at the same time Γ-semigroup such that for all c ∈M and for
all γ ∈ Γ

a ≤ b⇒ aγc ≤ bγc, cγa ≤ cγb.

A poe-Γ-semigroup is a po-Γ-semigroup M with a greatest element ”e” (i.e., for all a ∈M, e ≥ a).
In a po-Γ-semigroup M, for any γ ∈ Γ, the element a is called a γ-right (resp. γ-left) ideal element if for all

b ∈M, aγb ≤ a (resp. bγa ≤ a). And a is called a γ-ideal element if it is both a γ- right and γ-left ideal element.
In a poe-Γ-semigroup M, for any γ ∈ Γ, a is called a γ-right (resp. γ-left) ideal element if aγe ≤ a (resp. eγa ≤ a).

For A ⊆M, we denote

(A] = {t ∈M|t ≤ a for some a ∈ A}.

An element a of a poe-Γ-semigroup is called a γ-quasi-ideal element if eγa ∧ aγe exists for all γ ∈ Γ and
aγe∧ eγa ≤ a. The γ-zero of a poe-Γ-semigroup M is an element of M denoted by 0γ such that for every a ∈M,
e , 0γ ≤ a and 0γγa = aγ0γ = 0γ for all γ ∈ Γ. Let M be a poe-Γ-semigroup with 0γ. A γ-quasi-ideal element
a of M is called minimal if a , 0γ and there exists no γ-quasi-ideal element t of M such that 0γ < t < a. We
say that a ∈M is a γ-bi-ideal element of M if and only if aγeγa ≤ a.
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Definition 1.7. Let M be a semilattice under ∨with a greatest element e and at the same time a po-Γ-semigroup such
that for all a, b, c ∈M and for all γ ∈ Γ,

aγ(b ∨ c) = aγb ∨ aγc

and

(a ∨ b)γc = aγc ∨ bγc.

Then M is called a ∨e − Γ-semigroup.

A ∨e-Γ-semigroup which is also a lattice is called an le-Γ-semigroup.
Throught this paper M will stand for an le-Γ-semigroup. The usual order relation ≤ on M is defined in

the following way

a ≤ b⇔ a ∨ b = b.

Then we can show that for any a, b, c ∈M and γ ∈ Γ, a ≤ b implies aγc ≤ bγc and cγa ≤ cγb.

Example 1.8. [2] Let (X,≤) and (Y,≤) be two finite chains. Let M be the set of all isotone mappings from X into Y
and Γ be the set of all isotone mappings from Y into X. Let f , 1 ∈ M and α ∈ Γ. We define fα1 to denote the usual
mapping composition of f , α and 1. Then M is a Γ-semigroup. For f , 1 ∈M, the mappings f ∨ 1 and f ∧ 1 are defined
by letting, for each a ∈ X,

( f ∨ 1)(a) = max{ f (a), 1(a)}, ( f ∧ 1)(a) = min{ f (a), 1(a)}

(the maximum and minimum are considered with respect to the order ≤ in X and Y). The greatest element e is the
mapping that sends every a ∈ X to the greatest element of finite chains (Y,≤). Then M is an le-Γ-semigroup.

Example 1.9. [2] Let M be a po-Γ-semigroup. Let M1 be the set of all ideals of M. Then (M1,⊆,∩,∪) is an
le-Γ-semigroup.

Example 1.10. [2] Let M be a po-Γ-semigroup. Let M1 = P(M) be the set of all subsets of M and Γ1 = P(Γ) the set
of all subsets of Γ. Then M1 is a po-Γ1-semigroup if

AΛB =

{
(AΛB] if A,B ∈M1\{∅},Λ ∈ Γ1\{∅},
∅ if A = ∅ or B = ∅.

Then (M1,⊆,∩,∪) is an le-Γ1-semigroup.

Example 1.11. [3] Let G be a group, I,∧ two index sets and Γ the collection of some ∧× I matrices over Go = G∪{0},
the group with zero. Let µo be the set of all elements (a)iλ where i ∈ I, λ ∈ ∧ and (a)iλ the I×∧matrix over Go having
a in the i-th row and λ-th column, its remaining entries being zero. The expression (0)iλ will be used to denote the
zero matrix. For any (a)iλ, (b) jµ, (c)kν ∈ µo and α = (pλi), β = (qλi) ∈ Γ we define (a)iλα(b) jµ = (apλ jb)iµ. Then it is
easy verified that [(a)iλα(b) jµ]β(c)kν = (a)iλα[(b) jµβ(c)kν]. Thus µo is a Γ-semigroup. We call Γ the sandwich matrix
set and µo the Rees I × ∧ matrix Γ-semigroup over Go with sandwich matrix set Γ and denote it by µo(G : I,∧,Γ). In
[3], we deal with lattice-ordered Rees matrix Γ-semigroups.

In [10], for any γ ∈ Γ, two mappings rγ and lγ are defined by for any x ∈M as follows:

rγ : M→M, rγ(x) = xγe ∨ x,
lγ : M→M, lγ(x) = eγx ∨ x.

In [1], we have defined in a ∨e − Γ-semigroup M for all a ∈ M and for any γ ∈ Γ the mappings qγ and bγ as
follows:

bγ : M→M, bγ(x) = x ∨ xγeγx
qγ : M→M, qγ(x) = x ∨ (eγx ∧ xγe)
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In an arbitrary le-Γ-semigroup M, the Green’s relations are defined in [10] as follows:

Lγ = {(x, y) ∈M2
|eγx ∨ x = eγy ∨ y}

or
Lγ = {(x, y) ∈M2

|lγ(x) = lγ(y)},

Rγ = {(x, y) ∈M2
|xγe ∨ x = yγe ∨ y}

or
Rγ = {(x, y) ∈M|rγ(x) = rγ(y)},
Hγ = Lγ ∩ Rγ.

It is clear that an element x ∈ M is a γ-quasi [resp. bi, left, right] ideal element if qγ(x) = x [resp.
bγ(x) = x, lγ(x) = x, rγ(x) = x].

One can easily verify that for every x ∈M, the elements lγ(x), rγ(x), qγ(x), bγ(x) are respectively the least
γ-left, γ-right, γ-quasi and γ-bi-ideal elements above the x.

An element x of an le-Γ-semigroup M is called γ-regular [10] if and only if x ≤ xγlγ(x) or equivalently,
x ≤ xγeγx. An le-Γ-semigroup M is called γ-regular [10] if and only if every element of M is γ-regular. An
element x of an le-Γ-semigroup M is called γ-intra-regular if and only if x ≤ eγxγxγe. An le-Γ-semigroup M
is called γ-intra-regular if and only if every element of M is γ-intra-regular.

AnHγ-class H of Γ-semigroup M satisfy Green’s condition if there exist elements x and y of H such that
xγy ∈ H [10].

Lemma 1.12. Let M be an le-Γ-semigroup. For each x ∈M and γ ∈ Γ, we have qγ(qγ(x)) = qγ(x).

Proof. In fact,

qγ(qγ(x)) = qγ(x ∨ (xγe ∧ eγx)) = (x ∨ (xγe ∧ eγx) ∨ (eγ(x ∨ (xγe ∧ eγx))
∧(x ∨ (xγe ∧ eγx))γe = (x ∨ (xγe ∧ eγx)) ∨ ((eγx ∨ eγ(xγe ∧ eγx))
∧(xγe ∨ (xγe ∧ eγx)γe)) = (x ∨ (xγe ∧ eγx)) ∨ (eγx ∧ xγe) =

(x ∨ (xγe ∧ eγx)) = qγ(x).

If a ∈ M is a γ-left ideal element and b ∈ M is a γ-right ideal element, then as shown in Lemma 1.2 [10],
a ∧ b is a γ-quasi-ideal element of M.

If M is a distributive le-Γ-semigroup, then every quasi-ideal element is the intersection of a γ-right ideal
element with a γ-left ideal element. Indeed: q = q ∨ (qγe ∧ eγq) = (q ∨ eγq) ∧ (q ∨ qγe) = lγ(q) ∧ rγ(q) and
from Lemma 1.12, we have the desired result.

Definition 1.13. A γ-quasi-ideal element of an le-Γ-semigroup is said to have the intersection property if it is
expressed as an intersection of a γ-left ideal element and a γ-right ideal element.

Lemma 1.14. The γ-quasi-ideal element q of an le-Γ-semigroup M, has the intersection property if and only if
q = lγ(q) ∧ rγ(q).

Proof. If q = a ∧ b where a = lγ(a) and b = rγ(b), then lγ(q) = lγ(a ∧ b) ≤ lγ(a) and rγ(q) = rγ(a ∧ b) ≤ rγ(b).
Consequently, q = lγ(a) ∧ rγ(b) ≥ lγ(q) ∧ rγ(q). On the other hand, q ≤ lγ(q) ∧ rγ(q) since q = q ∨ (qγe ∧ eγq) ≤
q ∨ eγq = lγ(q) and q = q ∨ (qγe ∧ eγq) ≤ q ∨ qγe = rγ(q).

The converse is evident (cf. Lemma 1.2 [10]).

We observe here that if q = qγ(a) = a ∨ (aγe ∧ eγa), then

lγ(q) = lγ(a ∨ (aγe ∧ eγa)) = a ∨ (aγe ∧ eγa) ∨ eγ(a ∨ (aγe ∧ eγa)) = lγ(a),
rγ(q) = lγ(a ∨ (aγe ∧ eγa)) = a ∨ (aγe ∧ eγa) ∨ (a ∨ (aγe ∧ eγa))γe = rγ(a).

Whence q = rγ(a) ∧ lγ(a) in case q = qγ(a).
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2. The Relation Qγ in le-Γ-semigroups

We define now the following equivalence relation Qγ in le-Γ-semigroup M:

Qγ = {(x, y) ∈M2
|x ∨ (xγe ∧ eγx) = y ∨ (yγe ∧ eγy)},

or
Qγ = {(x, y) ∈M2

|qγ(x) = qγ(y)}.

It can be easily proved the following lemma.

Lemma 2.1. Let M be an le-Γ-semigroup. Then Qγ ⊆ Hγ.

Remark 1. Concerning the above lemma we notice that : In distributive le-Γ-semigroups, Qγ = Hγ. In fact, let
M be a distributive le-Γ-semigroup and (x, y) ∈ Qγ. Since qγ(x) = qγ(y), we have for all γ ∈ Γ,

x ∨ (xγe ∧ eγx) = y ∨ (yγe ∧ eγy).

Thus

x ≤ y ∨ (yγe ∧ eγy) and y ≤ x ∨ (xγe ∧ eγx).

Then, for all γ ∈ Γ,

xγe ∨ x ≤ (y ∨ (yγe ∧ eγy))γe ∨ y ∨ (yγe ∧ eγy)
= yγe ∨ (yγe ∧ eγy)γe ∨ y ∨ (yγe ∧ eγy)
= yγe ∨ y,

similarly, we have eγx∨ x ≤ eγy∨ y. From y ≤ x∨ (xγe∧ eγx), by symmetry, we have yγe∨ y ≤ xγe∨ x and
eγy∨ y ≤ eγx∨x. Hence, (x, y) ∈ Rγ∩Lγ = Hγ. Let now M be a distributive le-Γ-semigroup and (x, y) ∈ Hγ.
Since (x, y) ∈ Rγ and (x, y) ∈ Lγ, we get xγe ∨ x = yγe ∨ y and eγx ∨ x = eγy ∨ y. Then

(xγe ∨ x) ∧ (eγx ∨ x) = (yγe ∨ y) ∧ (eγy ∨ y).

Since M is distributive, we have

x ∨ (xγe ∧ eγx) = y ∨ (yγe ∧ eγy),

that is (x, y) ∈ Qγ.

Lemma 2.2. Let M be an le-Γ-semigroup. Each Qγ-class Q of M contains a unique γ-quasi-ideal element which is
the greatest element of the class.

Proof. For every element x ∈ Q, by Lemma 1.12 and the definition of relation Qγ, we have qγ(x) ∈ Q. If z is a
γ-quasi-ideal element belonging to Q, then qγ(x) = qγ(z) = z, which shows that qγ(x) is the only γ-quasi-ideal
element of the class. Since x ≤ qγ(x), we see that qγ(x) is the greatest element of Q.

Lemma 2.2 implies that for each x ∈ M, the γ-quasi-ideal element qγ(x) depends on the Qγ-class Q of x
rather than on x itself. We call the γ-quasi-ideal element qγ(x) the representative γ-quasi-ideal element of the
Qγ-class Q and denote it by qQ. So, we have two kind of quasi-ideal elements: the representative quasi-ideal
elements of the Hγ-classes defined in [10] and the above. Since each quasi-ideal element is included in
a Qγ-class and since Qγ contains only one quasi-ideal element, we obtain that the set of quasi-ideal ele-
ments of an le-Γ-semigroup coincide with the set of the representative quasi-ideal elements of theQγ-classes.

The following proposition gives a sufficient and neccessary condition for an le-Γ-semigroup under which
the relationsHγ and Qγ coincide.
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Proposition 2.3. Let M be an le-Γ-semigroup. The relationsHγ andQγ coincide if and only if the set of all quasi-ideal
elements have the intersection property.

Proof. If aHb, then lγ(a) = lγ(b) and rγ(a) = rγ(b). Since the quasi-ideal lγ(a) ∧ rγ(a) = lγ(b) ∧ rγ(b) has the
intersection property and by Lemma 1.14, we have

qγ(a) = lγ(a) ∧ rγ(a) = lγ(b) ∧ rγ(b) = qγ(b),

which means that aQγb, whenceHγ ⊆ Qγ. By Lemma 2.1, we getHγ = Qγ.
Conversely, let q be a quasi-ideal element of M. It is certainly the representative quasi-ideal element

of a Qa for a certain a ∈ M. By the assumption, we have Qa = Ha, then by Lemma 1.4 [10], we may write
q = lγ(a) ∧ rγ(a) which shows that q has the intersection property.

The following proposition gives a sufficient condition for an le-Γ-semigroup M in order that the relations
Hγ and Qγ coincide in M.

Proposition 2.4. If M is a γ-regular le-Γ-semigroup, thenHγ = Qγ.

Proof. For every γ-quasi-ideal element q due to γ-regularity, we have q ≤ qγeγq ≤ qγe ∧ eγq, hence lγ(q) =
q ∨ eγq = eγq and rγ(q) = q ∨ qγe = qγe. It follows that qγe ∧ eγq ≤ q ≤ qγe ∧ eγq, therefore q = qγe ∧ eγq =
lγ(q) ∧ rγ(q) which means that q has the intersection property. Proposition 2.3 implies Hγ = Qγ.

3. Qγ-classes Satisfying Green’s Condition

We say that a Qγ-class Q of an le-Γ-semigroup M satisfies the Green’s condition if there exist elements
a, b ∈ Q such that aγb ∈ Q.

Lemma 3.1. If the Qγ-class Qa of an le-Γ-semigroup M satisfies the Green’s condition, then Qa = Ha.

Proof. Since Qa ⊆ Ha, we have that Ha satisfies the Green’s condition. Theorem 2.1 [10] implies that Ha
contains the quasi-ideal q = qH = lγ(a)∧rγ(a) which is the only quasi-ideal element of Ha. On the other hand,
since qγ(qγ(a)) = qγ(a), the quasi-ideal element qγ(a) belongs to the Qγ-class Qa. Hence qH = lγ(a) ∧ rγ(a) =
qγ(a). For each x ∈ Ha, we have x ∈ Qx ⊆ Ha and consequently qγ(x) = lγ(a)∧ rγ(a) = qγ(a), which means that
x ∈ Qa. Therefore Ha ⊆ Qa. Thus Qa = Ha.

Using the above lemma, we obtain the following analogue of Theorem 2.1 [10].

Theorem 3.2. Let M be an le-Γ-semigroup. If Q is a Qγ-class of M satisfying the Green’s condition and let
q = lγ(a) ∧ rγ(a) where a ∈ Q. Then:

1. qγq ∈ Q and q = qγe ∧ eγq;
2. q is the only γ-quasi-ideal element of Q;
3. if x, y ∈ Q, then y ≤ xγe and y ≤ eγx;
4. qγq = qγeγq = (qγ)n−1q for all integers n ≥ 2; in particular, qγq is γ-idempotent;
5. every element of Q is γ-intra-regular;
6. q = qγq if and only if q is γ-regular in which case every element of Q = Hq is γ-regular.

An immediate corollary of the Theorem 3.2 is the following.

Corollary 3.3. A Qγ-class Q satisfies the Green’s condition if and only if it contains a γ-idempotent element.

Theorem 3.4. AQγ-class of an le-Γ-semigroup M is a subgroup of Mγ if and only if it consists of a singleγ-idempotent
element.

Proof. The ”if” part is obvious. Assume that Q is a subgroup of Mγ. It satisfies the Green’s condition and
as a result it coincides with theHγ-class of any of its elements. The result follows by Theorem 2.3 [10].



P. Petro, K. Hila, J. Dine / Filomat 30:5 (2016), 1127–1134 1133

4. γ-Regularity and γ-intra-regularity of Qγ-classes

In this section we give some necessary and sufficient conditions for aQγ-class to be γ-regular or γ-intra-
regular.

Proposition 4.1. Let M be an le-Γ-semigroup. A Qγ-class Qa of M is γ-regular if and only if the representative
γ-quasi-ideal element qγ(a) of Qa is γ-regular element.

Proof. It is clear that in general, a γ-quasi-ideal element q ∈ M is γ-regular if and only if q = qγeγq. Thus
the γ-regularity of qγ(a) implies that

qγ(a) = qγ(a)γeγqγ(a) = (a ∨ (aγe ∧ eγa))γeγ(a ∨ (aγe ∧ eγa)) =

aγeγa ∨ aγe(aγe ∧ eγa) ∨ (aγe ∧ eγa)γeγa ∨
∨(aγe ∧ eγa)γeγ(aγe ∧ eγa) = aγeγa.

Since a ≤ qγ(a), we have a ≤ aγeγa which means that a is γ-regular.
The converse is obvious.

Proposition 4.2. The Qγ-class Qa of an le-Γ-semigroup is γ-intra-regular if and only if the representative γ-quasi-
ideal element qγ(a) of Qa is γ-intra-regular.

Proof. The inequalities

a ≤ qγ(a) ≤ eγqγ(a)γqγ(a)γe = eγ(a ∨ (aγe ∧ eγa)γ(a ∨ (aγe ∧ eγa)γe =

eγ(aγa ∨ aγ(aγe ∧ eγa) ∨ (aγe ∧ eγa)γa ∨ (aγe ∧ eγa)γ(aγe ∧ eγa))γe =

eγaγaγe

show that a is γ-intra-regular as desired.
The converse is obvious.

Proposition 4.3. Let M be an le-Γ-semigroup. If Bx and By are two γ-regular Bγ-classes contained in the same
Qγ-class of M, then they coincide.

Proof. From the γ-regularity of both x and y, we have bγ(x) = xγeγx and bγ(y) = yγeγy. Since x and y are
in the same Qγ-class, Lemma 1.10 [1] yields xγeγx = yγeγy. Hence we have bγ(x) = bγ(y) and consequently
(x, y) ∈ Bγ.

In [8], Theorem 2 shows a nice situation in Γ-semigroups concerning the transmission of regularity from
elements to subsets, that is, if an element is regular, then the wholeDγ-class containing it is γ-regular too.
In contrast with the Γ-semigroup case, the Proposition 4.3 shows that in le-Γ-semigroups, the γ-regularity
of a Qγ-class Q is ”localized” in a unique Bγ-class B contained in Q, that is, an element x of M is γ-regular
together with its ownBγ-class Bx and none of the otherBγ-classes included in Qx (if there is any) is γ-regular.
The following problem arises:

Problem 1 Does γ-regularity of an element x imply γ-regularity of Qx, or equivalently, does it imply Bx = Qx?

An approach to find a non-γ-regular Qγ-class containing a γ-regular element would be to construct an
le-Γ-semigroup with a non-γ-regular Qγ-class satisfying the Green’s condition.

Problem 2 Is there an le-Γ-semigroup containing a Qγ-class that satisfies the Green’s condition but is not γ-
regular?

The following Proposition [1, Proposition 2.9] has been proved and it gives us a sufficient condition
under which γ-bi-ideal elements and γ-quasi-ideal elements coincide.
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Proposition 4.4. Let M be an le-Γ-semigroup. If for eachHγ-class H of M the Bγ-class Bq of the representative γ-
quasi-ideal element q = qH satisfies the Green’s condition, then the γ-quasi-ideal elements and the γ-bi-ideal elements
of M coincide.

5. Minimal γ-quasi-ideal and γ-bi-ideal Elements in le-Γ-semigroups

In [10], it is proved the following result.

Proposition 5.1. [10, Proposition 2.9] Let H be anHγ-class of M such that its representative γ-quasi-ideal element
q = qH is minimal in the set of all γ-quasi-ideal elements of M. Then H = (q] = {a ∈M|a ≤ q} and H is a subsemigroup
of Mγ.

The following Theorem proved in [1] gives a sufficient condition, under which aBγ-class or anHγ-class
of an le-Γ-semigroup M is a subsemigroup of Mγ.

Theorem 5.2. [1, Theorem 3.10] Let M be an le-Γ-semigroup. If b ∈M is minimal in the set of all γ-bi-ideal elements
of M, then

1. Bb = (b] = {x ∈M|x ≤ b} and Bb is a subsemigroup of Mγ.
2. Hb = {x ∈M|x ≤ bγe ∧ eγb} and Hb is a subsemigroup of Mγ.

Now we prove the following theorem.

Theorem 5.3. Let q ∈ M be a γ-quasi-ideal element. If q is minimal, then Hq = Qq = (q] = {a ∈ M|a ≤ q} and
Hq = Qq is a subsemigroup of Mγ. Conversely, if Hq = Qq = (q] = {a ∈M|a ≤ q}, then q is minimal.

Proof. Theorem 6 [5] implies that Qq = (q] = {a ∈ M|a ≤ q}. This and the inequalities qγq ≤ qγe ∧ eγq ≤ q,
imply that Qq and hence Hq satisfies the Green’s condition. By Theorem 2.1 [10] and Theorem 2.9 [10] it
follows that Hq = {a ∈ M|a ≤ q} and that Hq is a subsemigroup of Mγ. Thus Qq = Hq = (q] = {a ∈ M|a ≤ q} is
a subsemigroup of Mγ.

Conversely, since qγq ≤ q, we have that Hq satisfies the Green’s condition and by Theorem 3.2(2) we
have that q is the only γ-quasi-ideal element of the class. Indeed: If q′ < q, then q′ ∈ (q] = Qq = Hq. But Hq
satisfies Green’s condition, so Hq contains a single γ-quasi-ideal element. This implies q′ = q. This means
that q is a minimal γ-quasi-ideal element in M.

Remark 5.4. In particular, since le-semigroups are a special case of le − Γ-semigroups, all the results of this paper
hold true for le-semigroups by simply applying them for Γ a singleton.
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