Filomat 30:5 (2016), 1127–1134 DOI 10.2298/FIL1605127P

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

On Relation Q_{γ} **in** *le*- Γ -**Semigroups**

Petraq Petro^a, Kostaq Hila^b, Jani Dine^b

^aDepartment of Mathematics, Faculty of Natural Sciences, University of Tirana, Albania ^bDepartment of Mathematics & Computer Science, Faculty of Natural Sciences, University of Gjirokastra, Albania

Abstract. In this paper we introduce and study the relation Q_{γ} in *le*- Γ -semigroups. This relation in general turns out to have better properties than the relation \mathcal{H}_{γ} studied in [10]. We give several properties that hold in every Q_{γ} -class of an *le*- Γ -semigroup and especially in every Q_{γ} -class satisfying the Green's condition. In particular, the γ -regularity and γ -intra-regularity of a Q_{γ} -class is studied. We also consider a case a Q_{γ} -class of an *le*- Γ -semigroup *M* forms a subsemigroup of $M_{\gamma} = (M, \circ)$.

1. Introduction and Preliminaries

In [10], it is studied the relation \mathcal{H}_{γ} and investigated several properties that hold in every \mathcal{H}_{γ} -classes of an *le*- Γ -semigroup satisfying the so-called Green's condition and a necessary and sufficient condition when an \mathcal{H}_{γ} -class H of an *le*- Γ -semigroup M is a subgroup of $M_{\gamma} = (M, \circ)$ is provided. In [10], there are also provided several conditions that ensure that an \mathcal{H}_{γ} -class forms a subsemigroup of M_{γ} extending and generalizing those for *le*-semigroups studied in [7].

In [1], it is introduced and studied the relation \mathcal{B}_{γ} which turns out to be finer that \mathcal{H}_{γ} . This means that each \mathcal{H}_{γ} -class can be partitioned into \mathcal{B}_{γ} -classes. An investigation of several properties that hold in every \mathcal{B}_{γ} -classes have been provided and also several results which shows that the relation \mathcal{B}_{γ} may be a better candidate than \mathcal{H}_{γ} for developing the structure theory for *le*- Γ -semigroups have been proved. It has been showed that the Green's condition is sufficient for a \mathcal{B}_{γ} -class to be γ -regular and γ -intra-regular. Also, in [1], several conditions were found ensuring that an \mathcal{B}_{γ} -class of an *le*- Γ -semigroup M forms a subsemigroup in $M_{\gamma} = (M, \circ)$.

The aim of this paper is to introduce and study the relation Q_{γ} in *le*- Γ -semigroups that mimics the relation Q in *le*-semigroups [4]. This relation in general turns out to have better properties than the relation \mathcal{H}_{γ} studied in [10]. We give several properties that hold in every Q_{γ} -class of an *le*- Γ -semigroup and especially in every Q_{γ} -class satisfying the Green's condition. In particular, the γ -regularity and γ -intra-regularity of a Q_{γ} -class is studied. We also consider a case a Q_{γ} -class of an *le*- Γ -semigroup M forms a subsemigroup of $M_{\gamma} = (M, \circ)$ (cf. Theorem 5.3).

We introduce below necessary notions and present a few auxiliary results that will be used throughout the paper.

²⁰¹⁰ Mathematics Subject Classification. Primary 06F99; Secondary 06F05, 20M12, 20M10

Keywords. Γ-semigroup, Γ -group, po(poe)- Γ -semigroup, $\forall e(le)$ - Γ -semigroup, γ -left (γ -right) ideal element, γ -quasi-ideal element, γ -bi-ideal element, Green's relation, Green's condition, γ -regularity, γ -intra-regularity

Received: 10 April 2014; Accepted: 18 April 2015

Communicated by Dragan S. Djordjević

Email addresses: petropetraq@yahoo.com (Petraq Petro), kostaq_hila@yahoo.com (Kostaq Hila), jani_dine@yahoo.com (Jani Dine)

In 1986, Sen and Saha [9] defined Γ -semigroup as a generalization of semigroup and ternary semigroup. We give the definition of Γ -semigroup in a different way as follows:

Definition 1.1. Let R and Γ be two non-empty sets. Any map from $R \times \Gamma \times R \to R$ will be called a Γ -multiplication in R and denoted by $(\cdot)_{\Gamma}$. The result of this multiplication for $a, b \in R$ and $\alpha \in \Gamma$ is denoted by $a\alpha b$. A Γ -semigroup R is an ordered pair $(R, (\cdot)_{\Gamma})$ where R and Γ are non-empty sets and $(\cdot)_{\Gamma}$ is a Γ -multiplication on R which satisfies the following property : $\forall (a, b, c, \alpha, \beta) \in R^3 \times \Gamma^2$, $(a\alpha b)\beta c = a\alpha(b\beta c)$.

Example 1.2. Let M be a semigroup and Γ be any non-empty set. Define a mapping $M \times \Gamma \times M \rightarrow M$ by $a\gamma b = ab$ for all $a, b \in M$ and $\gamma \in \Gamma$. Then M is a Γ -semigroup.

Example 1.3. Let *M* be a set of all negative rational numbers. Obviously *M* is not a semigroup under usual product of rational numbers. Let $\Gamma = \{-\frac{1}{p} | p \text{ is prime}\}$. Let $a, b, c \in M$ and $\alpha, \beta \in \Gamma$. Now if $a\alpha b$ is equal to the usual product of rational numbers a, α, b , then $a\alpha b \in M$ and $(a\alpha b)\beta c = a\alpha(b\beta c)$. Hence *M* is a Γ -semigroup.

Example 1.4. Let $M = \{-i, 0, i\}$ and $\Gamma = M$. Then M is a Γ -semigroup under the multiplication over complex numbers while M is not a semigroup under complex number multiplication.

These examples show that every semigroup is a Γ -semigroup. Therefore, Γ -semigroups are a generalization of semigroups.

An element *a* of a Γ -semigroup *M* is called a γ -*idempotent* if exists $\gamma \in \Gamma$, $a\gamma a = a$.

For non-empty subsets *A* and *B* of *M* and a non-empty subset Γ' of Γ , let $A\Gamma'B = \{a\gamma b | a \in A, b \in B \text{ and } \gamma \in \Gamma'\}$. If $A = \{a\}$, then we also write $a\Gamma'B$ instead of $\{a\}\Gamma'B$, and similarly if $B = \{b\}$ or $\Gamma' = \{\gamma\}$.

A Γ -semigroup *M* is called *commutative* Γ -*semigroup* if for all $a, b \in M$ and $\gamma \in \Gamma$, $a\gamma b = b\gamma a$. A non-empty subset *K* of a Γ -semigroup *M* is called a *sub*- Γ -*semigroup* of *M* if for all $a, b \in K$ and $\gamma \in \Gamma$, $a\gamma b \in K$.

Example 1.5. Let M = [0, 1] and $\Gamma = \{\frac{1}{n} | n \text{ is a positive integer} \}$. Then M is a Γ -semigroup under usual multiplication. Let $K = [0, \frac{1}{2}]$. We have that K is a nonemtpy subset of M and $a\gamma b \in K$ for all $a, b \in K$ and $\gamma \in \Gamma$. Then K is a sub- Γ -semigroup of M.

Let *M* be a Γ -semigroup and γ be a fixed element of Γ . In [9] is defined $a \circ b$ in *M* by $a \circ b = a\gamma b$ for all $a, b \in M$ and is shown that (M, \circ) is a semigroup and this semigroup is denoted by M_{γ} . Also, it is shown that if M_{γ} is a group for some $\gamma \in \Gamma$, then M_{γ} is a group for all $\gamma \in \Gamma$. A Γ -semigroup *M* is called a Γ -group if M_{γ} is a group for some (hence for all) $\gamma \in \Gamma$ [9].

Definition 1.6. A po- Γ -semigroup is an ordered set M at the same time Γ -semigroup such that for all $c \in M$ and for all $\gamma \in \Gamma$

$$a \leq b \Rightarrow a\gamma c \leq b\gamma c, c\gamma a \leq c\gamma b.$$

A *poe*- Γ -semigroup is a *po*- Γ -semigroup *M* with a greatest element "e" (i.e., for all $a \in M, e \ge a$).

In a *po*- Γ -semigroup *M*, for any $\gamma \in \Gamma$, the element *a* is called a γ -*right* (resp. γ -*left*) *ideal element* if for all $b \in M$, $a\gamma b \leq a$ (resp. $b\gamma a \leq a$). And *a* is called a γ -*ideal element* if it is both a γ - right and γ -left ideal element. In a *poe*- Γ -semigroup *M*, for any $\gamma \in \Gamma$, *a* is called a γ -*right* (resp. γ -*left*) *ideal element* if $a\gamma e \leq a$ (resp. $e\gamma a \leq a$).

For $A \subseteq M$, we denote

$$(A] = \{t \in M | t \le a \text{ for some } a \in A\}.$$

An element *a* of a *poe*- Γ -semigroup is called a γ -*quasi-ideal element* if $e\gamma a \land a\gamma e$ exists for all $\gamma \in \Gamma$ and $a\gamma e \land e\gamma a \leq a$. The γ -zero of a *poe*- Γ -semigroup *M* is an element of *M* denoted by 0_{γ} such that for every $a \in M$, $e \neq 0_{\gamma} \leq a$ and $0_{\gamma}\gamma a = a\gamma 0_{\gamma} = 0_{\gamma}$ for all $\gamma \in \Gamma$. Let *M* be a *poe*- Γ -semigroup with 0_{γ} . A γ -quasi-ideal element *a* of *M* is called *minimal* if $a \neq 0_{\gamma}$ and there exists no γ -quasi-ideal element *t* of *M* such that $0_{\gamma} < t < a$. We say that $a \in M$ is a γ -*bi-ideal element* of *M* if and only if $a\gamma e\gamma a \leq a$.

Definition 1.7. *Let* M *be a semilattice under* \lor *with a greatest element e and at the same time a* po- Γ *-semigroup such that for all a, b, c* \in M *and for all* $\gamma \in \Gamma$ *,*

$$a\gamma(b\lor c) = a\gamma b\lor a\gamma c$$

and

$$(a \lor b) \gamma c = a \gamma c \lor b \gamma c.$$

Then M is called $a \lor e - \Gamma$ *-semigroup.*

A \lor *e*- Γ -semigroup which is also a lattice is called an *le*- Γ -*semigroup*.

Throught this paper *M* will stand for an *le*- Γ -semigroup. The usual order relation \leq on *M* is defined in the following way

$$a \le b \Leftrightarrow a \lor b = b$$

Then we can show that for any $a, b, c \in M$ and $\gamma \in \Gamma$, $a \leq b$ implies $a\gamma c \leq b\gamma c$ and $c\gamma a \leq c\gamma b$.

Example 1.8. [2] Let (X, \leq) and (Y, \leq) be two finite chains. Let M be the set of all isotone mappings from X into Y and Γ be the set of all isotone mappings from Y into X. Let $f, g \in M$ and $\alpha \in \Gamma$. We define $f \alpha g$ to denote the usual mapping composition of f, α and g. Then M is a Γ -semigroup. For $f, g \in M$, the mappings $f \lor g$ and $f \land g$ are defined by letting, for each $\alpha \in X$,

$$(f \lor g)(a) = max\{f(a), g(a)\}, (f \land g)(a) = min\{f(a), g(a)\}$$

(the maximum and minimum are considered with respect to the order \leq in X and Y). The greatest element *e* is the mapping that sends every $a \in X$ to the greatest element of finite chains (Y, \leq) . Then M is an le- Γ -semigroup.

Example 1.9. [2] Let M be a po- Γ -semigroup. Let M_1 be the set of all ideals of M. Then $(M_1, \subseteq, \cap, \cup)$ is an *le*- Γ -semigroup.

Example 1.10. [2] Let M be a po- Γ -semigroup. Let $M_1 = P(M)$ be the set of all subsets of M and $\Gamma_1 = P(\Gamma)$ the set of all subsets of Γ . Then M_1 is a po- Γ_1 -semigroup if

$$A\Lambda B = \begin{cases} (A\Lambda B] & \text{if } A, B \in M_1 \setminus \{\emptyset\}, \Lambda \in \Gamma_1 \setminus \{\emptyset\}, \\ \emptyset & \text{if } A = \emptyset \text{ or } B = \emptyset. \end{cases}$$

Then $(M_1, \subseteq, \cap, \cup)$ *is an* le- Γ_1 *-semigroup.*

Example 1.11. [3] Let G be a group, I, \wedge two index sets and Γ the collection of some $\wedge \times I$ matrices over $G^{\circ} = G \cup \{0\}$, the group with zero. Let μ° be the set of all elements $(a)_{i\lambda}$ where $i \in I$, $\lambda \in \wedge$ and $(a)_{i\lambda}$ the $I \times \wedge$ matrix over G° having a in the *i*-th row and λ -th column, its remaining entries being zero. The expression $(0)_{i\lambda}$ will be used to denote the zero matrix. For any $(a)_{i\lambda}$, $(b)_{j\mu}$, $(c)_{k\nu} \in \mu^{\circ}$ and $\alpha = (p_{\lambda i})$, $\beta = (q_{\lambda i}) \in \Gamma$ we define $(a)_{i\lambda}\alpha(b)_{j\mu} = (ap_{\lambda j}b)_{i\mu}$. Then it is easy verified that $[(a)_{i\lambda}\alpha(b)_{j\mu}]\beta(c)_{k\nu} = (a)_{i\lambda}\alpha[(b)_{j\mu}\beta(c)_{k\nu}]$. Thus μ° is a Γ -semigroup. We call Γ the sandwich matrix set and μ° the Rees $I \times \wedge$ matrix Γ -semigroup over G° with sandwich matrix set Γ and denote it by $\mu^{\circ}(G : I, \wedge, \Gamma)$. In [3], we deal with lattice-ordered Rees matrix Γ -semigroups.

In [10], for any $\gamma \in \Gamma$, two mappings r_{γ} and l_{γ} are defined by for any $x \in M$ as follows:

$$r_{\gamma}: M \to M, r_{\gamma}(x) = x\gamma e \lor x, l_{\gamma}: M \to M, l_{\gamma}(x) = e\gamma x \lor x.$$

In [1], we have defined in a $\forall e - \Gamma$ -semigroup M for all $a \in M$ and for any $\gamma \in \Gamma$ the mappings q_{γ} and b_{γ} as follows:

$$b_{\gamma} : M \to M, b_{\gamma}(x) = x \lor x\gamma e\gamma x$$
$$q_{\gamma} : M \to M, q_{\gamma}(x) = x \lor (e\gamma x \land x\gamma e)$$

In an arbitrary *le*-Γ-semigroup *M*, the Green's relations are defined in [10] as follows:

$$\begin{split} \mathcal{L}_{\gamma} &= \{(x,y) \in M^2 | e\gamma x \lor x = e\gamma y \lor y\} \\ or \\ \mathcal{L}_{\gamma} &= \{(x,y) \in M^2 | l_{\gamma}(x) = l_{\gamma}(y)\}, \\ \mathcal{R}_{\gamma} &= \{(x,y) \in M^2 | x\gamma e \lor x = y\gamma e \lor y\} \\ or \\ \mathcal{R}_{\gamma} &= \{(x,y) \in M | r_{\gamma}(x) = r_{\gamma}(y)\}, \\ \mathcal{H}_{\gamma} &= \mathcal{L}_{\gamma} \cap \mathcal{R}_{\gamma}. \end{split}$$

It is clear that an element $x \in M$ is a γ -quasi [resp. bi, left, right] ideal element if $q_{\gamma}(x) = x$ [resp. $b_{\gamma}(x) = x, l_{\gamma}(x) = x, r_{\gamma}(x) = x$].

One can easily verify that for every $x \in M$, the elements $l_{\gamma}(x)$, $r_{\gamma}(x)$, $q_{\gamma}(x)$, $b_{\gamma}(x)$ are respectively the least γ -left, γ -right, γ -quasi and γ -bi-ideal elements above the x.

An element *x* of an *le*- Γ -semigroup *M* is called γ -regular [10] if and only if $x \le x\gamma l_{\gamma}(x)$ or equivalently, $x \le x\gamma e\gamma x$. An *le*- Γ -semigroup *M* is called γ -regular [10] if and only if every element of *M* is γ -regular. An element *x* of an *le*- Γ -semigroup *M* is called γ -*intra*-regular if and only if $x \le e\gamma x\gamma x\gamma e$. An *le*- Γ -semigroup *M* is called γ -*intra*-regular if and only if every element of *M* is γ -intra-regular.

An \mathcal{H}_{γ} -class H of Γ -semigroup M satisfy Green's condition if there exist elements x and y of H such that $x\gamma y \in H$ [10].

Lemma 1.12. Let *M* be an le- Γ -semigroup. For each $x \in M$ and $\gamma \in \Gamma$, we have $q_{\gamma}(q_{\gamma}(x)) = q_{\gamma}(x)$.

Proof. In fact,

$$q_{\gamma}(q_{\gamma}(x)) = q_{\gamma}(x \lor (x\gamma e \land e\gamma x)) = (x \lor (x\gamma e \land e\gamma x) \lor (e\gamma(x \lor (x\gamma e \land e\gamma x)))$$
$$\land (x \lor (x\gamma e \land e\gamma x))\gamma e = (x \lor (x\gamma e \land e\gamma x)) \lor ((e\gamma x \lor e\gamma(x\gamma e \land e\gamma x)))$$
$$\land (x\gamma e \lor (x\gamma e \land e\gamma x)\gamma e)) = (x \lor (x\gamma e \land e\gamma x)) \lor (e\gamma x \land x\gamma e) =$$
$$(x \lor (x\gamma e \land e\gamma x)) = q_{\gamma}(x).$$

If $a \in M$ is a γ -left ideal element and $b \in M$ is a γ -right ideal element, then as shown in Lemma 1.2 [10], $a \wedge b$ is a γ -quasi-ideal element of M.

If *M* is a distributive *le*- Γ -semigroup, then every quasi-ideal element is the intersection of a γ -right ideal element with a γ -left ideal element. Indeed: $q = q \lor (q\gamma e \land e\gamma q) = (q \lor e\gamma q) \land (q \lor q\gamma e) = l_{\gamma}(q) \land r_{\gamma}(q)$ and from Lemma 1.12, we have the desired result. \Box

Definition 1.13. A γ -quasi-ideal element of an le- Γ -semigroup is said to have the intersection property if it is expressed as an intersection of a γ -left ideal element and a γ -right ideal element.

Lemma 1.14. The γ -quasi-ideal element q of an le- Γ -semigroup M, has the intersection property if and only if $q = l_{\gamma}(q) \wedge r_{\gamma}(q)$.

Proof. If $q = a \land b$ where $a = l_{\gamma}(a)$ and $b = r_{\gamma}(b)$, then $l_{\gamma}(q) = l_{\gamma}(a \land b) \le l_{\gamma}(a)$ and $r_{\gamma}(q) = r_{\gamma}(a \land b) \le r_{\gamma}(b)$. Consequently, $q = l_{\gamma}(a) \land r_{\gamma}(b) \ge l_{\gamma}(q) \land r_{\gamma}(q)$. On the other hand, $q \le l_{\gamma}(q) \land r_{\gamma}(q)$ since $q = q \lor (q\gamma e \land e\gamma q) \le q \lor e\gamma q = l_{\gamma}(q)$ and $q = q \lor (q\gamma e \land e\gamma q) \le q \lor q\gamma e = r_{\gamma}(q)$.

The converse is evident (cf. Lemma 1.2 [10]). \Box

We observe here that if $q = q_{\gamma}(a) = a \lor (a\gamma e \land e\gamma a)$, then

$$l_{\gamma}(q) = l_{\gamma}(a \lor (a\gamma e \land e\gamma a)) = a \lor (a\gamma e \land e\gamma a) \lor e\gamma(a \lor (a\gamma e \land e\gamma a)) = l_{\gamma}(a),$$

 $r_{\nu}(q) = l_{\nu}(a \lor (a\gamma e \land e\gamma a)) = a \lor (a\gamma e \land e\gamma a) \lor (a \lor (a\gamma e \land e\gamma a))\gamma e = r_{\nu}(a).$

Whence $q = r_{\gamma}(a) \wedge l_{\gamma}(a)$ in case $q = q_{\gamma}(a)$.

2. The Relation Q_{γ} in *le*- Γ -semigroups

We define now the following equivalence relation Q_{γ} in *le*- Γ -semigroup *M*:

$$\begin{aligned} Q_{\gamma} &= \{(x, y) \in M^2 | x \lor (x\gamma e \land e\gamma x) = y \lor (y\gamma e \land e\gamma y) \}, \\ or \\ Q_{\gamma} &= \{(x, y) \in M^2 | q_{\gamma}(x) = q_{\gamma}(y) \}. \end{aligned}$$

It can be easily proved the following lemma.

Lemma 2.1. Let *M* be an le- Γ -semigroup. Then $Q_{\gamma} \subseteq \mathcal{H}_{\gamma}$.

Remark 1. Concerning the above lemma we notice that : *In distributive le*- Γ -*semigroups,* $Q_{\gamma} = \mathcal{H}_{\gamma}$. In fact, let M be a distributive *le*- Γ -semigroup and $(x, y) \in Q_{\gamma}$. Since $q_{\gamma}(x) = q_{\gamma}(y)$, we have for all $\gamma \in \Gamma$,

 $x \lor (x\gamma e \land e\gamma x) = y \lor (y\gamma e \land e\gamma y).$

Thus

$$x \le y \lor (y\gamma e \land e\gamma y)$$
 and $y \le x \lor (x\gamma e \land e\gamma x)$

Then, for all $\gamma \in \Gamma$,

$$\begin{aligned} x\gamma e \lor x &\leq (y \lor (y\gamma e \land e\gamma y))\gamma e \lor y \lor (y\gamma e \land e\gamma y) \\ &= y\gamma e \lor (y\gamma e \land e\gamma y)\gamma e \lor y \lor (y\gamma e \land e\gamma y) \\ &= y\gamma e \lor y, \end{aligned}$$

similarly, we have $e\gamma x \lor x \le e\gamma y \lor y$. From $y \le x \lor (x\gamma e \land e\gamma x)$, by symmetry, we have $y\gamma e \lor y \le x\gamma e \lor x$ and $e\gamma y \lor y \le e\gamma x \lor x$. Hence, $(x, y) \in \mathcal{R}_{\gamma} \cap \mathcal{L}_{\gamma} = \mathcal{H}_{\gamma}$. Let now *M* be a distributive *le*- Γ -semigroup and $(x, y) \in \mathcal{H}_{\gamma}$. Since $(x, y) \in \mathcal{R}_{\gamma}$ and $(x, y) \in \mathcal{L}_{\gamma}$, we get $x\gamma e \lor x = y\gamma e \lor y$ and $e\gamma x \lor x = e\gamma y \lor y$. Then

$$(x\gamma e \lor x) \land (e\gamma x \lor x) = (y\gamma e \lor y) \land (e\gamma y \lor y).$$

Since *M* is distributive, we have

$$x \lor (x\gamma e \land e\gamma x) = y \lor (y\gamma e \land e\gamma y),$$

that is $(x, y) \in Q_{\gamma}$.

Lemma 2.2. Let *M* be an le- Γ -semigroup. Each Q_{γ} -class *Q* of *M* contains a unique γ -quasi-ideal element which is the greatest element of the class.

Proof. For every element $x \in Q$, by Lemma 1.12 and the definition of relation Q_{γ} , we have $q_{\gamma}(x) \in Q$. If z is a γ -quasi-ideal element belonging to Q, then $q_{\gamma}(x) = q_{\gamma}(z) = z$, which shows that $q_{\gamma}(x)$ is the only γ -quasi-ideal element of the class. Since $x \leq q_{\gamma}(x)$, we see that $q_{\gamma}(x)$ is the greatest element of Q. \Box

Lemma 2.2 implies that for each $x \in M$, the γ -quasi-ideal element $q_{\gamma}(x)$ depends on the Q_{γ} -class Q of x rather than on x itself. We call the γ -quasi-ideal element $q_{\gamma}(x)$ the *representative* γ -quasi-ideal element of the Q_{γ} -class Q and denote it by q_Q . So, we have two kind of quasi-ideal elements: the representative quasi-ideal element of the H_{γ} -classes defined in [10] and the above. Since each quasi-ideal element is included in a Q_{γ} -class and since Q_{γ} contains only one quasi-ideal element, we obtain that the set of quasi-ideal elements of the Q_{γ} -classes.

The following proposition gives a sufficient and neccessary condition for an *le*- Γ -semigroup under which the relations \mathcal{H}_{γ} and \mathcal{Q}_{γ} coincide.

Proposition 2.3. Let *M* be an le- Γ -semigroup. The relations \mathcal{H}_{γ} and \mathcal{Q}_{γ} coincide if and only if the set of all quasi-ideal elements have the intersection property.

Proof. If *a*H*b*, then $l_{\gamma}(a) = l_{\gamma}(b)$ and $r_{\gamma}(a) = r_{\gamma}(b)$. Since the quasi-ideal $l_{\gamma}(a) \wedge r_{\gamma}(a) = l_{\gamma}(b) \wedge r_{\gamma}(b)$ has the intersection property and by Lemma 1.14, we have

$$q_{\gamma}(a) = l_{\gamma}(a) \wedge r_{\gamma}(a) = l_{\gamma}(b) \wedge r_{\gamma}(b) = q_{\gamma}(b),$$

which means that $aQ_{\gamma}b$, whence $\mathcal{H}_{\gamma} \subseteq Q_{\gamma}$. By Lemma 2.1, we get $\mathcal{H}_{\gamma} = Q_{\gamma}$.

Conversely, let *q* be a quasi-ideal element of *M*. It is certainly the representative quasi-ideal element of a Q_a for a certain $a \in M$. By the assumption, we have $Q_a = H_a$, then by Lemma 1.4 [10], we may write $q = l_{\gamma}(a) \wedge r_{\gamma}(a)$ which shows that *q* has the intersection property. \Box

The following proposition gives a sufficient condition for an *le*- Γ -semigroup *M* in order that the relations \mathcal{H}_{γ} and \mathcal{Q}_{γ} coincide in *M*.

Proposition 2.4. If *M* is a γ -regular le- Γ -semigroup, then $\mathcal{H}_{\gamma} = Q_{\gamma}$.

Proof. For every γ -quasi-ideal element q due to γ -regularity, we have $q \leq q\gamma e\gamma q \leq q\gamma e \wedge e\gamma q$, hence $l_{\gamma}(q) = q \vee e\gamma q = e\gamma q$ and $r_{\gamma}(q) = q \vee q\gamma e = q\gamma e$. It follows that $q\gamma e \wedge e\gamma q \leq q \leq q\gamma e \wedge e\gamma q$, therefore $q = q\gamma e \wedge e\gamma q = l_{\gamma}(q) \wedge r_{\gamma}(q)$ which means that q has the intersection property. Proposition 2.3 implies $H_{\gamma} = Q_{\gamma}$. \Box

3. Q_{γ} -classes Satisfying Green's Condition

We say that a Q_{γ} -class Q of an *le*- Γ -semigroup M satisfies the Green's condition if there exist elements $a, b \in Q$ such that $a\gamma b \in Q$.

Lemma 3.1. If the Q_{γ} -class Q_a of an le- Γ -semigroup M satisfies the Green's condition, then $Q_a = H_a$.

Proof. Since $Q_a \subseteq H_a$, we have that H_a satisfies the Green's condition. Theorem 2.1 [10] implies that H_a contains the quasi-ideal $q = q_H = l_{\gamma}(a) \wedge r_{\gamma}(a)$ which is the only quasi-ideal element of H_a . On the other hand, since $q_{\gamma}(q_{\gamma}(a)) = q_{\gamma}(a)$, the quasi-ideal element $q_{\gamma}(a)$ belongs to the Q_{γ} -class Q_a . Hence $q_H = l_{\gamma}(a) \wedge r_{\gamma}(a) = q_{\gamma}(a)$. For each $x \in H_a$, we have $x \in Q_x \subseteq H_a$ and consequently $q_{\gamma}(x) = l_{\gamma}(a) \wedge r_{\gamma}(a) = q_{\gamma}(a)$, which means that $x \in Q_a$. Therefore $H_a \subseteq Q_a$. Thus $Q_a = H_a$. \Box

Using the above lemma, we obtain the following analogue of Theorem 2.1 [10].

Theorem 3.2. Let *M* be an le- Γ -semigroup. If *Q* is a Q_{γ} -class of *M* satisfying the Green's condition and let $q = l_{\gamma}(a) \wedge r_{\gamma}(a)$ where $a \in Q$. Then:

- 1. $q\gamma q \in Q$ and $q = q\gamma e \land e\gamma q$;
- 2. *q* is the only γ -quasi-ideal element of *Q*;
- 3. *if* $x, y \in Q$, *then* $y \le x\gamma e$ *and* $y \le e\gamma x$;

4. $q\gamma q = q\gamma e\gamma q = (q\gamma)^{n-1}q$ for all integers $n \ge 2$; in particular, $q\gamma q$ is γ -idempotent;

- 5. every element of Q is γ -intra-regular;
- 6. $q = q\gamma q$ if and only if q is γ -regular in which case every element of $Q = H_q$ is γ -regular.

An immediate corollary of the Theorem 3.2 is the following.

Corollary 3.3. A Q_{γ} -class Q satisfies the Green's condition if and only if it contains a γ -idempotent element.

Theorem 3.4. $A Q_{\gamma}$ -class of an le- Γ -semigroup M is a subgroup of M_{γ} if and only if it consists of a single γ -idempotent element.

Proof. The "if" part is obvious. Assume that Q is a subgroup of M_{γ} . It satisfies the Green's condition and as a result it coincides with the \mathcal{H}_{γ} -class of any of its elements. The result follows by Theorem 2.3 [10]. \Box

4. γ -Regularity and γ -intra-regularity of Q_{γ} -classes

In this section we give some necessary and sufficient conditions for a Q_{γ} -class to be γ -regular or γ -intraregular.

Proposition 4.1. Let *M* be an le- Γ -semigroup. A Q_{γ} -class Q_a of *M* is γ -regular if and only if the representative γ -quasi-ideal element $q_{\gamma}(a)$ of Q_a is γ -regular element.

Proof. It is clear that in general, a γ -quasi-ideal element $q \in M$ is γ -regular if and only if $q = q\gamma e\gamma q$. Thus the γ -regularity of $q_{\gamma}(a)$ implies that

$$q_{\gamma}(a) = q_{\gamma}(a)\gamma e\gamma q_{\gamma}(a) = (a \lor (a\gamma e \land e\gamma a))\gamma e\gamma (a \lor (a\gamma e \land e\gamma a)) = a\gamma e\gamma a \lor a\gamma e(a\gamma e \land e\gamma a) \lor (a\gamma e \land e\gamma a)\gamma e\gamma a \lor (a\gamma e \land e\gamma a)\gamma e\gamma (a\gamma e \land e\gamma a) \gamma e\gamma a \lor (a\gamma e \land e\gamma a)\gamma e\gamma (a\gamma e \land e\gamma a) = a\gamma e\gamma a.$$

Since $a \le q_{\gamma}(a)$, we have $a \le a\gamma e\gamma a$ which means that *a* is γ -regular. The converse is obvious. \Box

Proposition 4.2. The Q_{γ} -class Q_a of an le- Γ -semigroup is γ -intra-regular if and only if the representative γ -quasiideal element $q_{\gamma}(a)$ of Q_a is γ -intra-regular.

Proof. The inequalities

 $a \leq q_{\gamma}(a) \leq e\gamma q_{\gamma}(a)\gamma q_{\gamma}(a)\gamma e = e\gamma(a \vee (a\gamma e \wedge e\gamma a)\gamma(a \vee (a\gamma e \wedge e\gamma a)\gamma e) = e\gamma(a\gamma a \vee a\gamma(a\gamma e \wedge e\gamma a) \vee (a\gamma e \wedge e\gamma a)\gamma a \vee (a\gamma e \wedge e\gamma a)\gamma(a\gamma e \wedge e\gamma a))\gamma e = e\gamma a\gamma a\gamma e$

show that *a* is γ -intra-regular as desired.

The converse is obvious. \Box

Proposition 4.3. Let *M* be an le- Γ -semigroup. If B_x and B_y are two γ -regular \mathcal{B}_{γ} -classes contained in the same \mathcal{Q}_{γ} -class of *M*, then they coincide.

Proof. From the γ -regularity of both x and y, we have $b_{\gamma}(x) = x\gamma e\gamma x$ and $b_{\gamma}(y) = y\gamma e\gamma y$. Since x and y are in the same Q_{γ} -class, Lemma 1.10 [1] yields $x\gamma e\gamma x = y\gamma e\gamma y$. Hence we have $b_{\gamma}(x) = b_{\gamma}(y)$ and consequently $(x, y) \in \mathcal{B}_{\gamma}$. \Box

In [8], Theorem 2 shows a nice situation in Γ -semigroups concerning the transmission of regularity from elements to subsets, that is, if an element is regular, then the whole \mathcal{D}_{γ} -class containing it is γ -regular too. In contrast with the Γ -semigroup case, the Proposition 4.3 shows that in *le*- Γ -semigroups, the γ -regularity of a \mathcal{Q}_{γ} -class Q is "localized" in a unique \mathcal{B}_{γ} -class B contained in Q, that is, an element x of M is γ -regular together with its own \mathcal{B}_{γ} -class B_x and none of the other \mathcal{B}_{γ} -classes included in Q_x (if there is any) is γ -regular. The following problem arises:

Problem 1 Does γ -regularity of an element x imply γ -regularity of Q_x , or equivalently, does it imply $B_x = Q_x$?

An approach to find a non- γ -regular Q_{γ} -class containing a γ -regular element would be to construct an *le*- Γ -semigroup with a non- γ -regular Q_{γ} -class satisfying the Green's condition.

Problem 2 Is there an le- Γ -semigroup containing a Q_{γ} -class that satisfies the Green's condition but is not γ -regular?

The following Proposition [1, Proposition 2.9] has been proved and it gives us a sufficient condition under which γ -bi-ideal elements and γ -quasi-ideal elements coincide.

Proposition 4.4. Let *M* be an le- Γ -semigroup. If for each \mathcal{H}_{γ} -class *H* of *M* the \mathcal{B}_{γ} -class B_q of the representative γ -quasi-ideal element $q = q_H$ satisfies the Green's condition, then the γ -quasi-ideal elements and the γ -bi-ideal elements of *M* coincide.

5. Minimal γ-quasi-ideal and γ-bi-ideal Elements in *le*-Γ-semigroups

In [10], it is proved the following result.

Proposition 5.1. [10, Proposition 2.9] Let H be an \mathcal{H}_{γ} -class of M such that its representative γ -quasi-ideal element $q = q_H$ is minimal in the set of all γ -quasi-ideal elements of M. Then $H = (q] = \{a \in M | a \leq q\}$ and H is a subsemigroup of M_{γ} .

The following Theorem proved in [1] gives a sufficient condition, under which a \mathcal{B}_{γ} -class or an \mathcal{H}_{γ} -class of an le- Γ -semigroup M is a subsemigroup of M_{γ} .

Theorem 5.2. [1, Theorem 3.10] Let M be an le- Γ -semigroup. If $b \in M$ is minimal in the set of all γ -bi-ideal elements of M, then

1. $B_b = \{b\} = \{x \in M | x \le b\}$ and B_b is a subsemigroup of M_{γ} .

2. $H_b = \{x \in M | x \le b\gamma e \land e\gamma b\}$ and H_b is a subsemigroup of M_{γ} .

Now we prove the following theorem.

Theorem 5.3. Let $q \in M$ be a γ -quasi-ideal element. If q is minimal, then $H_q = Q_q = (q] = \{a \in M | a \le q\}$ and $H_q = Q_q$ is a subsemigroup of M_{γ} . Conversely, if $H_q = Q_q = (q] = \{a \in M | a \le q\}$, then q is minimal.

Proof. Theorem 6 [5] implies that $Q_q = (q] = \{a \in M | a \le q\}$. This and the inequalities $q\gamma q \le q\gamma e \land e\gamma q \le q$, imply that Q_q and hence H_q satisfies the Green's condition. By Theorem 2.1 [10] and Theorem 2.9 [10] it follows that $H_q = \{a \in M | a \le q\}$ and that H_q is a subsemigroup of M_γ . Thus $Q_q = H_q = (q] = \{a \in M | a \le q\}$ is a subsemigroup of M_γ .

Conversely, since $q\gamma q \leq q$, we have that H_q satisfies the Green's condition and by Theorem 3.2(2) we have that q is the only γ -quasi-ideal element of the class. Indeed: If q' < q, then $q' \in (q] = Q_q = H_q$. But H_q satisfies Green's condition, so H_q contains a single γ -quasi-ideal element. This implies q' = q. This means that q is a minimal γ -quasi-ideal element in M. \Box

Remark 5.4. In particular, since le-semigroups are a special case of $le - \Gamma$ -semigroups, all the results of this paper hold true for le-semigroups by simply applying them for Γ a singleton.

References

- [1] J. Dine, On Relation \mathcal{B}_{γ} in *le*- Γ -Semigroups, Int. J. Algebra **2(9)** (2008), 435-449.
- [2] K. Hila, Characterizations on regular le-Γ-semigroups, Math. Sci. Res. J. 10(5) (2006), 121-130.
- [3] K. Hila and E. Pisha, On lattice-ordered Rees matrix Γ-semigroups, An. Stiint. Univ. Al. I. Cuza Iasi, Ser. Noua, Mat., Vol. LIX (2013), f.1, 209-218.
- [4] N. Kehayopulu, On minimal quasi-ideal elements in poe-semigroups, Math. Jap. 34 (1989), 767-774.
- [5] Y. Kwon, On minimal quasi-ideal elements in poe-Γ-semigroups, Far East J. Math. Sci. (FJMS) 14(3) (2004), 385-392.
- [6] E. Pasku and P. Petro, The relation \mathcal{B} in *le*-semigroups, Semigroup Forum **75(2)** (2007), 427-437.
- [7] P. Petro and E. Pasku, The Green-Kehayopulu relation \mathcal{H} in *le*-semigroups, Semigroup Forum 65(1) (2002), 33-42.
- [8] N. K. Saha, On Γ-semigroup-II, Bull. Cal. Math. Soc. **79** (1987), 331-335.
- [9] M. K. Sen and N. K. Saha, On Γ-semigroup-I, Bull. Cal. Math. Soc. 78 (1986), 180-186.
- [10] M. Siripitukdet and A. Iampan, The Green-Kehayopulu Relations in le-Γ-semigroups, Int. J. Algebra 2(3) (2008), 101-108.