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Abstract. In this work, we define new sequence spaces by using the matrix obtained by product of
factorable matrix and generalized difference matrix of order m. Afterward, we investigate topological
structure which are completeness, AK-property, AD-property. Also, we compute the α−, β− and γ− duals,
and obtain bases for these sequence spaces. Finally we give necessary and sufficient conditions on matrix
transformation between these new sequence spaces and c, `∞.

1. Introduction

The matrix domain plays an important role to construct a new sequence space. In studies on the sequence
space, generally there are some approaches. Most important of them are determination of topologies, matrix
mappings and inclusion relations. These methods are applied to study the matrix domain λA of an infinite
matrix A in a sequence space defined by λA = {x = (xk) ∈ w : Ax ∈ λ}. Recently, in literature, there are many
studies done by using the matrix domain. Some of them can be found in the following list [1-10, 16, 17, 23,
26, 27].

Quite recently, some new sequence spaces are defined by using the generalized weighted mean and the
generalized difference operator of order m or by combining both of them.

Now we will give short literature information in consist of recent works about the concepts mentioned
above as follows: In [19], the difference sequence spaces first defined by Kızmaz. Further, the authors
including Ahmad and Mursaleen [1], Çolak and Et [13], Altay and Başar [6], Karakaya and Polat [15] and
the others have defined and studied new sequence spaces by considering matrices that represent difference
operators and its generalizations. The article concerning this work can be found in the list of references
[7, 8, 12, 18].

On the other hand, by using generalized weighted mean, several authors defined some new sequence
spaces and studied some properties. Some of them are as follows: Malkowsky and Savaş [21] have defined
the sequence spaces z(u, v, λ) which consist of all sequences such that G(u, v)-transform of them are in
λ ∈

{
`∞, c, c0, `p

}
. Başar and Altay [3, 5] have defined the sequence spaces of nonabsolute type derived by

generalized weighted mean.
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In this work, our purpose is to introduce new sequence spaces by combining the generalized weighted
mean and difference matrix Bm and to investigate topological structurewhich are completeness, AK-and AD-
properties, also to compute the α−, β−, γ− duals and basis of sequence spaces. In addition, we characterize
some matrix mappings on these spaces.

The results related to the matrix domain of the matrix Bm are more general and more comprehensive
than the corresponding consequences of matrix domain of operator ∆m and some others. Therefore, in
many ways, our work is more general than earlier studies.

2. Some Basic Definitions and Notations

By w, we denote the space of all real or complex valued sequences. Any vector subspace of w is
called a sequence space. We write `∞, c and c0 for the spaces of all bounded, convergent and null sequences,
respectively. Also by bs, cs and `1 we denote the spaces of all bounded, convergent and absolutely convergent
series, respectively.

A sequence space λ with a linear topology is called a K-space provided each of the maps pi : λ → C
defined by pi (x) = xi is continuous for all i ∈ N; where C denotes the complex field andN = {0, 1, 2, ...}. A
K-space λ is called an FK-space provided λ is a complete linear metric space. An FK-space whose topology
is normable is called a BK− space. The sequence spaces `∞, c and c0 are BK− space with the sup-norm defined
by ‖x‖∞ = supn∈N |xn|. An FK-space λ is said to have AK-property, if φ ⊂ λ and {e(k)

} is a basis for λ, where
e(k) is a sequence whose only non-zero term is a 1 in kth place for each k ∈ N and φ = span{e(k)

}, the set of
all finitely non-zero sequences. If φ is dense in λ, then λ is called an AD-space, thus AK implies AD. For
example, the spaces c0 and cs are AK-spaces.

Let λ, µ be any two sequence spaces and A = (ank) be an infinite matrix of real numbers ank, where
n, k ∈ N. Then, we write Ax = {(Ax)n}, the A−transform of x, if (Ax)n =

∑
k ankxk converges for each n ∈ N.

If x ∈ λ implies that Ax ∈ µ, then we say that A defines a matrix mapping from λ into µ and denote it by
A : λ → µ. By (λ : µ), we mean the class of all infinite matrices A such that A : λ → µ. Also we denote all
finite subsets ofN by z. We write e = (1, 1, 1, ...) and U for the set of all sequences u = (un) such that un , 0
for all n ∈N. For u ∈ U, let 1/u = (1/un). Let u, v ∈ U and define the matrix G(u, v) = (1nk) by

1nk =

{
unvk; if 0 ≤ k ≤ n

0; if k > n

for all k,n ∈ N, where un depends only on n and vk only on k. The matrix G(u, v), defined above, is called
as generalized weighted mean or factorable matrix.

The continuous dual X′

of a normed space X is defined as the space of all bounded linear functionals
on X. If A is triangle, that is ank = 0 if k > n and ann , 0 for all n ∈N, and λ is a sequence space, then f ∈ λ′A
if and only if f = 1 ◦ A, 1 ∈ λ′ .

Let X be a seminormed space. A set Y ⊂ X is called fundamental if the span of Y is dense in X. One of
the useful results on fundamental set which is an application of Hahn-Banach Theorem as follows: If Y is
the subset of a seminormed space X and f ∈ X′

, f (Y) = 0 implies f = 0, then Y is fundamental ([29], p.39).

3. The Sequence Spaces (`∞B) (u, v,m) , cB (u, v,m) and (c0B) (u, v,m)

In this section, we define the new sequence spaces (`∞B) (u, v,m) , cB (u, v,m) and (c0B) (u, v,m) derived
by the composition of the generalized weighted mean G(u, v) and the generalized difference matrix Bm of
order m, the generalization of the matrix ∆m of the difference matrix of order m, where m ∈N. Throughout
the text, ν denotes any of the spaces `∞, c and c0. Furthermore we prove that these new sequence spaces are
complete normed linear space, and we compute their α−, β− and γ− duals. In this section additionally we
give the bases for the spaces cB (u, v,m),(c0B) (u, v,m) and finally we show that these spaces have AK− and
AD properties.
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The work of Euler spaces of difference sequences of order m was studied by Polat Başar in [24]. Later,
in [11], Başarır and Kayıkçı defined the matrix Bm = (bm

nk) by

bm
nk =

{ ( m
n−k

)
rm−n+ksn−k, (max {0,n −m} ≤ k ≤ n)

0, (0 ≤ k < max {0,n −m}) or ( k > n)

It is easily check that if r = 1 and s = −1, we obtain that Bm = ∆m (see,[2]).
We define new sequence spaces ν (u, v,m) by

ν (u, v,m) =

x = (xn) ∈ w : B (u, v,m) x =


n∑

k=0

n∑
j=k

(
m

j − k

)
rm− j+ks j−kunv jxk

 ∈ ν
 .

We can redefine the spaces ν (u, v,m) as the matrix domain of the triangle B (u, v,m) in the spaces ν, that is

ν (u, v,m) = νB(u,v,m).

This definition includes the following special cases: i) If r = 1 and s = −1, ν (u, v,m) = ν (u, v,∆m).
ii) If r = 1, s = −1 and m = 1, then ν (u, v,m) = ν (u, v,∆) (see,[25]). iii) If uk = 1

λk
, vi = λi − λi−1,

m = 1, r = 1, s = −1 and ν ∈ {c, c0} then ν (u, v,m) = cλ0 (∆) and cλ(∆)(see, [22]).
Define the sequence y =

(
yk

)
; which will be frequently used as the B (u, v,m)-transform of a sequence

x = (xk) i.e. for (m,n ∈N),

yn = {B (u, v,m) x}n =

n∑
k=1

n∑
j=k

(
m

j − k

)
rm− j+ks j−kunv jxk. (1)

Since the proof for any one of these new sequence spaces may also be obtained in the similar way for the
other spaces, to avoid the repetition of the similar statements, we give the proof for only one of those spaces.

Theorem 3.1. The sequence space ν (u, v,m) is a complete normed linear space with respect to the norm defined by

‖x‖ν(u,v,m) = sup
n∈N

∣∣∣∣∣∣∣∣
n∑

k=1

n∑
j=k

(
m

j − k

)
rm− j+ks j−kunv jxk

∣∣∣∣∣∣∣∣ =
∥∥∥y

∥∥∥
∞

(2)

Proof. The linearity of ν (u, v,m) with respect to the coordinate-wise addition and scalar multiplication
follows from the following inequality satisfying for x = (xk); t = (tk) ∈ ν (u, v,m) and α, β ∈ R

sup
n∈N

∣∣∣∣∣∣∣∣
n∑

k=1

n∑
j=k

(
m

j − k

)
rm− j+ks j−kunv j

(
αxk + βtk

)∣∣∣∣∣∣∣∣ ≤ |α| sup
n∈N

∣∣∣∣∣∣∣∣
n∑

k=1

n∑
j=k

(
m

j − k

)
rm− j+ks j−kunv jxk

∣∣∣∣∣∣∣∣ (3)

+
∣∣∣β∣∣∣ sup

n∈N

∣∣∣∣∣∣∣∣
n∑

k=1

n∑
j=k

(
m

j − k

)
rm− j+ks j−kunv jtk

∣∣∣∣∣∣∣∣ .
After this step, we must show that the spaces ν (u, v,m) holds the norm conditions and the completeness
with respect to given norm. It is easy to show that (2) holds the norm condition for the spaces ν (u, v,m).
We now consider the space (`∞B) (u, v,m). To prove the completeness of the space (`∞B) (u, v,m), let us take
any Cauchy sequence (xn) in the space (`∞B) (u, v,m). Then for a given ε > 0, there exists a positive integer
N0 (ε) such that ‖xn

− xr
‖ν(u,v,m) < ε for all n, r > N0 (ε). Hence fixed i ∈N,∣∣∣∣B (u, v,m)

(
xn

i − xr
i

)∣∣∣∣ < ε
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for all n, r ≥ N0 (ε). Therefore the sequence (B (u, v,m) xn)
i∈N

is a Cauchy sequence of real numbers for every
n ∈N. Since R is complete, it converges, that is;

(B (u, v,m) xr)i∈N → (B (u, v,m) x)i∈N

as r→∞. So we have∣∣∣∣B (u, v,m)
(
xn

i − xi

)∣∣∣∣ < ε
for every n ≥ N0 (ε) and as r→ ∞. This implies that ‖xn

− x‖ν(u,v,m) < ε for every n ≥ N0 (ε). Now we must
show that x ∈ (`∞B) (u, v,m). We have

sup
n

∣∣∣(B (u, v,m) x)n

∣∣∣ ≤ ‖xn
‖ν(u,v,m) + ‖xn

− x‖ν(u,v,m) = O (1) .

This implies that x = (xi) ∈ (`∞B) (u, v,m). Therefore (`∞B) (u, v,m) is a Banach space. It can be shown that
cB (u, v,m) and (c0B) (u, v,m) are closed subspaces of (`∞B) (u, v,m) which leads us to the consequence that
the spaces cB (u, v,m) and (c0B) (u, v,m) are also the Banach spaces with the norm (2).

Furthermore, since (`∞B) (u, v,m) is a Banach space with the continuous coordinates, i.e.;

‖B (u, v,m) (xn
− x)‖ν(u,v,m) → 0 implies

∣∣∣∣B (u, v,m)
(
xn

i − xi

)∣∣∣∣ → 0 for all i ∈ N. Therefore, it is a BK-
space.

Theorem 3.2. The sequence spaces (`∞B) (u, v,m) , cB (u, v,m) and (c0B) (u, v,m) are linearly isomorphic to the spaces
`∞, c, and c0, respectively, i.e., (`∞B) (u, v,m) � `∞, cB (u, v,m) � c and (c0B) (u, v,m) � c0.

Proof. To prove the fact (c0B) (u, v,m) � c0, we should show the existence of a linear bijection between the
spaces (c0B) (u, v,m) and c0. Consider the transformation T defined with the notation (1), from (c0B) (u, v,m)
to c0 by x→ y = Tx. The linearity of T is clear. Further, it is trivial that x = 0 whenever Tx = 0 and hence T
is injective.

Let y ∈ c0 and define the sequence x = (xk) by

xn =

n∑
k=1

 (−1)n−k

uk

k+1∑
i=k

(
m + n − i − 1

n − i

)
sn−i

rm+n−i vi

 yk. (4)

Then

lim
n→∞

(B (u, v,m) x)n = lim
n→∞

yn = 0.

Thus we have that x ∈ (c0B) (u, v,m). Consequently, T is surjective and is norm preserving. Hence, T is a
linear bijection which therefore says us that the spaces (c0B) (u, v,m) and c0 are linearly isomorphic. In the
same way, it can be shown that cB (u, v,m) and (`∞B) (u, v,m) are linearly isomorphic to c and `∞, respectively,
and so we omit the details.

Now we give the definition of a Schauder basis of a normed space. If a normed sequence space ν
contains a sequence (bn) such that, for every x ∈ ν, there is unique sequence of scalars (αn) for which∥∥∥∥∥∥∥x −

n∑
k=0

αnbk

∥∥∥∥∥∥∥→ 0 as n→∞.

Then (bn) is called a Schauder basis for ν. The series
∑
αkbk has the sum x that is called the expansion of x in

(bn), and we write x =
∑
αkbk, (Maddox [20]; p.98).

Because of the isomorphism T defined in Theorem 3.2 the inverse image of the bases of spaces c0 and c
is onto, and so they are the bases of the new spaces (c0B) (u, v,m) and cB (u, v,m), respectively. Therefore, we
give the following theorem without proof.
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Theorem 3.3. Let αk = (B (u, v,m) x)k for all k ∈N. Define the sequence d(k) =
{
d(k)

n

}
n∈N

of the elements of the space
(c0B) (u, v,m) by

d(k)
n (Bm) =


0; (n < k)

(−1)n−k

uk

k+1∑
i=k

(
m + n − i − 1

n − i

)
sn−i

rm+n−ivi
; (n ≥ k)

for every fixed k ∈N. Then the following assertions are true:
i) The sequence

{
d(k)

}
k∈N

is basis for the space (c0B) (u, v,m), and any x ∈ (c0B) (u, v,m) has a unique representation
in the form

x =
∑

k

αkd(k)

ii) The set
{
e, b(k)

}
is a basis for the space cB (u, v,m), and any x ∈ cB (u, v,m) has a unique representation in the form

x = le +
∑

k

(αk − l) d(k),

where l = lim
k→∞

(B (u, v,m) x)k.

Theorem 3.4. The sequence space (c0B) (u, v,m) has AD-property whenever u ∈ c0.

Proof. For this, we prove that the set φ, the space of all finitely non-zero sequences, is dense in (c0B) (u, v,m).
Suppose that f ∈ [(c0B) (u, v,m)]′. Then there exists a functional 1 over the space c0 such that f (x) =
1 (B (u, v,m) x) for some 1 ∈ c′0 = `1. Since c0 has AK − property and c′0 � `1, we have

f (x) =

∞∑
j=0

a j (B (u, v,m) x) j

for some a =
(
a j

)
∈ `1. Since the matrix domain generated by B (u, v,m) over c0 is a expansion, the inclusion

c0 ⊂ (c0B) (u, v,m) holds. Hence the inclusion φ ⊂ (c0B) (u, v,m) holds. For any f ∈ [(c0B) (u, v,m)]′ and
e(k)
∈ φ ⊂ (c0B) (u, v,m), we have

f
(
e(k)

)
=

∞∑
j=1

a j

(
B (u, v,m) e(k)

)
j
=

{
B
′

(u, v,m) a
}

k

where B′ (u, v,m) is the transpose of the matrix B (u, v,m) . Hence, from Hahn-Banach Theorem, φ is dense
in (c0B) (u, v,m) if and only if B′ (u, v,m) a = θ for a ∈ `1 implies a = θ. Since the null space of the operator
B′ (u, v,m) on w is {θ} , (c0B) (u, v,m) has AD property.

We now give the details about duals of the sequence spaces (`∞B) (u, v,m) , cB (u, v,m) and (c0B) (u, v,m).
For the sequence spaces λ and µ, define the set S

(
λ, µ

)
by

S
(
λ, µ

)
=

{
z = (zk) ∈ w : xz = (xkzk) ∈ µ for all x ∈ λ

}
. (5)

With notation of (5), the α−, β− and γ− duals of a sequence space λ, which are respectively denoted by λα,
λβ and λγ are defined in [14] by

λα = S (λ, `1) , λβ = S (λ, cs) and λγ = S (λ, bs) .

Now, we need the following Lemmas due to Stieglitz and Tietz [28] for the next theorems.
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Lemma 3.5. A ∈ (c0 : `1) if and only if

sup
K∈z

∑
n

∣∣∣∣∣∣ ∑k∈K ank

∣∣∣∣∣∣ < ∞.

Lemma 3.6. A ∈ (c0 : c) if and only if
sup

n

∑
k
|ank| < ∞,

lim
n→∞

ank − αk = 0.

Lemma 3.7. A ∈ (c0 : `∞) if and only if
sup

n

∑
k
|ank| < ∞.

Theorem 3.8. Let u, v ∈ U, a = (ak) ∈ w and the matrix Vm =
(
vm

nk

)
by

vm
nk =


(−1)n−k

uk

k+1∑
i=k

(
m + n − i − 1

n − i

)
sn−i

rm+n−ivi
an; (0 ≤ n ≤ k)

0; (k > n)
(6)

for all k, n ∈N. Then the α−dual of the space ν (u, v; m) is the set

bm
B =

a = (an) ∈ w : sup
K∈z

∑
n

∣∣∣∣∣∣∣∑k∈K vm
nk

∣∣∣∣∣∣∣ < ∞
 .

Proof. Let a = (an) ∈ w and consider the matrix B−1 (u, v,m) which is inverse of the matrix B (u, v,m) and
sequence a = (an). Bearing in mind the relation (1), we immediately derive that

anxn =

n∑
k=1

(−1)n−k an

uk

k+1∑
i=k

(
m + n − i − 1

n − i

)
sn−i

rm+n−ivi
yk =

(
Vmy

)
n (7)

for all n, k ∈ N. We therefore observe by (7) that ax = (anxn) ∈ `1 whenever x ∈ ν (u, v; m) if and only if
Vmy ∈ `1 whenever y ∈ ν. Then, we derive by Lemma (3.5) that

sup
K∈z

∑
n

∣∣∣∣∣∣∣∑k∈K vm
nk

∣∣∣∣∣∣∣ < ∞
which yields the consequence that [(c0B) (u, v,m)]α = [cB (u, v,m)]α = [(`∞B) (u, v,m)]α = bm

B .

Theorem 3.9. Let u, v ∈ U, a = (an) ∈ w and the matrix C = (cnk) defined by

cm
nk =


1
uk

n∑
i=k

(−1)n−k ai

i+1∑
p=i

(
m + i − p − 1

i − p

)
si−p

rm+i−pvp
; (0 < k ≤ n)

0; (k > n)
(8)

and also define the sets c1B, c2B, c3B, c4B by

c1B =

a = (an) ∈ w : sup
n

∑
n

|cnk| < ∞

 ;

c2B =
{
a = (an) ∈ w : lim

n→∞
cnk exists for each k ∈ N

}
;

c3B =

a = (an) ∈ w : lim
n→∞

∑
k

|cnk| =
∑

k

∣∣∣∣ lim
n→∞

cnk

∣∣∣∣ ;

c4B =

a = (an) ∈ w : lim
n→∞

∑
k

cnk exists

 .
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Then, the sets [c0B (u, v,m)]β, [cB (u, v,m)]β and [`∞B (u, v,m)]β are the sets c1B ∩ c2B, c1B ∩ c2B ∩ c4B and c2B ∩ c3B
respectively.

Proof. Since the proof may be obtained by the similar way for the spaces cB (u, v,m) and (`∞B) (u, v,m), we
only give the proof for the space(c0B) (u, v,m). Consider the equation with (8)

n∑
k=1

akxk =

n∑
k=1

 k∑
i=1

(−1)n−k

uk

k+1∑
i=k

(
m + n − i − 1

n − i

)
sn−i

rm+n−ivi
yi

 ak (9)

=
(
Cmy

)
n .

Thus, we deduce from Lemma 3.6 and (9) that ax = (anxn) ∈ cs whenever x ∈ c0B (u, v,m) if and only if Cmy ∈ cs
whenever y ∈ c0. Therefore we derive by Lemma 3.6 which shows that {(c0B) (u, v,m)}β = c1B ∩ c2B.

Theorem 3.10. The γ−dual of ν (u, v; m) is the set c1B.

Proof. This may be obtained in the similar way used in the proof of Theorem 3.9 with Lemma 3.7 instead of
Lemma 3.6. So, we omit the details.

4. Matrix Transformations on Space cB (u, v,m)

In this section, we directly prove the theorems which characterize the classes (cB (u, v,m) : `∞) and
A ∈ (cB (u, v,m) : c). We shall write throughout for brevity that

ãnk =
ank

uk

∞∑
p=k

(−1)p−k
p+1∑
j=p

(
m + p − j − 1

p − j

)
sp− j

rm+p− jv j


for all n, k ∈N.

Theorem 4.1. A ∈ (cB (u, v,m) : `∞) if and only if

sup
n

∞∑
k=0

∣∣∣∣∣∣∣∣ank

uk

∞∑
p=k

(−1)p−k
p+1∑
j=p

(
m + p − j − 1

p − j

)
sp− j

rm+p− jv j


∣∣∣∣∣∣∣∣ < ∞, (10)

exists for all k,n ∈N.

Proof. Suppose that A ∈ (cB (u, v,m) : `∞). Then Ax exists and is in `∞ for all x ∈ cB (u, v,m). So, we can
consider the following equality

n∑
k=0

ankxk =

n∑
k=0

ank

uk

n∑
p=k

(−1)p−k
p+1∑
j=p

(
m + p − j − 1

p − j

)
sp− j

rm+p− jv j

 yk ; (n ∈ N) .

which yields us under our assumptions as n→∞ that

∞∑
k=0

ankxk =

∞∑
k=0

ank

uk

∞∑
p=k

(−1)p−k
p+1∑
j=p

(
m + p − j − 1

p − j

)
sp− j

rm+p− jv j

 yk ; (n ∈ N) . (11)

Using (11) under our assumptions. we get that

sup
n

∞∑
k=0

|ãnk| < ∞
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Conversely we assume that (10) holds. Then we have to show that A ∈ (cB (u, v,m) : `∞) . To do this, let

Ã = (ãnk) be a matrix connected with A = (ank) . For any y ∈ `∞ and from (10), we have
∣∣∣Ãy

∣∣∣ < sup
n

∞∑
k=0
|ãnk| < ∞.

So Ãy ∈ `∞. By considering (1), we get

∞∑
k=0

ankxk =

∞∑
k=0

ãnkyk (12)

This means that A ∈ (cB (u, v,m) : `∞) . Hence this completes the proof.

Theorem 4.2. A ∈ (cB (u, v,m) : c) if and only if (10) holds, and

lim
n→∞

ãnk = αk for each k ∈ N (13)

lim
n→∞

∞∑
k=0

ãnk = α (14)

Proof. Suppose that A satisfies the conditions (10), (13) and (14). Let us take any x ∈ cB (u, v,m). Then Ax
exists and it is trivial that the sequence y =

(
yk

)
connected with the sequence x = (xk) by the relation (1) is

in c such that yk → l as k→∞. From (10) and (13), we have

k∑
j=0

∣∣∣α j

∣∣∣ ≤ sup
n

k∑
j=0

∣∣∣ãnj

∣∣∣ < ∞
holds for every k ∈ N. Hence we get (αk) ∈ `1. Now considering (12), let us write

∞∑
k=0

ankxk =

∞∑
k=0

ãnk
(
yk − l

)
+ l

∞∑
k=0

ãnk (15)

After by letting n→∞ in (15), we get

(Ax)n →

∞∑
k=0

αk
(
yk − l

)
+ lα

which shows that A ∈ (cB (u, v,m) : c).
Conversely suppose that A ∈ (cB (u, v,m) : c). Then since the inclusion c ⊂ `∞ holds, the necessity of

(10) is immediately obtained from Theorem 4.1. To prove the necessity of (13), consider the sequence
x = x(k) =

{
x(k)

n

}
∈ cB (u, v,m) defined by

x(k)
n =


(−1)n−k

uk

k+1∑
i=k

(
m + n − i − 1

n − i

)
sn−i

rm+n−ivi
; (0 ≤ n ≤ k)

0; (k > n)

for each k ∈ N. Since Ax exists and in c for every x ∈ cB (u, v,m), one can easily see that
Ax(k) = {ãnk}n∈N ∈ c for each k ∈ N which shows the necessity of (13). Similarly by putting x = e in (12),

we also obtain that Ax =

{
∞∑

k=0
ãnk

}
n∈N

belongs to the space c and this shows the necessity of (14). Hence this

completes the proof.
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